
TYPE Original Research

PUBLISHED 09 January 2023

DOI 10.3389/fnbot.2022.1081242

OPEN ACCESS

EDITED BY

Huiyu Zhou,

University of Leicester,

United Kingdom

REVIEWED BY

Amit Trivedi,

University of Illinois at Chicago,

United States

Changsheng Li,

Beijing Institute of Technology, China

Zhe Min,

University College London,

United Kingdom

Ning Tan,

Sun Yat-sen University, China

*CORRESPONDENCE

Gang Wang

wanggang@hrbeu.edu.cn

RECEIVED 27 October 2022

ACCEPTED 13 December 2022

PUBLISHED 09 January 2023

CITATION

Li S, Tang Q, Pang Y, Ma X and Wang G

(2023) Realistic Actor-Critic: A

framework for balance between value

overestimation and underestimation.

Front. Neurorobot. 16:1081242.

doi: 10.3389/fnbot.2022.1081242

COPYRIGHT

© 2023 Li, Tang, Pang, Ma and Wang.

This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Realistic Actor-Critic: A
framework for balance between
value overestimation and
underestimation

Sicen Li1,2, Qinyun Tang1,2, Yiming Pang1,2, Xinmeng Ma1 and

Gang Wang2,3*

1College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin, China,
2Science and Technology on Underwater Vehicle Laboratory, Harbin Engineering University, Harbin,

China, 3College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China

Introduction: The value approximation bias is known to lead to suboptimal

policies or catastrophic overestimation bias accumulation that prevent the

agent from making the right decisions between exploration and exploitation.

Algorithms have been proposed tomitigate the above contradiction. However,

we still lack an understanding of how the value bias impact performance and a

method for e�cient exploration while keeping stable updates. This study aims

to clarify the e�ect of the value bias and improve the reinforcement learning

algorithms to enhance sample e�ciency.

Methods: This study designs a simple episodic tabular MDP to research

value underestimation and overestimation in actor-critic methods. This study

proposes a unified framework called Realistic Actor-Critic (RAC), which

employs Universal Value Function Approximators (UVFA) to simultaneously

learn policies with di�erent value confidence-bound with the same neural

network, each with a di�erent under overestimation trade-o�.

Results: This study highlights that agents could over-explore low-value states

due to inflexible under-overestimation trade-o� in the fixed hyperparameters

setting, which is a particular form of the exploration-exploitation dilemma.

And RAC performs directed exploration without over-exploration using the

upper bounds while still avoiding overestimation using the lower bounds.

Through carefully designed experiments, this study empirically verifies that

RAC achieves 10x sample e�ciency and 25% performance improvement

compared to Soft Actor-Critic in themost challengingHumanoid environment.

All the source codes are available at https://github.com/ihuhuhu/RAC.

Discussion: This research not only provides valuable insights for research on

the exploration-exploitation trade-o� by studying the frequency of policies

access to low-value states under di�erent value confidence-bounds guidance,

but also proposes a new unified framework that can be combined with current

actor-critic methods to improve sample e�ciency in the continuous control

domain.

KEYWORDS

reinforcement learning (RL), robot control, estimation bias, exploration-exploitation

dilemma, uncertainty
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1. Introduction

Reinforcement learning is a major tool to realize intelligent

agents that can be autonomously adaptive to the environment

(Namiki and Yokosawa, 2021; Yu, 2018; Fukuda, 2020).

However, current reinforcement learning techniques still suffer

from requiring a huge amount of interaction data, which

could result in unbearable costs in real-world applications

(Karimpanal and Bouffanais, 2018; Levine et al., 2018; Sutton

and Barto, 2018; Dulac-Arnold et al., 2020). This study aims

to mitigate this problem by better balancing exploration

and exploitation.

Undesirable overestimation bias and accumulation of

function approximation errors in temporal difference methods

may lead to sub-optimal policy updates and divergent behaviors

(Thrun and Schwartz, 1993; Pendrith and Ryan, 1997; Fujimoto

et al., 2018; Chen et al., 2022). Most model-free off-policy

RL methods learn approximate lower confidence bound of

Q-function (Fujimoto et al., 2018; Kuznetsov et al., 2020;

Lan et al., 2020; Chen et al., 2021; Lee et al., 2021) to

avoid overestimation by introducing underestimation bias.

However, if the lower bound has a spurious maximum, it

will discourage policy to explore potentially higher uncertain

regions, resulting in stochastic local-maximum and causing

pessimistic underexploration (Ciosek et al., 2019). Moreover,

directionally uninformed (Ciosek et al., 2019) policies, such as

Gaussian policies, cannot avoid fully explored wasteful actions.

Optimistic explorationmethods (Brafman and Tennenholtz,

2002; Kim et al., 2019; Pathak et al., 2019) learn upper

confidence bounds of the Q-function from an epistemic

uncertainty estimate. These methods are directionally informed

and encourage policy to execute overestimated actions to help

agents escape local optimum. However, such upper confidence

bound might cause an agent to over-explore low-value regions.

In addition, it increases the risk of value overestimation since

transitions with high uncertainty may have higher function

approximation errors to make the value overestimated. To avoid

the above problems, one must carefully adjust hyperparameters

and control the bias to keep the value at a balance point

between lower and higher bounds: supporting stable learning

while providing good exploration behaviors. We highlight that

this balance is a particular form of the exploration–exploitation

dilemma (Sutton and Barto, 2018). Unfortunately, most

prior works have studied the overestimation and pessimistic

underexploration in isolation and have ignored the under-

/overestimation trade-off aspect.

We formulate the Realistic Actor-Critic (RAC), whose

main idea is to learn together values and policies with different

trade-offs between underestimation and overestimation

in the same network. Policies guided by lower bounds

control overestimation bias to provide consistency and

stable convergence. Each policy guided by different upper

bounds provides a unique exploration strategy to generate

overestimated actions, so that the policy family can directionally

explore overestimated state-action pairs uniformly and avoid

over-exploration. All transitions are stored in a shared replay

buffer, and all policies benefit from them to escape spurious

maximum. Such a family of policies is jointly parameterized

with the Universal Value Function Approximators (UVFA)

(Schaul et al., 2015). The learning process can be considered as

a set of auxiliary tasks (Badia et al., 2020b; Lyle et al., 2021) that

help build shared state representations and sills.

However, learning such policies with diverse behaviors in

a single network is challenging since policies vary widely

in behavior. We introduce punished Bellman backup,

which calculates uncertainty as punishment to correct value

estimations. Punished Bellman backup provides fine-granular

estimation control to make value approximation shift smoothly

between upper and lower bounds, allowing for more efficient

training. An ensemble of critics is learned to produce well-

calibrated uncertainty estimations (i.e., standard deviation) on

unseen samples (Amos et al., 2018; Pathak et al., 2019; Lee et al.,

2021). We show empirically that RAC controls the standard

deviation and the mean of value estimate bias to close to zero for

most of the training. Benefiting from well-bias control, critics

are trained with a high update-to-data (UTD) ratio (Chen et al.,

2021) to improve sample efficiency significantly.

Empirically, we implement RAC with SAC (Haarnoja et al.,

2018) and TD3 (Fujimoto et al., 2018) in continuous control

benchmarks (OpenAI Gym Brockman et al., 2016, MuJoCo

Todorov et al., 2012). Results demonstrate that RAC significantly

improves the performance and sample efficiency of SAC and

TD3. RAC outperforms the current state-of-the-art algorithms

(MBPO Janner et al., 2019, REDQ Chen et al., 2021, and

TQC Kuznetsov et al., 2020), achieving state-of-the-art sample

efficiency on the Humanoid benchmark. We perform ablations

and isolate the effect of the main components of RAC on

performance. Moreover, we perform hyperparameter ablations

and demonstrate that RAC is stable in practice. The higher

sample efficiency allows RAC to facilitate further applications of

the RL algorithm in automatic continuous control.

This study makes the following contributions:

(i) Highlighting that agents could over-explore low-value

states due to inflexible under-/overestimation trade-off in

the fixed hyperparameters setting, and it is a particular

form of the exploration–exploitation dilemma;

(ii) Defining a unified framework called Realistic Actor-

Critic (RAC), which employs Universal Value Function

Approximators (UVFA) to simultaneously learn policies

with different value confidence-bond with the same neural

network, each with a different under-/overestimation

trade-off;

(iii) Experimental evidence that the performance and sample

efficiency of the proposed method are better than state-of-

the-art methods on continuous control tasks.
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The study is organized as follows. Section 2 describes

related works and their results. Section 3 describes the

problem setting and preliminaries of RL. Section 4 explains

the under-/overestimation trade-off. Section 5 introduces the

punished Bellman backup and RAC algorithm. Section 6

presents experimental results that show the sample efficacy

and final performance of RAC. Finally, Section 7 presents

our conclusions.

2. Related works

2.1. Underestimation and overestimation
of Q-function

Themaximization update rule in Q-learning has been shown

to suffer from overestimation bias which is cited as the reason

for nonlinear function approximation fails in RL (Thrun and

Schwartz, 1993).

Minimizing the value ensemble is a standard method to

deal with overestimation bias. Double DQN (Van Hasselt et al.,

2016) was shown to be effective in alleviating this problem

for discrete action spaces. Clipped double Q-learning (CDQ)

(Fujimoto et al., 2018) took the minimum value between a pair

of critics to limit overestimation. Maxmin Q-learning (Lan et al.,

2020) mitigated the overestimation bias by using a minimization

over multiple action-value estimates. However, minimizing a Q-

function set cannot filter out abnormally small values, which

causes undesired pessimistic underexploration problem (Ciosek

et al., 2019). Using minimization to control overestimation is

coarse and wasteful as it ignores all estimates except the minimal

one (Kuznetsov et al., 2020).

REDQ (Chen et al., 2021) proposed in-target minimization,

which used a minimization across a random subset of Q-

functions from the ensemble to alleviate the above problems.

REDQ (Chen et al., 2021) showed that their method reduces

the standard deviation of the Q-function bias to close to

zero for most of the training. Truncated Quantile Critics

(TQC) (Kuznetsov et al., 2020) truncated the right tail of the

distributional value ensemble by dropping several of the topmost

atoms to control overestimation.Weighted bellman backup (Lee

et al., 2021) and uncertainty-weighted actor-critic (Wu et al.,

2021) prevent error propagation (Kumar et al., 2020) in Q-

learning by reweighing sample transitions based on uncertainty

estimations from the ensembles (Lee et al., 2021) orMonte Carlo

dropout (Wu et al., 2021). AdaTQC (Kuznetsov et al., 2021)

proposed an auto mechanism for controlling overestimation

bias. Unlike prior works, our work does not reweight sample

transitions but directly adds uncertainty estimations to punish

the target value.

The effect of underestimation bias on learning efficiency is

environment-dependent (Lan et al., 2020). Therefore, choosing

suitable parameters to balance under- and overestimating

for entirely different environments may be hard. This work

propose to solve this problem by learning about optimistic and

pessimistic policy families.

2.2. Ensemble methods

In deep learning, ensemble methods are often used to

solve the two key issues, uncertainty estimations (Wen et al.,

2020; Abdar et al., 2021) and out-of-distribution robustness

(Dusenberry et al., 2020; Havasi et al., 2020; Wenzel et al., 2020).

In reinforcement learning, using an ensemble to enhance value

function estimation was widely studied, such as averaging a Q-

ensemble (Anschel et al., 2017; Peer et al., 2021), bootstrapped

actor-critic architecture (Kalweit and Boedecker, 2017; Zheng

et al., 2018), calculating uncertainty to reweight sample

transitions (Lee et al., 2021), minimization over ensemble

estimates (Lan et al., 2020; Chen et al., 2021), and updating

the actor with a value ensemble (Kuznetsov et al., 2020; Chen

et al., 2021). MEPG (He et al., 2021) introduced a minimalist

ensemble consistent with Bellman update by utilizing a modified

dropout operator.

A high-level policy can be distilled from a policy ensemble

(Chen and Peng, 2019; Badia et al., 2020a) by density-based

selection (Saphal et al., 2020), selection through elimination

(Saphal et al., 2020), choosing the action that max all Q-

functions (Jung et al., 2020; Parker-Holder et al., 2020;

Lee et al., 2021), Thompson sampling (Parker-Holder et al.,

2020), and sliding-window UCBs (Badia et al., 2020a).

Leveraging uncertainty estimations of the ensemble (Osband

et al., 2016; Kalweit and Boedecker, 2017; Zheng et al.,

2018) simulated training different policies with a multi-head

architecture independently to generate diverse exploratory

behaviors. Ensemble methods were also used to learn joint

state presentation to improve sample efficiency. There were two

main methods: multi-heads (Osband et al., 2016; Kalweit and

Boedecker, 2017; Zheng et al., 2018; Goyal et al., 2019) and

UVFA (Schaul et al., 2015; Badia et al., 2020a,b). This study uses

uncertainty estimation to reduce value overestimation bias, a

simple max operator to get the best policy, and learning joint

state presentation with UVFA.

2.3. Optimistic exploration

Pessimistic initialization (Rashid et al., 2020) and a learning

policy that maximizes a lower confidence bound value could

suffer a pessimistic underexploration problem (Ciosek et al.,

2019). Optimistic exploration is a promising solution to ease

the above problem by applying the principle of optimism

in the face of uncertainty (Brafman and Tennenholtz, 2002).

Disagreement (Pathak et al., 2019) and EMI (Kim et al., 2019)

considered uncertainty as intrinsic motivation to encourage
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agents to explore the high-uncertainty areas of the environment.

Uncertainty punishment proposed in this study can also be a

particular intrinsic motivation. Different from studies of Pathak

et al. (2019) and Kim et al. (2019), which usually choose the

weight ≥ 0 to encourage exploration, punished Bellman backup

use the weight ≤ 0 to control value bias. SUNRISE (Lee et al.,

2021) proposed an optimistic exploration that chooses the action

that maximizes upper confidence bound (Chen et al., 2017)

of Q-functions. OAC (Ciosek et al., 2019) proposed an off-

policy exploration policy that is adjusted to a linear fit of upper

bounds to the critic with the maximum Kullback–Leibler (KL)

divergence constraining between the exploration policies and

the target policy. Most importantly, our work provides a unified

framework for the under-/overestimation trade-off.

3. Problem setting and preliminaries

In this section, we describe the notations and introduce the

concept of maximum entropy RL.

3.1. Notation

We consider the standard reinforcement learning notation,

with states s, actions a, reward r(s, a), and dynamics p(s′ | s, a).

The discounted return Rt =
∑∞

k=0γ
krk is the total accumulated

rewards from timestep t, γ ∈ [0, 1] is a discount factor

determining the priority of short-term rewards. The objective is

to find the optimal policy πφ(s | a) with parameters φ, which

maximizes the expected return J(φ) = Epπ [Rt].

3.2. Maximum entropy RL

The maximum entropy objective (Ziebart, 2010) encourages

the robustness to noise and exploration by maximizing a

weighted objective of the reward and the policy entropy:

π∗ = argmax
π

∑

t

Es∼p,a∼π
[

r(s, a)+ αH (π (· | s))
]

, (1)

where α is the temperature parameter used to determine the

relative importance of entropy and reward. Soft Actor-Critic

(SAC) (Haarnoja et al., 2018) seeks to optimize the maximum

entropy objective by alternating between a soft policy evaluation

and a soft policy improvement. A parameterized soft Q-function

Qθ (s, a), known as the critic in actor-critic methods, is trained

by minimizing the soft Bellman backup:

Lcritic(θ) = Eτ∼B[
(

Qθ (s, a)− y
)2
], y

= r − γEa′∼πφ

[

Qθ̄ (s
′, a′)− α logπφ(a

′ | s′)
]

, (2)

where τ = (s, a, r, s′) is a transition, B is a replay buffer, θ̄

are the delayed parameters which are updated by exponential

moving average θ̄ ← ρθ + (1 − ρ)θ̄ , ρ is the target smoothing

coefficient, and y is the target value. The target value Qθ̄ (s
′, a′)

is obtained by using two networks Q1
θ̄
(s′, a′) and Q2

θ̄
(s′, a′) with

minimum operator:

Qθ̄ (s
′, a′) = min(Q1

θ̄
(s′, a′),Q2

θ̄
(s′, a′)). (3)

The parameterized policy πφ , known as the actor, is updated

by minimizing the following object:

Lactor(φ) = Es∼B,a∼πφ

[

α log
(

πφ (a | s)
)

− Qθ (a, s)
]

. (4)

SAC uses an automated entropy adjusting mechanism to

update α with the following objective:

Ltemp(α) = Es∼B,a∼πφ

[

−α logπφ (a | s)− αH
]

, (5)

whereH is the target entropy.

4. Understanding
under-/overestimation trade-o�

This section briefly discusses the estimation bias issue and

empirically shows that a better under-/overestimation trade-off

may improve learning performance.

4.1. Under-/overestimation trade-o�

Under-/overestimation trade-off is a special form of the

exploration–exploitation dilemma. This is illustrated in Figure 1.

At first, the agent starts with a policy πpast , trained with lower

bound Q̂LB(s, a), becoming πLB. We divide the current action

space into four regions:

(i) High uncertainty, low-value. Highly stochastic regions also

have low values; overestimation bias might cause an agent

to over-explore a low-value area;

(ii) High uncertainty, excessive errors. This region has high

uncertainty but is full of unseen transitions that can have

excessive-high approximation errors, which may cause

catastrophic overestimation and need fewer samples;

(iii) High uncertainty, controllable errors. This region has high

uncertainty and is closer to the πLB, with controllable

approximation errors, and needs more samples;

(iv) Full explored. Since πpast is gradually updated to πLB, the

area is fully explored and needs less samples.

To prevent catastrophic overestimation bias accumulation,

SAC (Haarnoja et al., 2018), TD3 (Fujimoto et al., 2018),

and REDQ (Chen et al., 2021) introduce underestimation bias

to learn lower confidence bounds of Q-functions, similar to

Equation 3. However, directionally uninformed policies, such

as gaussian policies, will sample actions located in region

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1081242
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Li et al. 10.3389/fnbot.2022.1081242

FIGURE 1

Balance between value underestimation and overestimation in

actor-critic methods. The state s is fixed. The graph shows Qπ

(in black), which is unknown to the algorithm, estimated lower

bound Q̂LB (in blue), higher bound Q̂UB (in red), two policies, πLB
(in blue) and πpast (in black), at di�erent time steps of the

algorithm, and exploration policies πUB (in red) for optimistic

exploration.

4 with half probability. If the lower bound has a spurious

maximum and policies are directionally uninformed (Ciosek

et al., 2019), lower bound policy πLB may be stuck at the junction

of regions 3 and 4. This is wasteful and inefficient, causing

pessimistic underexploration.

πUB, which is used in optimistic exploration methods

(Brafman and Tennenholtz, 2002; Kim et al., 2019; Pathak et al.,

2019), can encourage agents to execute overestimated actions

and explore potential high-value regions with high uncertainty.

However, regions with high and overestimated actions, such as

region 2, may have excessive function approximation errors.

Alternatively, if highly uncertain regions also have low values

(like region 1), overestimation bias might cause an agent to

over-explore a low-value region.

Ideally, the exploration policies are located in region 3 to

provide better exploration behaviors and keep stable updates.

There are two ways to achieve this: (1) enforcing a KL constraint

between πUB and πLB (like OAC Ciosek et al., 2019); and (2)

balancing Q̂ between Q̂LB and Q̂UB, and we call it an under-

/overestimation trade-offs.

However, in practical applications, Qπ is unknown,

and it is not easy to tune to ideal conditions through

constant hyperparameters.

4.2. A simple MDP

We show this effect in a simple Markov decision process

(MDP), as shown in Figure 2. Any state’s optimal policy is the

left action. If the agent wants to go to state 9, it must go through

states 1–8 with high uncertainty and low values.

FIGURE 2

A simple episodic MDP (Lan et al., 2020), adapted from Figure

6.5 in the study of Sutton and Barto (2018). This MDP has two

terminal states: state 9 and state 0. Every episode starts from

state 1, which has two actions: Left and Right. The MDP is

deterministic. Once the agent takes into any states, the MDP will

reward back: r = 0.1 for terminal states 0, r = 1 for terminal

states 9, and a reward r ∼ U(−1, 1) for non-terminal states 1–8.

State 9 is the optimal state, state 0 is a local optimum, and states

1–8 are the high-uncertainty and low-value states.

In the experiment, we used a discount factor γ = 0.9;

a replay buffer with size 5, 000; a Boltzmann policy with

temperature = 0.1; tabular action values with uniform noisy

respect to a Uniform distribution U(−0.1, 0.1), initialized with

a Uniform distribution U(−5, 5); and a learning rate of 0.01 for

all algorithms.

The results in Figure 3 verify our hypotheses in Section 4.1.

All algorithms converge, but each has a different convergence

speed. Q̂LB underestimates too much and converges to a

suboptimal policy in the early learning stage, causing slow

convergence. For β = 0.5 and 1.0, optimistic exploration drives

the agent to escape the local optimum and learn faster. However,

Q̂ overestimates too much for β = 2.0, significantly impairing

the convergence speed of the policy. In addition, no matter what

parameter β takes, the agent still over-explores low-value states

at different time steps (see Figure 3).

RAC avoids over-exploration in low-value states and is

the fastest to converge to the optimal policy. Furthermore,

RAC maintains the Q bias close to zero without catastrophic

overestimation throughout the learning process, indicating that

RAC keeps an outstanding balance between underestimation

and overestimation.

5. Realistic Actor-Critic

We present Realistic Actor-Critic (RAC), which can be used

in conjunction with the most modern off-policy actor-critic RL

algorithms in principle, such as SAC (Haarnoja et al., 2018) and

TD3 (Fujimoto et al., 2018).We describe only the SAC version of

RAC (RAC-SAC) in the main body for the exposition. The TD3

version of RAC (RAC-TD3) follows the same principles and is

fully described in Appendix B.
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FIGURE 3

Results of the simple MDP. In-target minimization target from REDQ is used as Q̂LB. Q̂b = mean(Q̂′
LB
)+ βstandarddeviation(Q̂′

LB
) can perform

optimistic exploration. β is a key parameter to control value bias. If β = 0, Q̂b is equal to Q̂LB. As β increases, Q̂b gradually approaches Q̂UB. The

horizontal axis indicates the number of time steps. (A) Visit frequency of the optimal state is the ratio of the frequency of visiting the optimal

state among all termination states. The higher the value, the lower the probability that the agent is stuck in a local optimum. (B) Visit frequency

of low-value states is the ratio of the visit frequency of low-value state 2–8 and the optimal state 9. The lower the value, the fewer steps the

agent wastes in low-value states. This value has been subtracted by 7, as the minimum step size to reach the optimum state is seven. (C) Q bias

measures the di�erence between the estimated Q values and true Q values. All results are estimated by the Monte Carlo method and averaged

over eight seeds.

5.1. Punished Bellman backup

Punished Bellman backup is a variant of soft Bellman backup

(Equation 2). The idea is to maintain an ensemble of N soft

Q-functions Qθi (s, a), where θi denotes the parameters of the

i − th soft Q-function, which are initialized randomly and

independently for inducing an initial diversity in the models

(Osband et al., 2016), but updated with the same target.

Given a transition τt , punished Bellman backup considers

following punished target y:

y = rt + γEa′∼πφ [Q̄θ̄ (s
′, a′)− β ŝ(Qθ̄ (s

′, a′))

− α logπφ
(

a′ | s′
)

],
(6)

where Q̄θ̄ (s, a) is the sample mean of the target Q-functions

and ŝ(Qθ̄ (s, a)) is the sample standard deviation of target

Q-functions with bessel’s correction (Warwick and Lininger,

1975). Punished Bellman backup uses ŝ(Qθ̄ (s, a)) as uncertainty

estimation to punish value estimation. β ≥ 0 is the weighting of

the punishment. Note that we do not propagate gradient through

the uncertainty ŝ(Qθ̄ (s, a)).

We write Qi
sa instead of Qθi (s, a) and Qi

s′a′
instead of

Qθi (s
′, a′) for compactness. Assuming each Q-function has

random approximation error eisa (Thrun and Schwartz, 1993;

Lan et al., 2020; Chen et al., 2021), which is a random variable

belonging to some distribution,

Qi
sa = Q∗sa + eisa, (7)

where Q∗sa is the ground truth of Q-functions. M is the number

of actions applicable at state s′. The estimation bias ZMN for a

transition τt is defined as

ZMN
def
=

[

r + γ max
a′

(Qmean
s′a′
− βQstd

s′a′
)

]

−

(

r + γ max
a′

Q∗
s′a′

)

=γ

[

max
a′

(Qmean
s′a′
− βQstd

s′a′
)−max

a′
Q∗
s′a′

]

,

(8)

where

Qmean
s′a′
≈

1

N

N
∑

i=1

Qi
s′a′
=

1

N

N
∑

i=1

(Q∗
s′a′
+ ei

s′a′
) = Q∗

s′a′

+
1

N

N
∑

i=1

ei
s′a′
= Q∗

s′a′
+ ēs′a′ ,

(9)

Qstd
s′a′
≈

√

√

√

√

1

N − 1

N
∑

i=1

(

Qi
s′a′
− Qmean

s′a′

)2

=

√

√

√

√

1

N − 1

N
∑

i=1

(

Q∗
s′a′
+ ei

s′a′
− Q∗

s′a′
+ ēs′a′

)2

=

√

√

√

√

1

N − 1

N
∑

i=1

(

ei
s′a′
− ēs′a′

)2
= ŝ(es′a′ ).

(10)

Then,

ZMN ≈ γ

[

max
a′

(Q∗
s′a′
+ ēs′a′ − β ŝ(es′a′ ))−max

a′
Q∗
s′a′

]

.

(11)

If one could choose β =
ēs′a′

ŝ(es′a′ )
, Qi

sa will be resumed to Q∗sa,

then ZMN can be reduced to near 0. However, it’s hard to adjust

a suitable constant β for various state-action pairs actually. We
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1: Initialize actor network φ, N critic networks

θi, i = 1, . . . ,N, temperature network ψ, empty

replay buffer B, target network θ̄i ←− θi, for

i = 1, 2, . . . ,N, uniform distribution U1 and U2

2: for each iteration do

3: // OPTIMISTIC EXPLORATION

4: execute an action a ∼ πφ (· | s,β) ,β ∼ U2.

5: Observe reward rt, new state s′

6: Store transition tuple B← B ∪
{(

s, a, rt , s
′
)}

7: for G updates do

8: // UPDATE CRITICS via PUNISHED BELLMAN

BACKUP

9: Sample random minibatch:

10: {τj}
B
j=1 ∼ B, {βm}Bm=1 ∼ U1

11: Compute the Q target (Equation 13)

12: for i = 1, . . . ,N do

13: Update θi by minimize L
RAC
critic (Equation

13)

14: Update target networks:

15: θ̄i ← ρθ̄i + (1− ρ)θi

16: // UPDATE ACTORS AND TEMPERATURES ACCORDING

TO U1

17: Update φ by minimize L
RAC−SAC
actor (Equation 14)

18: Update ψ by minimize L
RAC
temp (Equation 12)

Algorithm 1. RAC: SAC version.

develop vanilla RAC, which uses a constant β Appendix B.3, to

research this problem.

For β = 0, the update is simple average Q-learning

which causes overestimation bias (Chen et al., 2021). As β

increases, increasing penalties Qstd
s′a′

decrease E[ZMN ] gradually

and encourage Q-functions to transit smoothly from higher

bounds to lower bounds.

5.2. Realistic Actor-Critic agent

We demonstrate how to use punished Bellman backup to

incorporate various bounds of value approximations into a

full agent that maintains diverse policies, each with a different

under-/overestimation trade-off. The pseudocode for RAC-SAC

is shown in Algorithm 1.

RAC uses UVFA (Schaul et al., 2015) to extend the critic and

actor as Qθi (s, a,β) and πφ
(

· | s′,β
)

, U1 is a uniform training

distribution U[0, a], a is a positive real number, and β ∼ U1 that

generates various bounds of value approximations.

An independent temperature network αψ parameterized by

ψ is used to accurately adjust the temperature with respect

to β , which can improve the performance of RAC. Then, the

objective (Equation 5) becomes:

L
RAC
temp(ψ) = Es∼B,a∼πφ ,β∼U1

[−αψ (β) logπφ (a | s,β)

− αψ (β)H].
(12)

The extended Q-ensemble use punished Bellman backup to

simultaneously approximate a soft Q-function family:

L
RAC
critic(θi) = Eτ∼B,β∼U1

[
(

Qθi (s, a,β)− y
)2
],

y = r + γEa′∼πφ [Q̄θ̄ (s
′, a′,β)− β ŝ(Qθ̄ (s

′, a′,β))

− αψ (β) logπφ(a
′ | s′,β)] (13)

where Q̄θ̄ (s, a,β) is the sample mean of target Q-functions and

ŝ(Qθ̄ (s, a,β)) is the corrected sample standard deviation of target

Q-functions.

The extended policy πφ is updated by minimizing the

following object:

L
RAC−SAC
actor (φ) = Es∼B,β∼U1

[Ea∼πφ [αψ (β) log
(

πφ (a | s,β)
)

− Q̄θ (a, s,β)]], (14)

where Q̄θ (a, s,β) is the sample mean of Q-functions.

A larger UTD ratio G improves sample utilization. We find

that a smaller replay buffer capacity slightly improves the sample

efficiency of RAC in Section 6.5.

Note that we find that applying different samples, which

are generated by binary masks from the Bernoulli distribution

(Osband et al., 2016; Lee et al., 2021), to train each Q-

function will not improve RAC performance in our experiments;

therefore, RAC does not apply this method.

5.2.1. RAC circumvents direct adjustment

RAC leaners with a distribution of β instead of a constant

β . One could evaluate the policy family to find the best β .

We employ a discrete number H of values {βi}
H
i=1 (see details

in Appendix A.1) to implement a distributed evaluation for

computational efficiency and apply the max operator to get

best β .

5.2.2. Optimistic exploration

When interacting with the environment, we propose to

sample β uniformly from a uniform explore distribution U2 =

U[0, b], where b < a is a positive real number, to get optimistic

exploratory behaviors to avoid pessimistic underexploration

(Ciosek et al., 2019).

5.3. How RAC solves the
under-/overestimation trade-o�

Similar to the idea of NGU (Badia et al., 2020b), RAC

decouples exploration and exploitation policies. RAC uses
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FIGURE 4

Visualization of RAC. The serial numbers in the figure

correspond to Section 4.1 and Figure 1. For better illustration, Q̂

is discretized. In fact, Q̂n learned by RAC is infinite and changes

continuously. Q⋆(s, a) is the optimal Q-function that is unknown.

Q-functions are distributed between Q̂UB and Q̂LB and their

policies are distributed between πUB and πLB. πUB, π1, and π2 are

used as exploration policies.

UVFA to simultaneously learn policies with the same

neural network, each with different trade-offs between

underestimation and overestimation. Using UVFA to learn

different degrees of confidence bounds allows us to learn

a powerful representation and set of skills that can be

quickly transferred to the expected policy. With punished

Bellman backup, RAC has a larger number of policies and

values that change smoothly, allowing for more efficient

training.

This is illustrated in Figure 4. Q-functions that

are close to Q̂LB (like Q̂n) control overestimation

bias to provide consistency and stable convergence.

Exploration policies (such as πUB, π1, and π2) are

far from the spurious maximum of Q̂LB and Q̂n, and

overestimated actions sampled from them located in

regions 1, 2, and 3 lead to a quick correction to the

critic estimate. All transitions are stored in a shared

replay buffer, and all policies benefit from them to escape

spurious maximums. Since exploration policies are not

symmetric to the mean of πLB and πn, RAC also avoids

directional uninformedness.

Although RAC cannot always keep the exploration policies

located in region 3, the policy family avoids all behaviors

concentrated in region 1 or 2. Exploration behaviors uniformly

distribute in regions 1, 2, and 3, preventing over-exploration in

any area.

Moreover, such policies could be quite different from

a behavior standpoint and generate varied action sequences

to visit unseen state-action pairs following the principle of

optimism in the face of uncertainty (Chen et al., 2017; Ciosek

et al., 2019; Lee et al., 2021).

6. Experiments

We designed our experiments to answer the following

questions:

• Can the Realistic Actor-Critic outperform state-of-the-art

algorithms in continuous control tasks?

• Can the Realistic Actor-Critic better balance between value

overestimation and underestimation?

• What is the contribution of each technique in the Realistic

Actor-Critic?

6.1. Setups

We implement RAC with SAC and TD3 as RAC-SAC and

RAC-TD3 (see Appendix B).

The baseline algorithms are REDQ (Chen et al., 2021),

MBPO (Janner et al., 2019), SAC (Haarnoja et al., 2018), TD3

(Fujimoto et al., 2018), and TQC (Kuznetsov et al., 2020). All

hyperparameters we used for evaluation are the same as those in

the original articles. For MBPO (https://github.com/JannerM/

mbpo), REDQ (https://github.com/watchernyu/REDQ), TD3

(https://github.com/sfujim/TD3), and TQC (https://github.

com/SamsungLabs/tqc_pytorch), we use the authors’ code. For

SAC, we implement it following the study of Haarnoja et al.

(2018), and the results we obtained are similar to previously

reported results. TQC20 is a variant of TQC with UTD G = 20

for a fair comparison.

We compare baselines on six challenging continuous control

tasks (Walker2d, HalfCheetah, Hopper, Swimmer, Ant, and

Humanoid) from MuJoCo environments (Todorov et al., 2012)

in the OpenAI gym benchmark (Brockman et al., 2016).

The time steps for training instances on Walker2d, Hopper,

and Ant are 3×105, and 1×106 for Humanoid andHalfCheetah.

All algorithms explore with a stochastic policy but use a

deterministic policy for evaluation similar to those in SAC. We

report the mean and standard deviation across eight seeds.

For all algorithms, we use a fully connected network with

two hidden layers and 256 units per layer, with Rectified Linear

Unit in each layer (Glorot et al., 2011), for both actor and critic.

All the parameters are updated by the Adam optimizer (Kingma

and Ba, 2014) with a fixed learning rate. All algorithms adopt

almost the same NN architecture and hyperparameter.

For all experiments, our learning curves show the total

undiscounted return.

Using the Monte Carlo method, we estimate the mean

and standard deviation of normalized Q-function bias (Chen

et al., 2021) as the main analysis indicators to analyze the
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TABLE 1 Performance on OpenAI gym.

RAC-SAC RAC-TD3 REDQ MBPO TQC20 TD3 SAC TQC

Humanoid 11,107 ± 475 9,321 ± 1,126 5,504 ± 120 5,162 ± 350 7,053 ± 857 7,014 ± 643 7,681 ± 1,118 10,731 ± 1,296

Ant 6,283 ± 549 6,470 ± 165 5,475 ± 890 5,281 ± 699 4,722 ± 567 6,796 ± 277 6,433± 332 6,402± 1,371

Walker 5,860 ± 440 5,114 ± 489 5,034 ± 711 4,864 ± 488 5,109 ± 696 4,419 ± 1,682 5,249 ± 554 5,821 ± 457

Hopper 3,421 ± 483 3,495 ± 672 3,563 ± 94 3,280 ± 455 3,208 ± 538 3,433 ± 321 2,815 ± 585 3,011 ± 866

HalfCheetah 15,717 ± 1,063 15,083 ± 1,113 10,802 ± 1,179 13,477 ± 443 12,123 ± 2,600 14,462 ± 1,982 16,330 ± 323 17,245 ± 293

Swimmer 143 ± 6.8 71 ± 83 98 ± 31 - 143 ± 9.6 53 ± 8.8 51 ± 4.2 65 ± 5.8

Themaximum value for each task is bolded.± corresponds to a single standard deviation over eight runs. The best results are indicated in bold. Results of SAC, TD3, and TQC are obtained

at 6× 106 time steps for Humanoid and HalfCheetah and 3× 106 time steps for other environments. Results of RAC, REDQ, and TQC20 are obtained at 1× 106 time steps for Humanoid

and HalfCheetah and 3 × 105 time steps for other environments. Results of MBPO are obtained at 3 × 105 time steps for Ant, Humanoid, and Walker2d, 4 × 105 for HalfCheetah and

1.25× 105 for Hopper.

TABLE 2 Sample-e�ciency comparison.

RAC-
SAC

REDQ MBPO TQC TQC20 REDQ/RAC-
SAC

MBPO/RAC-
SAC

TQC/RAC-
SAC

TQC20/RAC-
SAC

Humanoid at 2,000 63 K 109 K 154 K 145 K 147 K 1.73 2.44 2.30 2.33

Humanoid at 5,000 134 K 250 K 295 K 445 K 258 K 1.87 2.20 3.32 1.93

Humanoid at 10,000 552 K - - 3,260 K - - - 5.91 -

Ant at 1,000 21 K 28 K 62 K 185 K 42 K 1.33 2.95 8.81 2.00

Ant at 3,000 56 K 56 K 152 K 940 K 79K 1.00 2.71 16.79 1.41

Ant at 6,000 248 K - - 3,055 K - - - 12.31 -

Walker at 1,000 27 K 42 K 54 K 110 K 50 K 1.56 2.00 4.07 1.85

Walker at 3,000 53 K 79 K 86 K 270 K 89K 1.49 1.62 10.75 1.68

Walker at 5,000 147 K 272 K - 960 K 270 K 1.85 - 6.53 1.84

Sample efficiency (Chen et al., 2021; Dorner, 2021) is measured by the ratio of the number of samples collected when RAC and some algorithms reach the specified performance. The last

four rows show how many times RAC is more sample efficient than other algorithms in achieving that performance.

value approximation quality (described in Appendix A). The

average bias lets us know whether Qθ is overestimated or

underestimated, while standard deviation measures whether Qθ
is overfitting.

Sample efficiency (SE) (Chen et al., 2021; Dorner, 2021) is

measured by the ratio of the number of samples collected when

RAC and some algorithms reach the specified performance.

Hopper is not in the comparison object as the performance of

algorithms is almost indistinguishable.

6.2. Comparative evaluation

6.2.1. OpenAI gym

Figure 5 and Table 1 show learning curves and performance

comparison. RAC consistently improves the performance of

SAC and TD3 across all environments and performs better

than other algorithms. In particular, RAC learns significantly

faster for Humanoid and has better asymptotic performance for

Ant, Walker2d, and HalfCheetah. RAC yields a much smaller

variance than SAC and TQC, indicating that the optimistic

exploration helps the agents escape from bad local optima.

6.2.2. Sample-e�ciency comparison

Table 2 shows the sample-efficiency comparison with

baselines. Compared with TQC, RAC-SAC reaches 3,000 and

6,000 for Ant with 16.79x and 12.31x sample efficiency,

respectively. RAC-SAC performs 1.5x better than REDQhalfway

through training and 1.8x better at the end of training inWalker

and Humanoid. They show that a better under-/overestimation

trade-off can achieve better sample-efficiency performance than

the MuJoCo environments’ state-of-the-art algorithms.

6.2.3. Value approximation analysis

Figure 6 presents the results for Ant, Humanoid, and

Walker2d.
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FIGURE 5

Learning curves on six Mujoco environments. The horizontal axis indicates the number of time steps. The vertical axis shows the average

undiscounted return. The shaded areas denote one standard deviation over eight runs. (A) Humanold, (B) Ant, (C) HalfCheetah, (D) Hopper, (E)

Walker2d, and (F) Swimmer.

In Ant and Walker2d, TQC20 has a high normalized

mean of bias, indicating that TQC20 prevents catastrophic

overestimation failure accumulation. TQC20 also has a high

normalized standard deviation of bias, indicating that the

bias is highly non-uniform, which can be detrimental. Since

distributional RL is prone to overfitting with few samples, it

may not be appropriate to use a high UTD ratio for TQC. In

Humanoid, which has a high-dimensional state, overfitting still

exists but has been alleviated.

Relative to TQC and TQC20, REDQ and RAC-SAC have

a very low normalized standard deviation of bias for most of

the training, indicating the bias across different state-action

pairs is about the same. Thus, the Q-estimation of REDQ is

too conservative in Humanoid, and the large negative bias

makes REDQ trapped in a bad locally optimal policy, suffering

from pessimistic underexploration. For Ant and Walker2d,

although this poor exploration does not harm the performance

of the policy, it still slows down convergence speed compared

to RAC.

Relative to REDQ, RAC-SAC keeps the Q bias nearly

zero without overestimation accumulation; this benign

overestimation bias significantly improves performance. RAC-

SAC strikes a good balance between overestimation bias (good

performance without being trapped in a bad local optimum)

and underestimation bias (slight overestimation bias and

consistently small standard deviation of bias).

6.3. Why Humanoid is hard for most
baselines?

Figure 7 visualizes the performance with respect to various

value confidence bounds. Humanoid is extremely sensitive to

the value bias. The huge state-action space of Humanoid leads

to a large approximation error of the value function with

small samples. The approximate lower bound inevitably has

spurious maxima, while a small overestimated bias can seriously

destabilize updates. It is hard to choose appropriate confidence

bound for Humanoid by tuning the hyperparameters, resulting

in a difficult under-/overestimation trade-off.

Algorithms (like REDQ) that rely on constant

hyperparameters to control the value bias have to conservatively

introduce a large underestimation error (Figure 6) to

stabilize updates, leading the policy to fall into pessimistic

underexploration. In contrast, other algorithms (such as

TQC20) plagued by overestimation and overfitting require

more samples.

Compared to Humanoid, the state-action space of other

environments is much smaller. The approximate Q-functions

can easily fit the true Q values accurately, significantly

reducing the possibility of spurious maxima. Therefore,

optimistic exploration may not be a required component for

these environments. So, we can see that they are not very

sensitive to various value confidence bounds from Figure 7.
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FIGURE 6

Estimated mean and standard deviation of normalized Q bias of RAC-SAC, REDQ, TQC, and TQC20 for Ant and Humanoid with Monte Carlo

method. (A) Q bias of Ant, (B) Q bias of Humanold, (C) Q bias of Walker2d, (D) Q standard deviation of Ant, (E) Q standard deviation of

Humanold, and (F) Q standard deviation of Walker2d.

FIGURE 7

Performance of various value confidence bounds with respect to di�erent β. (A–D) Performance respect to di�erent β in Ant, Humanoid,

Walker2d, and Hopper. We visualize di�erent β belonging to training distribution U1 = U[0, a] during training processes.

An underestimated value is enough to guide the policy to

learn stably.

6.4. Variants of RAC

We evaluate the performance contributions of ingredients

of RAC (punished Bellman backup, policy family, optimistic

exploration, independent temperature network, and learning

rate warm-up) on a subset of four environments (see Figure 8).

6.4.1. Punished Bellman backup

When using the in-target minimization instead of

punished Bellman backup, RAC is stable, but the performance

is significantly worse in Humanoid. Punished Bellman

backup provides more finer-grained bias control than in-

target minimization, reducing the difficulty of learning

representations. Compared with other environments,

Humanoid has stronger requirements for state representation

learning (Chen et al., 2021). Thus, punished Bellman backup far

outperforms in-target minimization in Humanoid and is almost

the same in other environments.
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FIGURE 8

Performance of RAC and its variants. (A–D) Humanoid, Ant, Walker2d, and Hopper. The in-target minimization version of RAC is shown in

Appendix B.4. RAC without policy family is named Vanilla RAC (see Appendix B.3 for more details. In this case, OAC (Ciosek et al., 2019) is used

as optimistic exploration method).

FIGURE 9

Hyperparameter ablations of RAC. (A–E) Replay bu�er capacity, right side of exploitation distribution (a), right side of exploration distribution (b),

the UTD ratio and the ensemble size for ant. (F–J) Replay bu�er capacity, right side of exploitation distribution (a), right side of exploration

distribution (b), the UTD ratio and the Ensemble size for Humanoid.

6.4.2. Policy family

The policy family is paramount to performance. This

is consistent with Section 5.3’s conjecture. Even with OAC,

an agent can only converge to a local optimum without

the policy family in Humanoid, indicating that a single

optimistic exploration method cannot solve the pessimistic

underexploration well. In addition, the convergence speed of the

policy has decreased in Walker2d and Ant.

6.4.3. Optimistic exploration

Experimental results support the point in Section 6.3.

Optimistic exploration can help the agent escape from local

optima in Humanoid. However, in simple environments (like

Ant, Walker2d, and Hopper), optimistic exploration has little

impact on performance.

6.4.4. Independent temperature network

Except for Walker2d, the independent temperature

network has little effect on RAC performance. The learned

temperatures are shown in Appendix C. In practice,

we find that the independent temperature network

can control the entropy of the policy more quickly

and stably.

6.4.5. Learning rate warm-up

A high UTD ratio can easily lead to an excessive

accumulation of overestimation errors in the early stage

of learning. The learning rate warm-up can alleviate this

problem and stabilize the learning process. Without the learning

rate warm-up, RAC learns slower at the beginning of the

training process.
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6.5. Hyperparameter ablations

RAC introduces some hyperparameters: (1) replay buffer

capacity; (2) right side of exploitation distribution U1 (a); (3)

right side of exploration distribution U2 (b); (4) UTD ratio

G in Algorithm 1; and (5) Ensemble size. Figure 9 shows the

numerical results.

Replay buffer capacity (Figures 9A, F). RAC can benefit

from a smaller capacity but will be hurt when the capacity is

excessively small.

The right side of U1 (a) (Figures 9B, G). a is a key

hyperparameter of RAC. Because a controls the underestimation

bias of RAC, which determines the lower bound of Q-functions.

The learning process becomes stable with a increasing. However,

if a is too large, it will reduce the learning opportunity of

optimistic policies, thereby reducing the learning efficiency.

The right side of U2 (b) (Figures 9C, H). Exploration

policies become more conservative with b increasing, and the

performance of RAC gradually declines. The increasing standard

deviation means that more and more agents fall into local-

optimal policies. However, if b is too small, policies may over-

explore the overestimated state, resulting in a decrease in

learning efficiency.

The ensemble size (Figures 9E, J) and the UTD ratio

(Figures 9D, I). RAC appears to benefit greatly from the

ensemble size and UTD ratio. When the ensemble size and UTD

ratio are increased, we generally get a more stable average bias, a

lower standard deviation of bias, and stronger performance.

7. Conclusion

In this study, we empirically discussed under-/

overestimation trade-off on improving the sample efficiency

in DRL and proposed the Realistic Actor-Critic (RAC),

which learns together values and policies with different

trade-offs between underestimation and overestimation in

the same network. This study proposed Punished Bellman

backup that provides fine-granular estimation bias control

to make value approximation smoothly shift between upper

bounds and lower bounds. This study also discussed the

role of the various components of RAC. Experiments show

advantageous properties of RAC: low-value approximation

error and brilliant sample efficiency. Furthermore, continuous

control benchmarks suggest that RAC consistently improves

performances and sample efficiency of existing off-policy RL

algorithms, such as SAC and TD3. It is of great significance for

promoting reinforcement learning in the robot control domain.

Our results suggest that directly incorporating uncertainty

to value functions and learning a powerful policy family can

provide a promising avenue for improved sample efficiency

and performance. Further exploration of ensemble methods,

including high-level policies or more rich policy classes, is an

exciting avenue for future work.
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