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Communication infrastructure is damaged by disasters and it is di�cult to support

communication services in a�ected areas. UAVs play an important role in the

emergency communication system. Due to the limited airborne energy of a UAV,

it is a critical technical issue to e�ectively design flight routes to complete rescue

missions. We fully consider the distribution of the rescue area, the type of mission,

and the flight characteristics of the UAV. Firstly, according to the distribution of the

crowd, the PSO algorithm is used to cluster the target-POI of the task area, and

the neural collaborative filtering algorithm is used to prioritize the target-POI. Then

we also design a Trans-UTPA algorithm. Based on MAPPO ’s policy network and

value function, we introduce transformermodel tomake Trans-UTPA’s policy learning

have no action space limitation and can be multi-task parallel, which improves

the e�ciency and generalization of sample processing. In a three-dimensional

space, the UAV selects the emergency task to be performed (data acquisition

and networking communication) based on strategic learning of state information

(location information, energy consumption information, etc.) and action information

(horizontal flight, ascent, and descent), and then designs the UAV flight path based

on the maximization of the global value function. The experimental results show

that the performance of the Trans-UTPA algorithm is further improved compared

with the USCTP algorithm in terms of the success rate of each UAV reaching the

target position, the number of collisions, and the average reward of the algorithm.

Among them, the average reward of the algorithm exceeds the USCTP algorithm by

13%, and the number of collisions is reduced by 60%. Compared with the heuristic

algorithm, it can cover more target-POIs, and has less energy consumption than the

heuristic algorithm.

KEYWORDS

multi-UAVs collaboration, PSO, trajectory planning, energy consumption, multi-agent

reinforcement learning, transformer

1. Introduction

UAVs play an increasingly important role in emergency communication networks. Due to

natural disasters, communication infrastructure cannot work properly. Rescue missions need to

be fast and agile. The use ofmultiple UAVs to form an air UAV group self-organizing network can

achieve low-latency and high-reliability air-ground coordinated transmission between the UAV

group and the ground intelligent terminal equipment (Wang et al., 2021). With the advent of the

6G era, UAVs are expected to offer additional new services such as real-time image transmission,

caching and multicast, data dissemination or collection (Wu and Zhang, 2018; Wu et al., 2018)

mobile relay and edge computing (Li et al., 2015; Yang et al., 2019; Ma et al., 2021c), and wireless

power transmission.
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In emergency scenarios, UAV clusters often undertake complex

tasks with multiple targets and nodes. The core goal of multi-UAVs

task allocation is how to achieve the efficient use of each UAV

under the premise of ensuring the completion of the overall task,

that is, the overall task allocation balance. The machine learning

method enhanced by evolutionary computation (ECML) combines

the advantages of ML and EC, and has strong potential. In particular,

ECML (Zhang et al., 2022) also has strong search ability, which can

greatly reduce the computational cost of cluster node analysis. In

the actual construction of UAV cluster task allocation algorithm,

genetic algorithm, particle swarm optimization algorithm (Lipare

et al., 2021; Krishna et al., 2022; Pu et al., 2022) and ant colony

algorithm are often introduced, and bionic intelligence is used to

realize better cooperation between UAV cluster individuals, so as to

achieve the overall task goal with the best effect (Wangsheng et al.,

2021).

Effectively designing the flight path (Jin and Yang, 2021) of

UAVs can improve the working efficiency of UAVs. At present, the

existing research on single UAV path planning has been very mature.

Classical algorithms such as A * algorithm, Dijkstra algorithm,

wavefront algorithm and fast exploration random tree algorithm

have been widely used in UAVs. With the latest development

of machine learning, the research and development of path

planning algorithms based on machine learning has been growing

rapidly, such as value iterative network, gated neural network and

other path planning algorithms. In recent years, with the use of

collaborative mission scenarios become widespread, the demand

for UAV swarm collaborative path planning (Yao et al., 2016; Jin

et al., 2021; Ma et al., 2021a) has become more urgent. The path

planning of UAV cluster not only needs to consider the flight

distance and energy consumption of single UAV, but also needs

to evaluate the safety and cooperation ability of multiple UAVs

to ensure that the UAV cluster can perform tasks safely and

efficiently. Multi-agent reinforcement learning is the key to solving

this problem.

The existing research on multi-agent motion planning problems

can be roughly divided into two categories, centralized (Tang

et al., 2018) and decentralized methods (Ma et al., 2021b). The

centralized method defines the motion planning problem as an

optimization problem, where the position, velocity, and target

position information of all agents are available. The goal is to

guide all agents toward their desired positions, avoid collisions

(Tian et al., 2022), and minimize targets (such as energy or

time). The decentralized algorithms can be appropriately extended

because they allocate the computational effort to multiple agents.

They are also very robust to interference when performing real-

time calculations.

Although UAVs communication has rich application value,

considering the limited airborne energy of a UAV and the need to

simultaneously provide energy for propulsion and communication,

achieving green UAV communication flight is a key challenge.

At present, energy-saving UAVs communication (Liu et al., 2022)

can be divided into three categories: (i) given communication

requirements, minimize energy consumption; (ii) given total

energy/power budget to maximize performance gain; (iii) Maximize

energy efficiency. One way to improve energy efficiency is to reduce

path loss.

Therefore, we design a PSO-based Trans-UTPA UAVs path

planning algorithm. UAV path planning for multi-UAVs cooperative

communication and data acquisition is studied. The contributions of

this article are as follows:

(1) We propose a PSO-based global optimal target-POI clustering

model. We regard each affected person as a particle. Assuming

that the particle velocity is constant, we calculate the average

distance and standard deviation based on the position of the

particle and the position of the cluster center, and minimize the

average distance and standard deviation to design the fitness

function. All particles change their positions according to the

maximum value of the global adaptive function value, so that all

particles have clustering centers. We call the population location

formed by all particles in a cluster center the target-POI region,

where the UAV performs an emergency mission.

(2) We designed a green energy consumption calculation model.

The UAV performs flight tasks in a three-dimensional

environment, involving flight energy consumption,

communication energy consumption and data acquisition

energy consumption. When designing multi-UAV cooperative

trajectory planning, we comprehensively consider the distance

between each UAV and target-POI, the power of each UAV and

the priority of target-POI, and select the appropriate UAV to

perform flight tasks on target-POI to ensure that all UAVs have

low energy consumption while completing flight tasks.

(3) We designed the Trans-UTPA multi-UAV cooperative path

planning algorithm. Based on the MAPPO algorithm, we

introduce Transformer mechanism to replace the traditional

RNN structure for UAVs track sequential modeling. Multi-

UAV performs strategy learning based on state information and

action information in three-dimensional space, and selects the

emergency task with the largest global value function in the

evaluation network. The strategy learning of Trans-UTPA has

no action space limitation and can be multi-task parallel, which

improves the efficiency and generalization of sample processing.

(4) Through the simulation platform, the performance of the

algorithm proposed in this paper is tested, and the Trans-UTPA

is compared with the USCTP algorithm. The results show that

the performance of the algorithm is better than that of the

USCTP algorithm in terms of the success rate of the UAV

reaching the target, the number of collisions of the UAV and the

average reward of the algorithm. Compared with the UAV which

executes A * algorithm, it consumes less energy and has certain

advantages.

The organization of this chapter is as follows : The second part

introduces the existing related research. The third part introduces

the clustering recommendation based on PSO. The fourth part

introduces the multi-UAVs cooperative path planning constraint

model and the multi-UAVs cooperative path planning green energy

consumption calculation model and Trans-UTPA algorithm. The

fifth part reports the evaluation of the algorithm. We explain the

simulation settings, and get the following result diagram through

different parameter settings. In the sixth part, a conclusion and the

next stage of work are given.

2. Related work

In emergency rescue scenarios, the crowds are scattered and

the coverage of UAV services is limited. So we define an NP-hard
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problem: Given N points with a certain distance. We hope to select

K cluster centers from the given vertices, and the remaining vertices

and cluster centers complete the clustering. Minimize the distance

from one vertex to other vertices in a cluster.

In order to solve the NP problem, a large number of clustering

algorithms have emerged. The existing clusteringmethods are usually

divided into density-based, hierarchical, graph decomposition and

partitioning methods. The density-based algorithm is represented by

DB-SCAN (Shinde et al., 2022) CGCA (Kowalski and Jeczmionek,

2022) and other similar methods. Hierarchical clustering methods

can use two different strategies : top-down and bottom-up (also

known as agglomerative clustering) (Kordos et al., 2022). Finally, the

most popular is the partition method using k-means algorithm (Ma

et al., 2021d; Sathyamoorthy et al., 2022), although these methods

can achieve better clustering effect, because the emergency rescue

pay attention to efficient and fast, so we use the PSO on the line

clustering, because the PSO algorithm has a local optimal solution

and global optimal solution, in order to avoid local convergence, we

adjust the particle motion through the global optimal, in addition to

PSO aggregation speed is also very fast.

When everyone has their own clustering population, designing

a track for the UAV has become an important issue. A good route

can improve the efficiency of the UAV. Dynamic path planning

in unknown environments has always been a challenge in the

current research field (Zhang et al., 2021). The dual Q network

(DDQN) deep reinforcement learning proposed by DeepMind is

applied to dynamic path planning in unknown environment. A

reward-penalty function is set up. With the updating of the neural

network and the increase of the probability of greedy rule, the local

space searched by an agent is expanded. The results show that the

reinforcement learning algorithm enhances the dynamic obstacle

avoidance and local planning ability of the agent in the environment.

We use multi-agent for multi-UAVs path planning. In addition to

meeting obstacle avoidance and networking communication, it can

also cover more clustering points and improve the utilization rate

of UAV.

In addition, the energy of UAV is limited. How to maximize the

efficiency of UAVs under limited energy is an important research

content (Ahmed et al., 2016). Three algorithms are proposed to solve

the multi-UAVs path planning problem in multiple 2D, barrier-free

and discrete planes, while meeting the coverage requirements and

minimum energy consumption. Discretize the space and provide

a more realistic view of how the UAV travels along its path to

ensure a collision-free trajectory. Li W. et al. (2022) proposed an

improved probabilistic road map (IPRM) algorithm to solve the

energy consumption problem of multi-UAVs path planning. The

mathematical model and energy consumption model are established

by simulating the real terrain environment. The sampling space of

PRM algorithm is optimized to make the path clearer and improve

the utilization of space and time.

Zhu et al. (2022) proposed a hexagonal region search (HAS)

algorithm, which is combined with multi-agent deep Q network

(DQN), called HAS-DQN. By limiting the total coverage of

UAVs, HAS-DQN can effectively avoid collision with UAVs.

Experiments show that HAS-DQN can effectively solve the path

overlapping problem of multiple UAVs moving at the same cost in

unknown environment.

In the algorithm design in this paper, we not only consider the

energy consumption of UAV flight action, but also consider the

energy consumption of UAVs communication and data acquisition.

Combining the key degree of POI, the distance from the UAV to

the mission area, and the remaining power of the UAV, a reward

mechanism is designed to promote the UAV to make the optimal

decision, that is, to maximize the global reward.

3. Clustering recommendation based
on PSO

In the emergency communication scenario, the affected

population is scattered, and the number of UAVs and endurance

energy are limited. In order to enable UAVs to complete emergency

rescue missions for emergency areas, we use genetic algorithms to

complete the selection of initial seeds. Then, according to the PSO

algorithm, the fitness function is calculated according to the location

information of the crowd to find the optimal group to complete the

crowd clustering, as shown in Figure 1.

3.1. Preliminaries

(1) target-POI definition: we define the region formed after

clustering as target-POI.

(2) Coverage hypothesis: it is assumed that the size of the area

formed after clustering is within the coverage of the UAV.

(3) The PSO speed hypothesis: the speed of the particle motion

process is constant, with a constant retrieval speed, recorded as

v.

(4) UAV to complete the ascending or descending flight energy

consumption assumptions:the UAV ascending or descending

flight operation energy consumption is constant, the amount of

consumption and the number of execution.

(5) UAV data storage: it is assumed that the results of UAV data

acquisition can be temporarily stored in UAV memory.

3.2. Initial seed selection based on genetic
algorithm

The affected people are scattered in the affected area. To complete

the clustering, we must first select the clustering center to complete

the clustering partition. The selection of cluster centers is particularly

important. Correct selection of cluster centers can improve work

efficiency and reduce the consumption of some materials and human

resources. Genetic algorithms (GAs) are inspired by the theory of

nature, which is known for its global adaptability and robust search

capabilities to capture good solutions (Sharma and Kaushik, 2021).

Therefore, we adopt a genetic algorithm to complete the selection of

initial seeds.

First, the chromosome with K genes is set to K cluster centers,

denoted as X = {X1,X2,X3, ...Xk}, where Xk represents an n-

dimensional vector, and the other interior points are denoted as

C = {C1,C2,C3, ...,Ci}. The latitude and longitude coordinates of

Ci is (ψ1,α1), and the latitude and longitude coordinates of Xk is
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FIGURE 1

Flowchart of PSO-based clustering recommendation algorithm.

(ψ2,α2).During evolution, the fitness function (Equation 1) is used

to calculate the sum of the distances (Equation 2) (Wang et al., 2014)

from all interior points to the cluster center.

Dist(Ci, Xj) = haversin

(

d

R

)

= haversin(ψ2 − ψ1)+cos(ψ1)cos(ψ2)haversin(α2 − α1)

(1)

F(poi) =
∑

Xj∈X

min(Dist(Ci,Xj)), 1 ≤ i ≤ k (2)

where R represents the radius of the earth, and the value

is 6371 km. ϕ represents the latitude, α represents the

longitude.

When the sum of fitness F(poi) reaches the minimum, the

population tends to converge to an optimal chromosome (solution).

Once the optimal cluster centers come out, we use them as initial

seeds, denoted as Xinit .

3.3. PSO-based clustering recommendation

PSO is a famous bionic optimization algorithm, which is an

iterative search algorithm based on population. In PSO algorithm,

all particles enter the search space to find the optimal solution.

We hope to use the PSO search algorithm to divide the crowd in

the rescue area so that the UAV can provide rescue services. In

the rescue area, we regard each person as a particle, and design

the fitness function according to the average distance and standard

deviation between the particle and the cluster center. The next

position of each particle is calculated by a fitness function. The

larger the global fitness function value is, the particle moves to

that position.

After the initial seed is determined, all particles in the clustering

region move to the clustering center to complete the clustering

operation. Suppose that the cluster region is composed of n particles,

denoted by Y = {Y1,Y2,Y3, ...,Yn}, and the position of the cluster

center is denoted byM = {M1,M2,M3, ...,Mm}.

The global optimal value is calculated by the social interaction

of the particle in the group, and the best fitness value obtained by

the particle in the population. In the search process, a particle not

only needs to record its own personal best solution, but also records

the overall solution of the cluster center selected by other particles,

that is, the shortest reach to the cluster center. We designed a fitness

function. The current position of the i th particle is denoted as Pi, and

the average distance from all current particles to the cluster center

Mm (Equation 3) and the standard deviation of all particle distances

(Equation 4) are calculated.

minD =
1

n−m

∑

||Mm − Pi||, i = 1, 2, 3, ..., n−m (3)

minC =

√

√

√

√

√

n−m
∑

i=1
(D− Pi)2

n−m
(4)

Then, the fitness function (Equation 5) for each current particle

is designed based on the mean and standard deviation.

Fitness = k1D+ k2C (5)

Among them, k1 and k2 represent the weight coefficients between

the average distance and the standard deviation, respectively. Fitness

is the fitness function value.

All particles change their current position according to fitness

and make the next action. The action rules are as follows

(Equations 6, 7) (Wang et al., 2022):

fitnessa+1
i = fitnessai , ifFitness(P

a+1
i ) ≥ Fitness(fitnessai ) (6)
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fitnessa+1
i = Pa+1

i , ifFitness(Pa+1
i ) < Fitness(fitnessai ) (7)

where, Pa+1
i is the next position of the particle, fitnessai represents

the current best position of the particle, fitnessa+1
i represents the new

personal best value of the particle, and a is the number of iterations.

Fitness(Pai ) refers to the fitness function value at the position of Pai .

globalworthai = argMinn−m

i=1Fitness(fitnesski )
(8)

Using Equation (8), we can calculate the global optimum, where

globalworthai is the global optimal value of particle i. Update your

location by ensuring that the globalworth value is larger.

When all particles find their cluster centers, population clustering

is completed. Since each particle runs to different cluster centers in

the clustering process, the number of particles in each population

is different. The number of particles in each population is recorded

as target − POI = {T1,T2,T3, ...,Tm},. Assuming that the initial

release position of the UAV is (Ux,Uy), the distance from the UAV

to the center(Ti
x,T

i
y) of the population Ti is calculated to be Dgi

(Equation 9).

Dgi =
√

(Ux − Ti
x)

2 + (Uy − Ti
y)
2 (9)

Calculate the distance from all particles to the cluster center

within population Ti, and record the maximum distance as R. Then

the particle numberNTi and the distanceDgi are converted into sparse

vectors, and the neural collaborative filtering algorithm is used to

complete the target-POI priority recommendation, indicating which

area performs which flight task.

The values in the regional particle number feature NTi and the

distance feature Dgi are converted into sparse vectors, which can be

input into the neural network. Then, the input vector is multiplied

with the embedding matrix in the embedding layer to obtain the

embedded vector representation of the particle number feature and

the distance feature. In the fusion layer, the dimension consistency

of the particle number feature and the distance feature vector is

completed. In the neural collaborative filtering layer, the vectors

obtained from the pooling layer capture the nonlinear and high-

order correlations between particles and regions through a hidden

layer consisting of multiple fully connected layers. Finally, in the

prediction layer, the output vector of the last layer is mapped to the

final prediction result of target-POI. For target-POI with different

priorities, UAVs perform different tasks. Target-POI with the highest

priority performs task networking communication tasks, establishes

a UAV network, and provides network communication for the crowd.

The relatively simple target-POI performs the task of collecting

relevant data.

4. Multi-UAVs path planning algorithm

4.1. Multi-UAVs cooperative path planning
constraint model

In the process of emergency rescue, multiple UAVs complete the

mission together. Relevant parameter statistics used in the multi-

UAVs path planning constraint model are shown in Table 1.

Multiple UAVs complete the mission in a three-dimensional

environment, need to pay attention to a variety of constraints: (1)

TABLE 1 Statistics of relevant parameters used in multi-UAVs path planning

constraint model.

Parameter Interpretation

E Onboard energy of a UAV

Ti=(T
x
i ,T

y
i ,T

z
i ) Location of target-POI i

Oi=(O
x
i ,O

y
i ,O

z
i ) The location of the i th obstacle

U t
i =(U

Xi
t ,UYi

t ,U
Zi
t ) Position of UAV i at time t

Vt UAV flight speed at time t

Elect Remaining power of UAV at time t

E={(Eix , y, z) ∪ (x,Eiy , z) ∪ (x, y,Eiz)|E
i
x =

Eiy = Eiz = B}

Rescue area

B B is the boundary value of the rescue area

VMAX Maximum Flight Speed of UAV

u Number of flying UAVs

dco Communication distance Upper

Each UAV should fly in the rescue area; Equation (10) (2) In the

process of emergency communication, the flight speed Vt of UAV is

less than the maximum flight speed of UAV; Equation (11) (3) After

the UAV reaches the mission area, it must have enough energy to

complete themission of the target-POI area, and the energy cannot be

completely consumed; Equation (12) (4)Multiple access is prohibited

in any target-POI zone; Equation (13) (5) Multiple UAVs cannot

simultaneously appear in one area. Equation (14), where i and j

denote the i-th and j-th UAVs, respectively;

Ut
i ∈ E (10)

0 < Vt < Vmax (11)

Elect > 0 (12)

Visit(Ti) =

{

1 Not visited

0 visited
(13)

(UXi
t ,UYi

t ,UZi
t ) 6= (U

Xj
t ,U

Yj
t ,U

Zj
t ) (14)

The UAV’s behavior during maneuvers should be prioritized as it

provides smoothness during flight. The flight slope is defined as the

maneuverability of the UAV during gliding and climbing. During the

flight, the slope of the UAV ismoved horizontally from one path point

to another (Equation 15).

slopei =

{

S if sloi /∈ [tan(αmax), tan(βmax)]

0 Otherwise
(15)

where, slopei is the flying slope from one waypoint to the i-th

waypoint; αmax and βmax represent the maximum tolerable gliding

and climbing angles, and sloi can be formulated, according to

Equation (16) (Mughal et al., 2022), as follows:

sloi =
zi − zi−1

||x1 − xi−1, yi − yi−1||2
(16)
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where, sloi is the flying slope taken by the UAV from the i-th waypoint

(xi, yi, zi). The UAV flight slope value slopei complies with constraint

(Equation 17).

s ≤
1

2
(17)

During the flight of the UAV, the maximum safe distance dsafe
between the two adjacent UAVs should be guaranteed. The distance

between the UAV i and the UAV j is calculated to be Dij using

Equation (18). When calculating the path of multiple UAVs, it is

necessary to ensure that the UAVs are not too close. In order to

maintain the safe distance between them, the limit can be expressed

as follows (Equation 19):

Dij =

√

(UXi
t − U

Xj
t )2 + (UYi

t − U
Yj
t )2 + (UZi

t − U
Zj
t )2 (18)

Dij > dsafe (19)

In addition, the UAV should also pay attention to the distance

between the obstacle (Equation 20) to avoid collision between the

UAV and the obstacle, so set the flight constraint between the UAV

and the obstacle (Equation 21).

Dobs =

√

(UXi
t − Oi

x)
2 + (UYi

t − O
j
y)2 + (UZi

t − Oi
z)
2 (20)

Dobs > dsafe (21)

4.2. Green energy consumption calculation
model for multi-unmanned cooperative path
planning

Green energy consumption requires UAVs to consume the least

energy and complete more missions during flight. We study the

four basic operations of UAV flight operations: horizontal flight,

ascent, descent, and hover. The horizontal flight energy consumption

of UAV i at time t is recorded as Ei
level

(t), and the horizontal

energy consumption calculation formula is Equation (22). The energy

consumption of the UAV to complete a rise or fall is recorded as Eu
and Ed, respectively.

Eilevel(t) = σ (c1||v
i
t||

3 +
c2

||vit||
) i = 1, 2, 3, ..., n (22)

where σ represents the slot length, c1 and c2 are constants.

The flight operation of the UAV also involves hovering operation.

We record the hovering time as thover , and the hovering energy

consumed by the ith UAV in 1 min is recorded as Ei
hover

(t). Therefore,

the calculation of the energy consumed by the i UAV in performing

flight operations (Equation 23) is recorded as Ei
fly
.

Eifly(t) = Eilevel(t)Tfly+Pup∗E
i
up+Pdown∗E

i
down+thoverE

i
hover(t) (23)

The time consumed during the flight (excluding hover) is

recorded as Tfly,Pup is the number of rising, Pdown is the number

of falling.

In the multi-UAVs mission, if the distance between the UAVs

is less than the maximum distance dcom that can be communicated

between the UAVs, the UAVs communicate with each other to

exchange information, and finally summarize it to a UAV. The

information exchanged includes: the amount of existing energy,

target-POI access, etc. In this article, we use the location with the

highest demand as the network communication area, while other

areas are engaged in data collection.

The UAV flight mission includes data acquisition and networking

communication. So we have to calculate the UAV data acquisition

energy consumption and network communication energy

consumption. We refer to the location-critical communication

model proposed in Qin et al. (2018). When the UAV accesses

target-POI, the access information is transmitted to the nearby

UAV, considering the energy consumption E
ij
tran of one transmission

between UAV i and UAV j. The calculation formula (Equation 24) is

as follows:

E
ij
tran = Bit ∗ (Dij)

α ∗ EBm (24)

Among them, Bit represents the size of the transmission

information, EBm represents the energy consumed by transmitting

1 Mbit information within 1 km distance, and α represents the

transmission loss index of the transmission medium.

In the three-dimensional environment, the UAV needs to rotate

to complete the task of data acquisition. The rotation angle is also a

factor that determines energy consumption. We use (Fu et al., 2018)

to calculate the energy consumption caused by the rotation angle

during the acquisition process as Ecorner , and the formula is Equation

(25):

Ecorner =

n
∑

i=1

wn ∗ Q (25)

where wn represents the angle of rotation of the nth target-POI UAV,

and Q represents the energy consumed by one rotation. So UAV i

access n target-POIs to complete the rotation of the fuselage and data

collection tasks consumed energy recorded as Ei
collect

, the formula is

as follows (Equations 26, 27):

Eicollect = Pcollect ∗ T
j
target−POI ∗ n+ Ecorner (26)

T
j
target−POI =

∫ 2Rmax

0

1

Vt
dr (27)

After completing n target-POI missions in flight time Tfly, the

residual energy of UAV i is calculated by Equation (28).

Elect = E− Eifly −

u−1
∑

i=0

u
∑

j=1

E
ij
tran − Eicollect (28)

4.3. Trans-UTPA algorithm

4.3.1. Trans-UTPA algorithm framework
The architecture of the whole algorithm is shown in Figure 2.

The individual value function of each UAV can be calculated
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FIGURE 2

Trans-UTPA algorithm framework.

FIGURE 3

Embedded representation of observations. (A) This is Actor framework. (B) This is Critic framework.

using the self-attention mechanism. Since Trans-UTPA is

composed of two independent networks, namely the policy

network πθ (ai|oi) containing parameter θ and the evaluation

network Vφ(s) containing parameter φ, these two networks are

processed separately. All UAVs share the critic network, and

each UAV has its own actor-critc network. First, the collected

trajectory is recorded as τ = τ1, τ2, ..., τn,n represents the number

of UAVs, and the trajectory of a single UAV i is recorded as

τi = {s
(t)
i , o

(t)
i , a

(t)
i }.

4.3.2. Design of strategy function and value
function based on Transformer

The state information S
(t)
i,1 , .., S

(t)
i,m of each UAV at time t is

input into an embedded layer for representation, and the state

value S
(t)
i of the UAV in the environment at time t is obtained

(Equations 29, 30):

O
(t)
i = E(o

(t)
i,1),E(o

(t)
i,2), ...,E(o

(t)
i,m) (29)

S
(t)
i = E(s

(t)
i,1),E(s

(t)
i,2), ...,E(s

(t)
i,m) (30)

The predicted action and value of the UAV at time t are Equations

(31), (32):

h
(t)
i,π , a

(t)
i = π(O

(t)
i , h

(t−1)
i,π , θi) (31)

h
(t)
i,V , q

(t)
i = Vi(S

(t)
i , h

(t−1)
i,V ,φi) (32)

where h
(t−1)
i,π represents the state of the hidden layer t at a time

on the actor, h
(t−1)
i,V represents the state of the hidden layer at

a time on the critic, O
(t)
i represents the observation embedding
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value of the UAV i to other UAVs, S
(t)
i represents the state

embedding value of each UAV, θi is the parameter defining π ,

and φi is the parameter defining Vi. In this way, the critic

network of UAV i evaluates the state of other UAVs.As shown in

Figure 3.

Here the hidden layer is treated as part of each UAV, each input

holds its own hidden layer, and each output maps to a new hidden

layer for the next time step. Using n to represent the number of

UAVs, L to represent the number of fully connected layers, the actor

network input and output relationship expression are Equations (33),

(34):

R1π = {h
(t−1)
1,π , h

(t−1)
2,π , ..., h(t−1)

n,π ,O
(t)
i } (33)

{h
(t)
1,π , h

(t)
2,π , ..., h

(t)
n,π ,O

(t)
L } = RLπ (34)

The input-output relationship expression of critic network are

Equations (35), (36):

R1V = {h
(t−1)
1,V , h

(t−1)
2,V , ..., h

(t−1)
n,V , S

(t)
1 } (35)

{h
(t)
1,V , h

(t)
2,V , ..., h

(t)
n,V , S

(t)
L } = RLV (36)

Because of the centralized training distributed execution mode,

it is necessary to calculate the global value function, and the

global function can be calculated by the individual value function.

The global action value function can be calculated using all

individual action value functions. The formula is as follows (Equation

37):

Vπ (s) = f (qti , ..., q
t
n) (37)

where f denotes the credit allocation function for each UAV. In

this study, the calculationmethod in Value-Decomposition Networks

(VDN) is used, and the summation function is used to solve the credit

allocation problem of UAVs. The calculation formula is shown in

Equation (38):

f (qti , ..., q
t
n) =

n
∑

i=1

(qti ) (38)

4.3.3. Transformer internal attention calculation
The Transformer in the traditional sequence modeling task is

input by position coding, and the hidden representation of the coding

is automatically regressed and decoded. This article uses amechanism

with a lower triangular matrix to calculate attention (Equations

39–42):

Attention(Q,K,V) = softmax(
QKT

√

dk
+M)V (39)

R1i = {h
(t−1)
i ,O

(t)
i } (40)

Qk
i ,K

k
i ,V

k
i = LQ,K,V (R

k
i ) (41)

R
(k+1)
i = Attention(Qk

i ,K
k
i ,V

k
i ) (42)

whereM is the mask matrix, which ensures that the input at time step

t can only be associated with the input from< 1, 2, ..., t−1 >. Where

K,Q,V represent keys, queries, values respectively. dk represents a

scaling influence factor equal to the key dimension.

Vi(S
(t)
i , h

(t−1)
i,V ,φi) = P(RLi , u

(t)
i ) (43)

where L represents a linear function used to calculate

Q,K,V . The output RLi of the last Transformer layer

is mapped to the space of Vi, using a linear function

P to implement the prediction, as shown in Equation

(43):

4.3.4. Algorithm description
The Trans-UTPA algorithm is based on the MAPPO algorithm

and is also composed of two independent networks, namely, the

policy network πθ (ai|oi) with the parameter θ and the evaluation

network Vφ(s) with the parameter φ. First collect trajectory τ =

{τ1, τ2, ..., τn} where UAV i ’ s trajectory τi = {s
(t)
i , o

(t)
i , a

(t)
i }, t ∈

(1,T),T is the training duration.

Initialize the hidden layer state of actor and critic, input the

observation value into the actor network to obtain the optional

action, and input the state value into the critic network to obtain the

reward value. Perform action at , observe rt ,st+1,ot+1, then write it

into τi, and calculate the dominance function Â through GAE. The

calculation formula is shown in Equation (44):

Â(s, ai) =
∑

t

γ tr(s, ai)− Vφ(s) (44)

The calculation formula of importance weight is as follows

(Equation 45):

ω = πθ (oi, ai)/πθold(Oi, ai) (45)

Update the actor network parameter θi of UAV i (Equation 46):

θi = argmaxEt[min(ωÂt , clip(ω, 1− ε, 1+ ε)Ât] (46)

Update the parameter φ of the critic network of the UAV

(Equation 47):

φ = argmin
1

2
[
∑

t

(γ tr(s, ai)− Vφ(s)]
2 (47)

Based on the above content, the specific UAV swarm cooperative

path planning algorithm based on Trans-UTPA is shown in

Algorithm 1.
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BEGIN

Initialize UAV parameters, power consumption

parameters, action space dimension action_dim and

observation space dimension obs_dim;

Initialize training parameters Parameter θ of

actor network π(a|o),φ parameter of critic network

V(s), learning rate α, discount factor γ, number of

training rounds;

Initializes the hidden-layer state hπ of the

actor, the hidden-layer state hV of the critic;

for i = 1, 2, 3, ..., episodes do:

Initialize data buffer D = {}

for j = 1 to batch_size do :

Set empty list l = []

The observation value is input into the

actor network to get the optional action at, and the

state value is input into the critic network to get

the value v.

Execute action at to get reward value rt,

observation value ot+1 for the next moment, global

state value st+1;

Write the resulting value at , rt , ot+1, st+1 to the

list l

According to l, calculating Dominance

Function Â by Formula A(s, ai) =
∑

t
(γ t)r(s, ai)− Vφ (s);

Write l into buffer D;

end for;

Random sampling mini-batch H from D;

Calculate the loss function policy_loss of the

actor from the data in H and the loss function

value_loss of the critic;

Update parameter θiof actor network of UAV i,

update parameter φ of critic network

Select random mini-batch as b from B

end for

END

Algorithm 1. Cooperative path planning algorithm for UAV swarm based on

Trans-UTPA (TUTPA).

5. Experiment

5.1. PSO-based clustering

The data set used in this paper is 7,366 scenic spot location

information obtained from Mafengwo Tourism Online, which is

represented in the coordinate map. As shown in Figure 4, the

abscissa represents the longitude value, and the ordinate is the

dimension value.

Each location information in the dataset includes attributes:

longitude, dimension, and label (region attribution). The location

information of the attractions is shown in Table 2.

In the experiment, we use PSO algorithm to cluster the obtained

location information. Here K = 5, after 10,000 iterations, 1,666

attractions are clustered into 5 clusters. The results are shown in

Figure 5. The circles of different colors are used to represent the

attractions belonging to different clusters, and the large black circle

represents the cluster center.

FIGURE 4

It shows the location distribution of scenic spots in Liaoning.

TABLE 2 Sample location information for attractions.

Longitude Latitude Region
ownership

116.47545 40.96251398 Beijing

116.4757993 40.96299956 Beijing

116.4862425 40.96156428 Beijing

123.46856 41.808196 Shenyang

123.407483 41.799246 Shenyang

123.362155 41.786272 Shenyang

FIGURE 5

PSO algorithm attractions clustering distribution map.

5.2. target-POI recommendation based on
PSO

5.2.1. Acquisition of experimental data
In the emergency rescue scenario, it is necessary to

comprehensively consider the distance between the rescue crowd and
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TABLE 3 Sample visit statistics based on attraction information.

ID Name Location Visits The latest
statistical

time

1 Shenyang expo

park

41.863424,

123.645846

2,999 May 2022

2 Guanmenshan

national forest

park

41.121535,

124.188346

1,355 March 2022

3 Benxi water

cave

41.304582,

124.08402

1,256 June 2022

4 Shenyang

imperial palace

41.803551,

123.462138

1,000 October 2022

the UAV, the crowd density and the rescue time in the rescue area,

and reasonably dispatch the UAV to complete the emergency rescue

task. In this experiment, the scenic spot data set in the Mafengwo

tourism network is used. The target-POI position is represented by

the location information of the scenic spot, and the number of visits

represents the crowd density of the position. The attributes of each

attraction include: the number of visits to the attraction, the location

of the attraction (latitude and longitude), the name of the attraction,

and the ID of the attraction. Access statistics based on attractions

information are shown in Table 3.

5.2.2. Evaluation criteria
In order to evaluate the performance of the algorithm for target-

POI recommendation, we use Normalized Discounted Cumulative

Gain (NDCG) and Hit Ratio (HR) to evaluate the performance of the

algorithm in top-K recommendation.

The calculation formula of HR is shown in Equation (48). hits(i)

records the predicted score of the sample, whether it is in the

recommended first K, is 1, otherwise it is 0, andN represents the total

number of samples in the test set.

HR =

N
∑

i=0
(hits(i))

N
(48)

NDCG is a measure of ranking, which tends to evaluate the order

of recommendation. The calculation formula is shown in Equation

(49).

NDCGK =
DCGK

IDCGK
(49)

DCGK =

K
∑

i=0

(
yi

logi+1
2

) (50)

The DCG obtained by the Equation (50) represents the

cumulative gain of the loss, in which the ranking order factor will be

considered. Starting from the first item in the obtained ranking, each

item is multiplied by the decreasing coefficient, so that the top item

gain is higher, and the following items will have a loss.

5.2.3. Analysis of experimental results
Outputs the heat ranking of attractions in the area based on

the area ’s location data and number of visits to the attraction.

Figure 6 shows the changes of HR and NDCG in each iteration of the

model when taking top-10 recommendation, and the total number

of iterations of the experiment is 30. It can be seen from Figure 6A

that the growth rate of the model is obvious in the first 10 iterations.

When iterating to 15 times, the model begins to converge and HR

is 0.7347. When iterating to the 25 th time, the fluctuation range

of HR is small and stable in the range of [0.7586, 0.7607]. As can

be seen from Figure 6B, NDCG also changes greatly at the initial

stage of iteration. When iterating to 15 times, the NDCG is 0.4379.

When iterating to 25 times, the NDCG fluctuates between [0.4422,

0.4434].

Figure 7 shows the numerical comparison of HR and

NDCG at different top-K recommendations. It can be seen

from Figure 7A that HR increases greatly before is <3, and

then the HR gap between top-K gradually narrows with the

increase of K. HR fluctuates around 0.75. Similarly, it can be

seen from Figure 7B that the NDCG increases greatly before

is <3, and then the NDCG gap between top-K gradually

narrows with the increase of. When, NDCG fluctuates

around 0.44.

From the results in Figures 6, 7, it can be seen that the HR

and NDCG values are higher when using the algorithm for top-K

recommendation. When K is 10, HR can reach 0.68 and NDCG can

reach 0.45. It shows that the algorithm can be used to predict the

popularity of scenic spots and get the target-POI ranking that UAVs

need to prioritize.

5.3. Experiment of UAV swarm cooperative
path planning algorithm based on
Trans-UTPA

5.3.1. Experimental environment
The experimental environment of this algorithm includes a

training environment and a test environment. The test environment

is a given map_ size, the number of UAVs, the number of TaskPOIs,

the starting position of the UAV, and the generation density of

obstacles to generate obstacles. Randomly distributed test scenarios

based on global environmental data. The purple dots are clustered

to obtain the target-POI area marked by a red circle. The square

red area is the target area for all UAVs to finally network. The

following is the environmental scene map of the unreleased UAV

after clustering. Figure 8 shows the training environment under

different specifications, where Figures 8A, B are the environment

maps of 32*32 and 64*64 under fixed scenarios, respectively.

Figure 8C shows a 64*64 environment map with an obstacle

generation density of 0.1. Figure 8D shows a 64 * 64 environment

map with an obstacle generation density of 0.3. Obstacles in the

environment are represented by gray squares, and green and blue

circles represent UAVs. In order to ensure that the scenes used

by various algorithms are consistent, the scene files used by the

USCTP algorithm (Li J. et al., 2022) are saved to generate the

corresponding fixed scenes, and then compared with the Trans-

UTPA algorithm.

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1076338
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li et al. 10.3389/fnbot.2022.1076338

FIGURE 6

Hit rate and normalized cumulative gain of top-10. (A) Top-10 HR. (B) Top-10 NDCG.

FIGURE 7

Cumulative Gain of Hit Rate and Normalized Discount at di�erent top-K. (A) Hit rate under di�erent top-k. (B) Cumulative increase of normalized loss for

di�erent top-k.

5.3.2. Evaluation criteria
We mainly consider the success rate of the UAV reaching the

target position, the number of collisions during the movement and

the average reward of the algorithm.

(1) Success rate: The probability of each UAV reaching the target

position accurately is counted, that is, whether they have

completed the task of reaching the target position within a given

time or number of times.

(2) The number of collisions: the action conflict between dynamic

agents and the conflict between agents and static obstacles, that

is, during the movement of the UAV, the number of collisions

between the UAV and other UAVs in an episode or between the

UAV and obstacles in the environment is counted.

(3) Average reward: each UAV relies on obstacle avoidance during

flight, performs access tasks, and controls power consumption

to obtain corresponding rewards and penalties. After training

several times, the average reward of the UAV reaches a

convergent state, indicating that the UAV has trained a rough

trajectory and will not be blindly explored again.

5.3.3. Analysis of experimental results
The model compares the success rate of reaching the target

position, the number of collisions and the average reward of the two

algorithms in the test environment 32 * 32mapwith different obstacle

densities. Figure 9 shows the comparison of the success rate of the

UAV swarm based on the two algorithms to reach the target position

under different obstacle densities. Figure 9A is the success rate of

the UAV reaching the target position when the density is 0.1, and

Figure 9B is the success rate of the UAV reaching the target position

when the density is 0.3. It can be seen from the figure that under the

Trans-UTPA algorithm, the success rate of the UAV swarm to reach

the target position has always been higher than that of the USCTP

algorithm. With the increase of the number of iterations, the more

than part reaches about 8%.

Figure 10 shows the number of collisions of the two algorithms

in the flight process of the UAV under different obstacle densities.

Figure 10A is the number of collisions of the UAV in the case of

a density of 0.1. It can be seen from the graph that the number

of collisions of the Trans-UTPA algorithm has been lower than the

USCTP algorithm. Even in the 300–400 rounds, the peak is still lower

Frontiers inNeurorobotics 11 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1076338
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li et al. 10.3389/fnbot.2022.1076338

FIGURE 8

Scene maps of di�erent specifications. (A) 32*32 map of fixed scene. (B) 64*64 map of fixed scene. (C) 64*64 map with a random scene with obstacle

density = 0.1. (D) 64*64 map with a random scene with obstacle density = 0.3.

than the USCTP algorithm, and the convergence speed is faster than

the USCTP algorithm. Figure 10B shows the number of collisions of

UAVs at a density of 0.3. Compared with the case of obstacle density

of 0.1, the number of collisions of UAVs under the two algorithms

is significantly increased, but it can be seen from the figure that the

number of collisions of UAVs based on Trans-UTPA algorithm is

the lowest.

Figure 11 shows the average rewards obtained by the UAV

swarms of the two algorithms during flight under different obstacle

densities. Figure 11A is the average reward value of the two

algorithms under the density of 0.1. It can be seen from the figure that

the average reward value based on the Trans-UTPA algorithm has

always been higher than the USCTP algorithm. Figure 11B shows the

average reward value of the two algorithms when the density is 0.3.

It can be seen from the figure that the two algorithms are not much

different. In the first 1,000 rounds, the USCTP algorithm is higher.

As the number of rounds increases, Trans-UTPA is gradually higher

than the USCTP algorithm.

5.3.4. Energy consumption experimental results
In the energy consumption part, we use simulation experiments

to verify the Trans-UTPA algorithm. The relevant parameters in the

experiment are shown in Table 4.

The relevant parameters in the Trans-UTPA experiment are

shown in Table 5.

In the simulation environment, we trained 10,000 times to

explore the feasibility of using Trans-UTPA algorithm energy

consumption model for UAV group.

Figure 12 shows the comparison of POI visits between Trans-

UTPA and A *. The UAV uses Trans-UTPA (Trans-UTPA is

abbreviated as TUTPA) algorithm and A * algorithm to complete
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FIGURE 9

Comparison of success rates of UAV swarms reaching target locations. (A) Success rate with obstacle density = 0.1. (B) Success rate with obstacle density

= 0.3.

FIGURE 10

Comparison experiment of collision times of UAVs. (A) Collision times with obstacle density = 0.1. (B) Collision times with obstacle density = 0.3.

FIGURE 11

Comparison experiment of the average rewards. (A) Average rewards with obstacle density = 0.1. (B) Average rewards with obstacle density = 0.3.

the mission in the same flight area. From the figure, we can find

that the TUTPA algorithm can access more target-POI at the same

time, because the TUSCTP algorithm can mobilize the UAV to

access more data acquisition areas during the process of going to

the network communication area.When accessing the same number

of target-POIs, the TUTPA algorithm takes less time than the A *
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TABLE 4 Statistics of UAV simulation parameters.

Parameter Value

E 5.3 ∗ 104J

dsafe 400m

c1 , c2 0.0661, 15.97

σ 0.2

Bit 1Mbit

VMAX 10m/s

u 3

α 2

EBm 1J/(mα .Mbit)

Pcollect 0.37J/s

Eihover(t) 10J/min

Q 10J/r

dcom 20m

Eiup 2.5Jeachtime

Eidown 2.5Jeachtime

TABLE 5 The relevant parameters in the Trans-UTPA experiment.

Description Value

Learning rate of the actor network 0.001

Learning rate of the critic network 0.001

Max clipped value loss 0.2

Entropy regularization coefficient 0.5

Value function update coefficient 0.5

Batch size 512

algorithm, which better shows that the TUTPA algorithm can cover

more POIs and work efficiently.

Figure 13 we recorded the remaining power of a single UAV

starting to perform data acquisition tasks on target-POI. According

to the data in Figure 12, the number of target-POI that A * algorithm

can access is 6 in 600 s (10 min), and the number of target-POI that

TUTPA algorithm can access is 25, which is about 4 times that of A *

algorithm. However, in this process, TUTPA consumes less energy

than A * in a target-POI area on average. It is concluded that the

energy consumption of TUTPA algorithm has certain advantages and

can achieve energy saving.

6. Conclusion

With the coming of 6G network, UAVs will provide more and

more help in emergency disaster relief. We consider the distribution

of the rescue area, the type of mission, and the flight characteristics

of the UAV. Firstly, according to the distribution of the crowd,

the PSO algorithm is used to cluster the target-POI of the task

area, and the neural collaborative filtering algorithm is used to

prioritize the target-POI. Then we design a Trans-UTPA algorithm

and introduce Transformer mechanism to sequence modeling. The

FIGURE 12

Average number of POI visits for multiple experiments.

FIGURE 13

The remaining power of a single UAV after performing data acquisition

on target-POI.

UAV completes flight movements (horizontal flight, ascent and

descent) and emergency missions (data acquisition and networked

communications) in a three-dimensional space, sharing information

about the global UAV. The multi-UAVs cooperative flight constraints

and multi-UAVs green energy consumption calculation model are

designed. The multi-agent reinforcement learning is used to design

the flight route according to the maximum global reward. The

experimental results show that the Trans-UTPA algorithm makes

the success rate of each UAV reaching the target position, the

number of collisions and the average reward performance of the

algorithm further improve than the USCTP algorithm. Among

them, the average reward algorithm exceeds USCTP algorithm 13%,

the number of collisions reduced by 60%. Compared with the

heuristic algorithm, it can cover more target-POI, and has less

energy consumption than the heuristic algorithm. There are still some

defects in the algorithm, and there is a lack of three-dimensional
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actual environment simulation experiments. In the future, we will

continue to study along this point.
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