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Toward robust and scalable deep
spiking reinforcement learning

Mahmoud Akl*, Deniz Ergene, Florian Walter and Alois Knoll

Chair of Robotics, Artificial Intelligence and Embedded Systems, TUM School of Computation, Information

and Technology, Technische Universität München, Munich, Germany

Deep reinforcement learning (DRL) combines reinforcement learning algorithms with

deep neural networks (DNNs). Spiking neural networks (SNNs) have been shown to be

a biologically plausible and energy e�cient alternative toDNNs. Since the introduction

of surrogate gradient approaches that allowed to overcome the discontinuity in the

spike function, SNNs can now be trained with the backpropagation through time

(BPTT) algorithm. While largely explored on supervised learning problems, little work

has been done on investigating the use of SNNs as function approximators in DRL.

Here we show how SNNs can be applied to di�erent DRL algorithms like Deep

Q-Network (DQN) and Twin-Delayed Deep Deteministic Policy Gradient (TD3) for

discrete and continuous action space environments, respectively. We found that

SNNs are sensitive to the additional hyperparameters introduced by spiking neuron

models like current and voltage decay factors, firing thresholds, and that extensive

hyperparameter tuning is inevitable. However, we show that increasing the simulation

time of SNNs, as well as applying a two-neuron encoding to the input observations

helps reduce the sensitivity to the membrane parameters. Furthermore, we show

that randomizing the membrane parameters, instead of selecting uniform values

for all neurons, has stabilizing e�ects on the training. We conclude that SNNs can

be utilized for learning complex continuous control problems with state-of-the-art

DRL algorithms. While the training complexity increases, the resulting SNNs can be

directly executed on neuromorphic processors and potentially benefit from their high

energy e�ciency.

KEYWORDS

spikingneural network (SNN), reinforcement learning, deep reinforcement learning (DeepRL),

continuous control, hyperparameter tuning

1. Introduction

Spiking Neural Networks (SNNs), also known as the third generation of neural networks

(Maass, 1997; Walter et al., 2016), have been studied as alternative universal function

approximators to Artificial Neural Networks (ANNs). The biological plausibility of SNNs,

as well as the orders of magnitude increased energy efficiency, especially when deployed on

neuromorphic chips (Roy et al., 2019), are two main factors that contribute to the increasing

interest in SNNs. Other factors, like the ability to process high-dimensional data in real time,

particularly when data is provided from asynchronous sensors like event-based cameras (Gallego

et al., 2022), provide SNNs with an edge over ANNs in particular applications.
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For a long time, training SNNs has been limited to biologically

plausible learning rules (Gerstner et al., 1993; Ruf and Schmitt, 1997),

like spike time-dependent plasticity (STDP), or to evolving synaptic

weights using genetic algorithms (Floreano and Mattiussi, 2001;

Batllori et al., 2011; Schuman et al., 2020).While the backpropagation

algorithm is not biologically plausible (Crick, 1989; Marblestone

et al., 2016; Whittington and Bogacz, 2019), it has been proven

to be a powerful tool when it comes to optimizing parameters in

ANNs (LeCun et al., 2015). The main hurdle against training SNNs

with backpropagation is the discontinuity in the spike function

that renders it not differentiable. The gradient is infinite at the

spiking threshold and zero everywhere else. For this reason, a lot

of research focused on converting trained ANNs to SNNs, instead

of directly training SNNs, to leverage the low power consumption

of neuromorphic chips. This has been explored on supervised

(Rueckauer et al., 2017; Sengupta et al., 2019; Han et al., 2020; Stöckl

and Maass, 2021) as well as on reinforcement learning problems

(Patel et al., 2019).

In the past few years, however, multiple techniques to

approximate gradients in SNNs have been suggested. Here, we

consider surrogate gradients (Bohte et al., 2002; Neftci et al., 2019),

a method that replaces the discontinuous gradient function of the

heaviside spike function with a smoothed one. Multiple surrogate

gradient functions have been explored, e.g., Piece-wise Linear (Esser

et al., 2016), derivative of a fast sigmoid (SuperSpike) (Zenke and

Ganguli, 2018), and exponential (Shrestha and Orchard, 2018).

However, it was found that surrogate gradient functions that peak

at zero and are monotonically falling on both sides are similarly

effective (Zenke and Vogels, 2021). Surrogate gradient learning has

been heavily explored on classification problems (Bellec et al., 2018),

but much less on reinforcement learning problems.

In a previous work (Akl et al., 2021), we demonstrated that

SNN training with backpropagation and surrogate gradients can

be combined with the Deep Q-Network (DQN) algorithm (Mnih

et al., 2015) to solve classical control tasks from OpenAI Gym

(Brockman et al., 2016). Furthermore, we showed that taking certain

constraints into account during training allows us to port the

trained networks to Intel’s neuromorphic research chip Loihi (Davies

et al., 2018) without loss in performance. In a follow-up work

(Akl et al., 2022), we were able to fine-tune the trained SNNs

with backpropagation and surrogate gradients using the biologically

plausible reward-modulated STDP (r-STDP) learning rule, to restore

the network’s performance when evaluated on randomized versions

of the environments.

In this paper, we further investigate using SNNs as function

approximators in DRL algorithms. We expand on our previous work

by training more advanced DRL algorithms with SNNs to solve

more complex, continuous control problems from OpenAI Gym

(Brockman et al., 2016), with an increased number of state and action

dimensions. Additionally, we conduct a hyperparameter study in

order to examine how the choice of the membrane parameters affects

learning with surrogate gradients and DRL algorithms. Furthermore,

we explore randomizing membrane parameters across the entire

network, and observe that this approach improves SNN training with

surrogate gradients.

The rest of this paper is organized as follows. In the next section,

we describe the methods used to train SNNs, i.e., the neuronal model

and the encoding and decodingmethods as well as the randomization

of the membrane parameters. In Section 3, we elaborate on the choice

of membrane parameters and show how they affect trainability of the

networks by conducting hyperparameter searches. In Section 4, we

present the training results and highlight the impact of randomizing

parameters. Finally, we conclude our work and determine potential

future research directions in Section 5.

2. Methods

In this section we describe the methods we used to train SNNs.

In particular, we elaborate on the neuronal model used, the surrogate

gradient function, the DRL algorithm used to train the networks, our

chosen encoding and decoding methods, as well as our approach to

randomize membrane parameters.

2.1. SNN training with surrogate gradients
and TD3

To train the SNNs with backpropagation and surrogate gradients,

we used the SpyTorch framework (Zenke, 2019) which is built on top

of the popular deep learning library PyTorch (Paszke et al., 2019).

We used the leaky integrate-and-fire (LIF) neuron model in all our

experiments. In SpyTorch, the LIF model membrane dynamics in

feed forward networks are described by:

Vi(t) = βVi(t − 1)+ Ii(t − 1)− Si(t − 1) (1)

where Vi(t) is the membrane potential of neuron i at time t, β =
e−1/τmem ∈ [0, 1] is the membrane potential decay factor that depends

on the membrane time constant τmem > 0. Ii(t) is the input synaptic

current of neuron i at time t. Si(t) represents the emission of a spike

once the membrane potential exceeds the firing threshold θ , and is

formally described by the Heaviside step function:

Si(t) = 2(Ui(t)− θ) (2)

The input synaptic current is described by:

Ii(t) = αIi(t − 1)+
∑

j

WijSj(t − 1) (3)

Where α = e−1/τsyn ∈ [0, 1] is the synaptic current decay

factor that depends on the synaptic time constant τsyn > 0, and∑
j WijSj(t − 1) is the weighted sum of the incoming spikes from the

previous layer j.

The DRL algorithm we considered for the continuous control

problems is TD3 (Fujimoto et al., 2018). It is an extension of the off-

policy Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al.,

2016) algorithm. With TD3, three new methods were introduced

in order to deal with the often-encountered Q-value overestimation

problem: Target policy smoothing, double Q-learning, and delayed

policy updates. TD3 is an actor critic method in which an actor

network is trained to output actions based on current observations,

and two critic networks are trained to estimate the action value, based

on the current observation. All networks used in our experiments

are feed-forward networks with two hidden layers containing 400

and 300 neurons, respectively. We chose the actor network to be

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1075647
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Akl et al. 10.3389/fnbot.2022.1075647

an SNN and the critic networks to be ANNs. While using SNNs

for the actor and critic networks is feasible, there is a notable boost

in training times when choosing ANN critics. This is mainly due

to the fact that current deep learning frameworks that are used to

train SNNs with surrogate gradients are not optimized for SNNs or

sparse computations. Finally, once an agent is trained, only the actor

network is used for evaluation and deployment. If our end goal is

to deploy a trained DRL policy to neuromorphic chips in order to

leverage low power consumption, then only the actor network needs

to be spiking. Furthermore, training a TD3 agent with spiking critic

networks might require a different set of membrane parameters than

that of the actor network. This will require further hyperparameter

tuning of the critics’ membrane parameters.

2.2. Encoding and decoding

In continuous control RL problems, observations are real-valued

sensor readings and actions are real-valued torques applied to

joints. In order solve such problems with SNNs, suitable encoding

and decoding methods have to be chosen. While encoding and

decoding information is a heavily studied problem in the field of

SNN research (Schuman et al., 2019, 2022; Auge et al., 2021; Guo

et al., 2021), knowing which encoding and decoding methods (or

the combination thereof) are suitable for particular applications is

seldom straightforward.

Previously, for discrete action problems, we used the current

injection of weighted sum of inputs encoding method alongside

the membrane potential decoding method. The combination of

both methods was able to solve classic control tasks when trained

with the DQN algorithm. With slight modifications, we were able

to re-use the same methods for continuous control problems. A

schematic overview of our chosen encoding and decoding methods

for continuous control is shown in Figure 1.

2.2.1. Current injection of observations’ weighted
sum

In this input encoding method, the observations from the

environments are multiplied by the first weight matrix (connecting

the input layer to the first hidden layer). The values in the resulting

vector are injected as constant current in the first hidden layer’s

neurons for the entire duration of the simulation time. With this

approach, we are using a linear ANN input layer, and allow the

trained weights to adjust what amount of current gets injected

into the spiking neurons. One of the main advantages of this

approach, as opposed to injecting observations as currents in the

input layer directly, is that we never have to worry about whether

the observations’ values are high enough to generate spiking activity

or not. It is standard practice in DRL to normalize observations

before feeding them into the network, and injecting normalized

observations as current can lead to a dead network, especially at the

beginning of an episode, where input values like velocities and joint

positions are low. In continuous control problems, observations are

real values spanning negative and positive numbers, which usually

requires a transformation before translating them into spike trains.

The main advantage of this encoding method is that it does not

require any transformation to the input before feeding it into the

network. Since weights are initialized from a normal distribution

centered around zero, the weight matrices contain positive as well

as negative values. Therefore, negative observations multiplied by

negative weights will result in positive constant currents, which,

if high enough, will produce spiking activity. Similarly, some

observations will result in negative current injection in some neurons,

which will cause the membrane potential to fall below its resting

value, i.e., sub-resting membrane potential (see for example the last

neuron in the first hidden layer H1 in Figure 1C). While this feature

of sub-resting membrane potential is sometimes ignored in software

and hardware implementations of SNNs, it is a biologically realistic

feature that has been shown to result in more accurate inference in

SNNs (Hwang et al., 2020).

Even though a transformation of the inputs is not required in

our case, we found that applying a two-neuron encoding on the

raw environment observations (See Figures 1A, B), has stabilizing

effects on the training. The two-neuron encoding method assigns

two neurons, instead of one, for each observation. One neuron gets

activated when the observation is positive, while the other neuron

gets activated when the observation is negative. The two neurons

representing one observation dimension produce mutually exclusive

firing, i.e., only one of them gets activated at a time (see Figure 1B).

This method was first introduced in Pérez-Carrasco et al. (2013) in

order to be able to convert negative inputs to spike trains.

2.2.2. Membrane potential readout
In this decoding method, we remove the spiking mechanism

from the output neurons, i.e., we set the firing threshold of the

output neurons to infinity. This way, the output neurons never

spike, regardless how high the membrane potential gets. Incoming

weighted spikes increase or decrease the values of the membrane

potentials. The final values of the membrane potentials of the output

neurons, i.e., after the last simulation time step are chosen as

actions (See Figure 1D). Unlike discrete action problems, in which

only a higher value is sufficient to select an action, continuous

control problems require accurate readout values that translate into

meaningful actions. We found that setting the current decay factor

to zero α = 0 and the voltage decay factor to one β = 1 in

the output layer yielded more stable training results for continuous

control problems. By doing so, our output neurons are calculating

the weighted sum of incoming spikes, without any leak.

2.3. Randomized membrane parameters

One assumption that is often considered when building neural

networks, is that all neurons share the same parameters. In ANNs,

this means that all neurons have the same activation function, while

in SNNs this means that all neurons have the same membrane

parameters. Broadly speaking, this assumption means that all

neurons within a network would produce the same output when

subjected to the same input. However, neurons in different brain

regions have been shown to have different time constants (Deco et al.,

2019), which would cause diverse output activities. In an attempt

to incorporate more neuroscience findings into (artificial) neural

networks, we explored the trainability of SNNs with non-uniform

membrane parameters, when trained with backpropagation based on

surrogate gradients and the TD3 DRL algorithm to solve continuous

control porblems.
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FIGURE 1

Overview of the encoding and decoding methods used in our experiments. The continuous control OpenAI Gym environments Ant-v3, HalfCheetah-v3,

and Hopper-v3 (A). Each environment has di�erent observation and action dimensions, which has an impact on the choice of the membrane parameters.

Observations are first encoded into a two-neuron input scheme, in which inputs are split into positive and negative neurons for each dimension (B). The

resluting two-neuron encoded input vector is multiplied by the first weight matrix, i.e., the weight matrix connecting the input layer to the first hidden

layer, and the resulting values are injected as constant current in the first hidden layer’s neurons. (C) Shows the resulting activity from injecting constant

current. Blue curves show the membrane potential, dashed green lines represent the firing thresholds, and the red dots indicate the emission of a spike at

that time step. Spikes generated in the first hidden layer will propagate to the second hidden layer, where spiking activity will also be generated. The

output layer (D), contains as many neurons as the number of actions with the firing threshold set to infinity, i.e., neurons without a spiking mechanism.

Incoming spikes from the second hidden layer control the evolution of the membrane potentials of the neurons in the output layer. The values of the

membrane potentials at the last simulation time step are the chosen actions.

FIGURE 2

Demonstration of the e�ects of randomizing membrane parameters. An input spike train (top) is fed into ten neurons with the same synaptic weight.

Instead of setting the membrane parameters’ values of all neurons to the same value, the values are drawn from a normal distribution with the means:

µα = 0.5, µβ = 0.5, µthreshold = 0.1, and the standard deviation: σ = 0.3µ. The panels below the input spike train show the membrane potentials (solid blue

lines), thresholds (dashed blue lines), and the spikes (red dots) of the ten neurons.

Previous works considered treating membrane time constants as

learnable parameters that are optimized during training alongside

synaptic weights (Zimmer et al., 2019; Fang et al., 2021). There, all

neurons within a layer share the same time constants. This approach

showed an improved classification accuracy of SNNs when measured

on several benchmark datasets. Another work (Perez-Nieves et al.,
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FIGURE 3

SNN hyperparameter search results over firing threshold and decay factor combinations for multiple simulation times, measured on the CartPole-v0

problem when trained with the DQN algorithm. All parameter combinations were used to train SNNs for 1,000 episodes, and the z-axis shows the

maximum reward achieved during training. All experiments were conducted with the same random seeds controlling network weight initialization and

environment’s initial configuration. (A) One-neuron encoding. (B) Two-neuron encoding.

2021) compared the effects of initialized uniform parameters that

are modified during learning, with initialized random parameters

that are fixed during training. Overall, introducing randomized

membrane parameters was shown to improve the accuracy to various

degrees. The authors argue, that for tasks with rich intrinsic temporal

structure, heterogeneity was most effective. In this paper, however,

we consider randomizing the membrane parameters’ values for

each neuron during initialization, and keep the values fixed, while

only optimizing the synaptic weights to solve continuous control

problems. Additionally, we randomize the firing thresholds as well

as the time constants (current and voltage decay factors). When

initializing a network, we draw the respective values for each neuron

from a narrow normal distribution, centered around the chosen

values for each parameter, i.e., the values listed in Table 2, with the

standard deviation set to σ = 0.1 · µ.
To demonstrate the effect of randomizing membrane parameters,

Figure 2 shows the activity of 10 neurons with randomized

parameters, that receive the same spike train input and share the same

synaptic weight. For demonstration purposes, we set the standard

deviation to a higher value than in our experiments (0.3 ·µ vs. 0.1 ·µ).
The most notable effect of randomizing membrane parameters is that

every neuron produces a different number of spikes, and thereby
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has a different firing rate. Additionally, looking at the membrane

potentials, we can also see how the neurons have different decay

behaviors (most notably around timestep 30), which in turn also

affects the firing rate.

3. Impact of membrane parameters

One of the reasons why training SNNs is more difficult than

training ANNs is that SNNs have an increased number of parameters,

the choice of which heavily impacts the learning ability. In ANNs,

apart from the DRL algorithm hyperparameters (e.g., memory buffer

size, target update frequency, discount factor, added noise to selected

actions, and epsilon greedy action selection), and the gradient

descent hyperparameters (e.g., learning rate and batch size), the

neuron-specific parameters are limited to the choice of the activation

function. The activation function is a mapping that defines the output

produced by a neuron based on its input. In SNNs, the equivalent

of an activation function is the set of membrane parameters that

define the neuron’s dynamics and describe how the neuron’s current

FIGURE 4

CartPole-v0 reward means and standard deviations measured across

all membrane parameter combinations (for the defined ranges) for

di�erent SNN simulation times using one-neuron and two-neuron

encoding. Running a statistical t-test on the rewards resulted in the

significance values: t = −8.17,p < 0.001.

TABLE 1 Reward threshold crossing percentages across all parameter

combinations for di�erent simulation times.

Simulation time One-neuron
encoding

Two-neuron
encoding

3 12.46% 30.74%

4 15.78% 31.02%

5 20.22% 48.19%

6 24.93% 43.49%

7 26.59% 42.10%

8 26.86% 49.58%

9 27.70% 52.07%

10 43.49% 48.47%

Values in bold indicate the highest percentage of reward threshold crossings.

and voltage evolve in response to stimuli. In a leaky integrate-and-

fire (LIF) neuron model (Lapique, 1907; Gerstner et al., 2014), the

membrane parameters include the voltage decay factor, the syanptic

current decay factor, and the firing threshold.While other parameters

may also be adjusted, they are often set to default values. These

parameters can also impact the trainability of the network using

backpropagation and surrogate gradients. For example, the value of

the reset membrane potential, i.e., the value the membrane potential

takes after a neuron emits a spike, and the refractory period, i.e., the

period of time where a neuron cannot spike after having emitted a

spike, are set to zero by default in the SpyTorch LIF model, and we

did not change them. In addition, other neuron models may have

additional parameters that also need to be adjusted. For instance,

LIF neurons with adaptive threshold (Chacron et al., 2003) have

additional parameters such as the value by which the threshold

increases after a spike is emitted and the threshold’s decay factor.

Tuning these parameters can affect the performance of the model.

In order to better understand how the choice of the membrane

parameters impacts the backpropagation-based learning in SNNs,

and specifically when combined with DRL algorithms, we ran

extensive hyperparameter searches on taining an SNN with the

DQN algorithm to solve the CartPole-v0 problem from OpenAI

Gym (Brockman et al., 2016). We chose CartPole-v0 for this

hyperparameter study since we had to train a lot of models to

explore the parameter space, and CartPole-v0 is known of it’s low

complexity when compared to other OpenAI Gym environments.

We performed a grid search over the membrane parameters of the

LIF neuron model (voltage decay factor, current decay factor, firing

threshold, and simulation time) when training an SNN with the

DQN algorithm to solve the CartPole-v0 problem, while keeping the

network’s architecture and the DQN parameters fixed, as well as the

random seeds controlling the weight and environment initialization.

In SpyTorch, initial network weights are drawn from a gaussian

distribution with a zero mean and a standard deviation defined

according to:

σij =
weight_scale

√
Ni

(4)

Where σij is the standard deviation for the weight matrix

connecting layer i to layer j, Ni is the number of neurons within layer

i, and weight_scale is an additional parameter. While weight_scale

can be chosen to depend on the decay factor values, we set

weight_scale = 1 in all our experiments, in order to explore the effects

of the membrane parameters on the trainability on the networks in

isolation.

For each set of membrane parameters we trained the DQN for

1,000 episodes and saved the maximum reward that was achieved.

The reward is measured as the average reward achieved over

100 consecutive episodes. However, the large number of possible

parameter combinations made it necessary to set some constraints

to make the search feasible. To do this, we set the voltage and

current decay factors to the same value: α = βǫ[0 − 1]. In our

previous experiments (Akl et al., 2021), we used the same values

for α and β when solving the CartPole-v0 and the Acrobot-v1

problems, and found that this choice yielded good training results.

In the discretized SpyTorch formulation of SNNs, α and β can

take values in the range [0, 1]. We kept the same range for the

threshold, as we found that values larger than one yield worse results.
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TABLE 2 SNN parameters (current decay, voltage decay, firing threshold, and simulation time) used during training for all environments.

Parameter Ant-v3 HalfCheetah-v3 Hopper-v3 Pendulum-v0

α 0.5 0.3 0.5 0.5

β 0.5 0.3 0.5 0.5

Threshold 2.5 0.8 2.0 1.0

Simulation time 5 5 5 5

FIGURE 5

ANN and SNN training curves on the Ant-v3, HalfCheetah-v3, Hopper-v3, and Pendulum-v0 environments from OpenAI Gym. Two SNN training curves

are to be seen, one using uniform and the other one using randomized membrane parameters. Solid lines are mean rewards (window size of 100

episodes) averaged over five runs with random initialization seeds. Shaded areas show the standard deviation. The number of episodes varies across

environments, as each environment might have a di�erent maximum number of timesteps per episode, i.e., horizon.

However, this choice is specific to the CartPole-v0 problem with

its four observations, and other problems with more observations

may require a higher threshold value, as more observations generate

more activity. Furthermore, the defined ranges for each parameter are

specific to the encoding and decodingmethods chosen here. Different

methods may require different values in order to generate spiking

activity in the network and produce meaningful readout values.

We ran this hyperparameter grid search twice, once with the

current injection encoding method described in Section 2.2.1, and

once with an additional two-neuron encoding to investigate the

effects of applying such an input transformation to the sensitivity

of the SNNs. Figure 3 shows the results of running the membrane

parameter search on the CartPole-v0 problem formultiple simulation

times. The minimum simulation time we can use that would allow

spikes to propagate to the output layer is three (based on the

number of layers and our input encoding method). The upper

limit for the simulation time we chose was ten, as we observed

that the network becomes immune toward the chosen membrane

parameters and can achieve the maximum reward across most

parameter combinations. The only parameter combination that limits

the network’s trainability even for large simulation times (e.g.,

10) is low decay factor values and large threshold values. This

combination does not produce enough spiking activity within the

network, and thus the membrane potentials of the output neurons

(i.e., the Q-values), remain at zero. One important observation

is that increasing the simulation time helps reduce the network’s
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sensitivity to the hyperparameters. Figure 4 shows the average reward

across all parameter combinations for different simulation times. It

is clear, that allowing the network more timesteps to process an

observation yields improved robustness to the chosen membrane

parameters. However, increasing the simulation time comes at the

cost of efficiency, especially when training SNNs on CPUs and

GPUs using deep learning frameworks that are not optimized for

sparse computations, rather than on neuromorphic processors.While

training SNNs with backpropagation has been explored on the Loihi

neuromorphic chip. Backpropagation Algorithm Implemented on

Spiking Neuromorphic Hardware (Renner et al., 2021). It was only

demonstrated for a shallow network and the approach does not scale

up to more complex network architectures.

An additional analysis we conducted on the results of the

hyperparameter grid search, is to measure the percentage of

parameter combinations that were able to successfully solve the

problem for different simulation times. CartPole-v0 has a reward

threshold of 195, meaning that agents achieving a reward greater

or equal to 195 are considered to have solved the problem. Table 1

lists the percentages for the one-neuron as well as the two-neuron

encoding methods across the different simulation times considered.

Those percentages confirm the previous result, that increasing the

simulation time in the one-neuron encoding case reduces the

sensitivity to the hyperparameters. However, we only witness a large

increase in the percentage when setting the simulation time to

10. Similarly, in the two-neuron encoding case, we also see that

increasing the simulation time reduces the sensitivity. Nevertheless,

we can also see that applying the two-neuron encoding can help us

reduce the simulation time, while still expecting the same results.

For example, the percentage of parameter combinations in the two-

neuron encoding case that are able to solve CartPole-v0 with a

simulation time of five exceeds that of the one-neuron case with a

simulation time of 10 (the highest percentage among the one-neuron

encoding). Those findings motivated the choice of our parameters for

the continuous control problems discussed in the next section.

4. Training results

We trained SNNs with backpropagation based on surrogate

gradients and the TD3 algorithm (Fujimoto et al., 2018) as described

in Section 2.1 to solve the Ant-v3, HalfCheetah-v3, Hopper-v3,

and the Pendulum-v0 environments from OpenAI Gym. Those

are popular continuous-action benchmark environments in DRL

research and have been considered in various works before (Haarnoja

et al., 2018; Kumar et al., 2019; Agarwal et al., 2020). The observation

space, the action space, as well as the reward definition varies across

TABLE 3 Randommembrane parameters significance values.

Environment Significance

Ant-v3 t = −36.39, p < 0.001

HalfCheetah-v3 t = −53.95, p < 0.001

Hopper-v3 t = −50.62, p < 0.001

Pendulum-v0 t = −39.63, p < 0.001

P-values are calculated based on the dependent t-test for paired samples.

all environments, and the exact details of all environments can be

found in the official OpenAI Gym documentation1.

On each environment we trained spiking agents with uniform

membrane parameters and randomizedmembrane parameters. Since

the chosen environments have varying state and action space

dimensions, we had to select different sets of membrane parameters

for each environment. The uniform membrane parameters for all

environments are listed in Table 2. In the randomized parameters

case, we used the values listed in Table 2 as means, and drew the

neuron-specific values from a normal distribution with a standard

deviation of σ = 0.1 ·µ. Based on the findings of our hyperparameter

study, we applied a two-neuron encoding for all environments,

and set the simulation time to five steps. Each observation is first

normalized, then transformed into a two-neuron representation and

is fed into the network through constant current injection for the

entire duration of the simulation time (five time steps). At the last

time step, the membrane potential values of the output neurons are

chosen as the actions for the next environment step. After simulating

the SNN for one observation, the network state is reset by setting all

neurons’ membrane potentials, synaptic currents and spikes to zero.

In addition to the spiking agents, we trained ANN agents with

TD3 and the same hyperparameters to compare the SNN results

to. We used the same network architecture for all environments.

Our networks consist of two hidden layers containing 400 and

300 neurons, and we trained the networks on all environments

for one million timesteps. For each environment we trained five

models using different random seeds. Figure 5 shows the ANN and

SNN training results on the Ant-v3, HalfCheetah-v3, Hopper-v3,

and Pendulum-v0 environments using uniform and randomized

membrane parameters. In all environments, the ANN training

results are competitive with the uniform SNN training results.

Using randomized membrane parameters, however, yielded higher

averaged mean rewards. We measured the significance values of

the rewards achieved during training with uniform and random

membrane parameters in SNNs based on the dependent t-test for

paired samples, and the results are summarized in Table 3.

After training, we analyzed the trained networks’ spiking

activities during evaluation, and measured the average firing rates

of the neurons in the hidden layers over 100 episodes. Figure 6

shows the spiking activity during one Ant-v3 episode. The top panel,

showing the activity of the 400 neurons within the first hidden layer

over 5,000 time steps, has an average firing rate of 6.77%. Meaning

that only 6.77% out of the total 2 million time steps (400 neurons

simulated for 5,000 time steps) include a spike. The activity gets

even more sparse in the second hidden layer, shown on the bottom

panel of Figure 6. There, the average firing rate measured across

all 300 neurons is 1.69%. The average firing rates measured on all

environments are summarized in Table 4.

5. Discussion and conclusion

In this paper we demonstrated that SNNs can be used

as function approximators in DRL algorithms for discrete and

continuous action space problems. Our results indicate that our

previous encoding and decoding methods used to solve discrete-

action control problems, can be considered for continuous control

1 https://www.gymlibrary.dev/environments/mujoco/
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FIGURE 6

Spiking activity in the both hidden layers during one Ant-v3 episode. The x-axis shows the total number of time steps (1,000 environment time steps

multiplied by five SNN time steps for each observation).

TABLE 4 Average firing rates in hidden layers one and two, measured for

each environment over 100 evaluation episodes.

Environment Average firing rate

Hidden layer 1 Hidden layer 2

Ant-v3 6.77% 1.69%

HalfCheetah-v3 10.99% 6.87%

Hopper-v3 5.77% 7.88%

Pendulum-v0 3.12% 12.86%

problems as well. Other methods in SNN training for continuous

control rely on population encoding and decoding (Tang et al.,

2021). Population coding increases the number of input and

output neurons based on the input and output population sizes,

respectively. This increase, especially for a large population size,

leads to an increased number of parameters within the network.

It is also directly proportional to the number of observations,

the number of actions, and the number of neurons in the first

and last hidden layers. For example, using a population coded

network to train the Hopper-v3 environment with a population

size of 10 leads to a 38% increase in the number of trainable

parameters in the network. A more extreme example is the Ant-

v3 environment, because of the increased number of observations

(11 for Hopper-v3 vs. 111 for Ant-v3). There, a population size

of 10 leads to a 252.51% increase in the number of trainable

parameters. Our method does not rely on population coding

and thereby requires less trainable parameters. This is especially

advantageous when deploying such networks on neuromorphic

chips, where the capacity of neurons and synapses per chip

is limited.

Moreover, we demonstrated that randomizing the membrane

parameters across the entire network leads to faster training and to

higher average rewards. It is well established that onemajor difference

between biological neural networks and deep neural networks is the

lack of cell type diversity in the latter. With the randomization effects

shown here, we introduce a slight diversity in the neuron types.

Looking forward, this randomization can be extended to include not

only different membrane parameters for each neuron, but different

neuron models in one network.

As the results of the membrane parameter search indicate,

training results are highly sensitive to the choice of the membrane

parameters. Even though we identify best practices to reduce

the sensitivity to the hyperparameters, e.g., through increasing

the simulation time and applying a two-neuron input encoding,

further studies are required to identify other potential best practices

when choosing membrane parameters for particular problems. For

example, similar studies investigating using different values for the

current and voltage decay factors, or incorporating refractory periods

and reset potential values, may yield additional insights. Moreover,

the insights drawn from the hyperparameter study conducted here

are limited to our chosen encoding and decoding methods. Running

the same grid search with different encoding and decoding techniques

will yield different results, and may require different parameter

ranges. For example, if a rate-coding method was chosen, whether

for encoding or decoding, small simulation times as the ones

considered here (e.g., three or four), will not be sufficient to capture

intricate differences in continuous observations. In the future, we

would like to explore whether a temporal coding mechanism,

e.g., spike-latency coding or inter-spike interval coding, would be

suitable for continuous control problems. One advantage of such

approaches would be more sparse firing, and therefore increased

energy efficiency. Temporal coding schemes, however, might require

longer simulation times than the ones considered here, in order

to fully represent the entire input space in continuous control

problems. Furthermore, we only considered stateless neurons in

this work, meaning that after every inference step, we reset the

entire network state before feeding in new inputs. Another potential

direction for future research is to consider using stateful neurons

instead. Using stateful neurons would eliminate the need for a
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reset operation after each inference step, providing a potential

advantage.

Our grid search on the membrane parameters focused only on

the maximum reward achieved during training, i.e., on whether the

network can solve the problem with the given membrane parameters.

While choosing this as a metric to evaluate membrane parameter

combinations is important, other metrics can provide more insights

about the quality of the training and should be considered for

future studies. In particular, the speed with which the network

reaches the best reward (i.e., the learning speed), or the number of

spikes generated can be considered as additional metrics to evaluate

membrane parameter combinations. If two parameter combinations

can solve the problem within the same number of episodes, then the

parameter combination producing less spikes should be preferred.

While DRL algorithms have been successful in solving

complex tasks, whether in game playing or in robotics, they

still suffer from generalization, reproducibility (Henderson et al.,

2018), and sim2real transfer in robotics. With the constantly

improving performance of SNNs on information processing

tasks, the increased energy efficiency, the additional biological

learning rules that can be utilized alongside backpropagation

(Akl et al., 2022), and the recent integration of event-

based sensors for RL tasks (Rizzo et al., 2022), we believe

that SNNs can potentially tackle some of the limitations

of DRL.
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