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A multi-scale robotic tool
grasping method for robot state
segmentation masks

Tao Xue, Deshuai Zheng, Jin Yan and Yong Liu*

School of Computer Science and Engineering, Nanjing University of Science and Technology,

Nanjing, Jiangsu, China

As robots begin to collaborate with humans in their daily work spaces, they

need to have a deeper understanding of the tasks of using tools. In response

to the problem of using tools in collaboration between humans and robots,

we propose a modular system based on collaborative tasks. The first part of

the system is designed to find task-related operating areas, and a multi-layer

instance segmentation network is used to find the tools needed for the task,

and classify the object itself based on the state of the robot in the collaborative

task. Thus, we generate the state semantic region with the “leader-assistant”

state. In the second part, in order to predict the optimal grasp and handover

configuration, a multi-scale grasping network (MGR-Net) based on the mask

of state semantic area is proposed, it can better adapt to the change of

the receptive field caused by the state semantic region. Compared with the

traditional method, our method has higher accuracy. The whole system also

achieves good results on untrained real-world tool dataset we constructed.

To further verify the e�ectiveness of our generated grasp representations, A

robot platform based on Sawyer is used to prove the high performance of our

system.

KEYWORDS

human-robot collaboration, instance segmentation, robotic grasping, grasp

detection, robotic grasp platform

1. Introduction

With the increasingly serious aging of the population, how to provide effective

homecare for the growing elderly population has ushered in new challenges and changes,

especially the COVID-19 epidemic, which makes the need for homecare for the elderly

extremely urgent. In order to prevent the elderly from using tools incorrectly and to

ensure the safety of tools when using them, we effortlessly draw on our understanding

of the functions that tools and their parts provide. Using vision, we can identify the

function of the part, so we can find the right tool part for our operation. As robots

like PR2, Asimo, and Baxter begin to collaborate with humans in homecare industry,

they will also need us to have a more detailed understanding of the tools involved in

the task.

When completing tasks through human-robot collaboration, robots are

designed to provide more assistance to humans, rather than let the robot

perform all tasks autonomously. There are two reasons for this. Firstly, the
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type and level of knowledge and the training required for

robots to complete tasks on their own are difficult to establish

and collect. Secondly, despite the significant progress made in

robotics such as manipulation (Kroemer et al., 2015; Fu et al.,

2016), robots are still far from having the fine manipulation

capabilities required for tasks such as furniture assembly (for

example, using a screwdriver on small screws). Therefore,

we hope that the robot can choose the behavior suitable

for the robot, while letting the human worker perform the

action more suitable for the human. For example, robots may

provide supportive or transmit behaviors, such as stabilizing

components or bringing heavy components required for

assembly (Mangin et al., 2017), while human workers can

perform operations that require more adaptability to tasks, such

as screwing screws. Therefore, in the task of using various tools

through human-robot collaboration, how to understand the task

requirements and assign them to different states of robots and

humans to grasp tools is a very critical issue.

Brahmbhatt et al. (2019) used thermal camera to study

human grasping contacts on 50 household objects textured

with contact maps for two tasks. Fang et al. (2020) developed

a learning-based approach for task-oriented grasping in

simulation with reinforcement learning. Liu et al. (2020)

considered a broad sense of context and proposed a data-

driven approach to learn suitable semantic grasps. These

methods are able to solve the problem of understanding

task requirements related to grasp tools through pixel-level

enlightening segmentation of a small group of known object

categories (Do et al., 2018). However, for collaborative tasks,

there is still a lack of consideration for different states that lead

to different tool grasping representation. In order to realize the

understanding of tools according to different state definitions

of robots, we constructed a tool classification dataset used to

analyze the different states played by robots when grasping

various tools.

We recruited some volunteers to take on different states

in grasping the tools in the dataset. And we recorded the

grasping areas corresponding to different states and counted

these positions. We borrowed the idea of region classification

and proposed the state semantics (grasp and handover) region,

that is, different states often make people grasp different

position of tools. Based on the knowledge of this region, we

define two types of robot states: active operator and assisting

passer, corresponding to the previous semantics “grasp” and

“handover.”

The main contributions of our work mainly include the

following four points:

1. We proposed a modular system for multi-states tool grasping

task under human-robot interaction, which can realize the

collaborative grasping and interaction of humans and robots

based on tasks.

2. A multi-layer instance segmentation network is proposed to

complete the classification of operating areas for task-related

tools. Therefore, in different tasks, we can find the most

suitable grasping area for humans or robots in different states.

3. Considering that grasping based on the local semantic region

of the tool will increase the variation range of the receptive

field, we propose a multi-scale grasping convolutional

network MGR-Net based on state semantics to improve the

prediction accuracy of the network.

4. We collected real-world tool images through “realsense”

camera as a test set, and the experimental results show

that our method performs well on untrained real-world tool

images. Furthermore, we used robotic platform based on

Sawyer to validate our grasping representation.

The other chapters of this article are arranged as follows.

In Section 2, we briefly review related literature. In Section 3,

we detail the proposed grasping framework based on semantic

state area. In Section 4, Our experimental results are presented.

Finally, we conclude this work in Section 5.

2. Related work

Learning to use an item as a tool requires an understanding

of what it helps to achieve, the properties of the tool that make it

useful, and how the tool must bemanipulated in order to achieve

the goal. In order to further meet the operational requirements

of our robots based on different states, the tool grasping tasks

under different states can be divided into the following three

aspects:

1. Detection of tools related to different tasks.

2. Research on the properties of the tool itself.

3. Robotic grasping detection of tools.

2.1. Task-related tool detection

The earliest classification of tasks is mostly to find

corresponding task objects in multiple objects. With the great

power of machine learning in classification, researchers find that

novel objects grasp detection can be classified into two parts,

which is graspable or ungraspable. SVM has been widely used

in grasp feature classification (Fischinger et al., 2015; Ten Pas

and Platt, 2018). Ten Pas and Platt (2018) used knowledge of

the geometry of a good grasp to improve detection. Through

sampling lots of hand configuration as the input features, they

used the notion of an antipodal grasp to classify these grasp

hypotheses. Deep learning methods are also been applied in

grasp detection. Lenz et al. (2015) presented a two-step cascaded

system with two deep networks and ran at 13.5 s per frame with

an accuracy of 93.7%.
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In order to better identify task-related tools among

multiple types of tools and avoid the interference of irrelevant

tools, instance segmentation methods are introduced to

achieve more accurate tool detection accuracy. Top-down

methods (He et al., 2017; Chen et al., 2020) solve the

problem from the perspective of object detection. For

example, first detecting an object, then segmenting it in

the box. Recently, the anchor-free object detectors were

used by some researchers and got good results (Tian

et al., 2019). Bottom-up methods (Liu et al., 2017; Gao

et al., 2019) view the task as a label-then-cluster problem.

These method learn the per-pixel embeddings and then

cluster them into groups. The latest direct method

(SOLO) (Wang et al., 2020a) no longer relies on box

detection or embedding learning, and deals with instance

segmentation directly. Wang et al. (2020b) appreciate the

basic concept of SOLO and further explore the direct instance

segmentation solutions.

2.2. Tool attribute classification

The above methods can identify objects of known classes

very well. However, in the case of using a spoon, the

robot needs to know which part of the spoon to grasp and

which part to hold the soup. Work on grasp affordances

tends to focus on robust interactions between objects and

the autonomous agent. It is typically limited to a single

affordance per object. Moreover, affordance labels tend to be

assigned arbitrarily instead of through data-driven techniques

to collect human-acceptable interactions about grasping. Krüger

et al. (2011) focus on relating abstractions of sensory-motor

processes with object structures [e.g., object-action complexes

(OACs)], and capture the interaction between objects and

associated actions through an object affordance. Others use

purely visual input to learn affordances to relate objects

and actions through deep learning or supervised learning

techniques (Hart et al., 2015). Chu et al. (2019) presented

a novel framework to predict the affordance of objects via

semantic segmentation.

It is worth considering that in the interactive use of tools,

robots not only need to find the task-related tools and operating

areas, but also clarify the state of the robot at this time, whether

it is the “leader” or the “assistant” of the task. However, the

previous classification of tool attributes at this time is not

sufficient to meet this goal, they only consider the case where

the robot is a single operator. In order to solve this problem,

based on the attributes generated by the classification of tool

functions, we focus on the grasping operation during interactive

tasks. Through data-driven technology, the functional attributes

of the tool are combined with the state of the robot to find

the optimal grasping area of the tool for the robot under

different states.

2.3. Robotic grasping detection

Deep learning has been a hot topic of research since the

advent of ImageNet success and the use of GPU’s and other

fast computational techniques. Also, the availability of affordable

RGB-D sensors enabled the use of deep learning techniques to

learn the features of objects directly from image data. Recent

experimentations using deep neural networks (Schmidt et al.,

2018; Zeng et al., 2018) proved that they were quite efficient

when calculating stable grasp configurations. Guo et al. (2017)

fused tactile and visual data to train hybrid deep architectures.

Mahler et al. (2017) trained a Grasp Quality Convolutional

Neural Network (GQ-CNN) with only synthetic data from Dex-

Net 2.0 grasp planner dataset. Levine et al. (2018) presented a

method for learning hand-eye coordination for robotic grasping

from monocular images. They use a CNN for grasp success

prediction, and a continuous servoing mechanism used this

network to continuously control the manipulator. Antanas et al.

(2019) proposed a probabilistic logic framework that is said

to improve the grasping capability of a robot with the help

of semantic object parts. This framework combines high-level

reasoning with low-level grasping. The high-level reasoning

leverages symbolic world knowledge through comprising object-

task affordances, categories, and task-based information while

low-level reasoning depends on visual shape features.

Most of these grasp synthesis approaches are enabled by

representing the grasp as an oriented rectangle in the image

(Dong et al., 2021). Kumra et al. (2020) used an improved

version of grasp representation, complemented by a novel

convolutional network, which improves the accuracy of robotic

grasping. Depierre et al. (2021) introduced a new loss function,

which associates the regression of the grab parameters with the

score of the grabability. Dong et al. (2022) used the transformer

network as an encoder to obtain global context information.

Shukla et al. (2022) proposedGI-NNetmodel based on inception

module, it can achieve better results under limited data sets,

but it is less adaptable to big data. These grasping methods

tend to focus on the tool itself, ignoring the impact of different

tasks on grasping. Especially in human-computer interaction

tasks, different states prompt the robot to grasp different parts

of the tool. In order to solve the problem of robot grasping

under human-computer interaction, we modified the grasping

representation of the tool based on the different state semantic

regions of the tool. Through an improved grasping neural

network, the accuracy of grasping detection is improved.

3. Method

In this human-robot collaboration work, we consider the

operating area of the tool when people are in the two different

states of leader and assistant. And let our network learn this

selection rule, so that when the robot assists the human or
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FIGURE 1

Our MGR-Net based on state semantic regions.

the robot operates under the guidance of the human, it can

find the relevant task position as much as possible. In this

paper, in order to study how to generate the robot grasp

detection problem under different states, the following state

semantic region classification and grasping detection framework

of collaborative task are proposed, as shown in the Figure 1.

Our grasping detection networkmainly consists of two parts.

First, finding the task-related state semantic region of object.

Second, finding the most suitable grasp configuration for robots

or humans based on different state semantic regions.

3.1. Grasp representation

In this work, we define the robot grasping detection problem

as predicting unknown objects from the n-channel image of the

scene and assigning states based on the task according to the

provided task description, so as to carry out the corresponding

grasping and execute it on the robot. Instead of the five-

dimensional grip representation used in Kumra and Kanan

(2017), we use an improved version similar to the grasp

representation proposed by Morrison et al. (2020). Considering

that the optimal grasping configuration of the robot will change

in different state states, we incorporate the attribute of the state

semantic area into the robot frame, and change the grasping

posture to be expressed as:

G = (P, θ ,W,Q|Rs) (1)

Among them, P = (x, y, z) is the center position of the tool

tip, θ is the rotation of the tool around the z-axis, W is the

required width of the tool, Rs represents the state semantic area,

and Q|Rs represents the grasp score of the corresponding state

area.

The grasp quality score Q is the grasp quality of each point

in the image, and is expressed as a fractional value between 0

and 1, with values closer to 1 indicating a greater chance of

successful grasping. θ represents a measure of the amount of

angular rotation at each point required to grasp the object of

interest, expressed as a value in the range [−π

2 , π

2 ]. W is the

desired width, expressed as a measure of uniform depth, and

expressed as a value in the range [0, Wmax] pixels. Wmax is the

maximum width of the gripper.

3.2. Grasp detection network

3.2.1. State semantic region

We input image Foverall to the first layer of tool segmentation

network. Through the generated mask, we construct the input

image Fpart of the second layer of state semantic segmentation
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FIGURE 2

State semantic region segmentation.

network. Based on the state that the robot assumes in the task,

the second layer finally generates semantic regions related to

the robot state. More descriptions of the tool datasets will be

introduced in Section 4.1. The modules in the segmentation

layer are shown in Figure 2.

Two segmentation layers is designed to achieve different

purposes. The first layer of the overall segmentation layer finds

out the mask of the task-related object in the multi-object

environment, which includes two branches: (1) Category Branch

is responsible for predicting the semantic category of the object.

(2) Mask Branch is responsible for predicting the mask region

of the object. The second layer further divides the task object

based on the state to obtain the state semantic area of the

object. The state semantic area mainly contained in this layer

is the “grasp” area as the state of leader and the “handover”

area as the state of assistant. The difference between this layer

and the first layer is: (1) Category Branch is responsible for

predicting the state semantic category of the task area of the

object. (2) Mask Branch is responsible for predicting the mask of

the semantic area of different states of the object. Each layer uses

FPN behind the backbone network to cope with the size. After

each layer of FPN, the above two parallel branches are connected

to predict the category and position. The number of grids in each

branch is correspondingly different. Small examples correspond

to more grids.

Category Branch is responsible for predicting the semantic

category of each task area of the object. Each grid predicts the

category S×S×C. The mask branch is decomposed into mask

kernel branch andmask feature branch, which correspond to the

learning of the convolution kernel and the learning of features,

respectively. The output of the two branches is finally combined

into the output of the entire mask branch. For each grid,

the kernel branch predicts the D-dimensional output, which

represents the predicted weight of the convolution kernel, and

D is the number of parameters. So for the number of grids of

S×S, the output is S×S×D. Mask feature branch is used to learn

the expression of features. Its input is the features of different

levels extracted by backbone+FPN, and the output is the mask

feature of H×W×E, denoted by F.

3.2.2. Grasp detection

Feature output is similar to Kumra et al. (2020), and also

contains three different prediction maps (Q|R, angle, width)

represented by the grasping posture, as shown in the Figure 1.

But the difference is that since our grasping posture contains the

content of the state assignment area, our grasping score is also

closely related to the character area.

The input image and the state semantic region mask

corresponding to the task are sent to the convolutional layer

together. The convolutional layer consists of conv2d layer, batch

normalization (BN) layer and relu layer. The output of the

convolutional layer is fed to 3 GB-Block layers (C1–C3), the

first two GR-Block layer contains a Block and Downsampling,

as shown in the Figure 1. We designed this Block from Liu et al.

(2022). Three conv2d layers are used in Block with different

kernel functions, and Layer Norm replaces Batch Norm for

better effect. Since we focus on the semantic area above the

object rather than the object itself, the change in the size of the

object will increase the difficulty of detection.We use three Block

of different sizes to obtain different receptive fields to improve

the detection accuracy. A downsampling module is to connect

two Block of different sizes, as shown in the Figure 1. After

that, in order to more easily interpret and preserve the spatial
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FIGURE 3

Segmentation results based on “leader” and “assistant” state.

characteristics of the image after the convolution operation,

we use five deconvolutional layers to upsample the image.

Therefore, we get the same size image at the output as the input.

Grasp representation is generated as network output from the

deconvolutional layer.

3.2.3. Loss function

For each input image p, combined with the local attribute

region image pk generated by its different state semantic regions

M, our grasping network is optimized by the following loss

function:

loss(Gk, Ĝk) =
1

n

n
∑

i=1

si (2)

where si is given by:

si =

{

0.5 · (Ĝki − f (Gki))
2, if |Ĝki − f (Gki)| < 1

|Ĝki − f (Gki)| − 0.5 otherwise
(3)

Gk is the grasp generated by the network corresponding to

pk and Ĝk is the ground truth grasp.

4. Experiment

We implemented our detection network in PyTorch and

the computer configuration used in the experiment is intel

core I7-8700 CPU and NVIDIA 2080ti GPU. The following

experimental part mainly contains three pieces.
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TABLE 1 Performance on IIT-AFF dataset.

DeepLab (Chen
et al., 2017)

A�ordance-net
(Do et al., 2018)

RAN-ResNet50 (Zhao
et al., 2020)

Our method

Contain 68.84 79.61 80.20 87.10

Cut 55.23 75.68 78.04 72.80

Display 61.00 77.81 79.14 91.20

Engine 63.05 77.50 81.22 85.50

Grasp#1 54.31 68.48 71.59 82.60

Hit 58.43 70.75 88.52 91.00

Pound 54.25 69.57 76.91 81.90

Support 54.28 69.81 80.12 78.90

Grasp#2 – – 79.27 88.86

Handover#2 – – 77.96 80.08

4.1. Dataset

In order to meet the image input required by our

network, we constructed a dataset of collaboration tools.

We selected 6,000 tool images from IIT-AFF Dataset

(Nguyen et al., 2017), UMD Dataset (Myers et al., 2014),

Cornell Grasp Dataset and Jacquard Grasping Dataset

(Depierre et al., 2018). We resize the images in the tool

dataset to the same size. This tool dataset is used for

two networks. One is mainly used for the classification

of the object task area. At this time, 90% of the images

in the dataset are used as the training set, and the rest

are the test set. Another use is tool grasp detection based

on the robot’s state. The training set at this time comes

from the jacquard part of the tool dataset, there are 4,000

images, and the remaining jacquard images are used

as the test set together with other parts of the dataset.

The extended version of Cornell Grasp Dataset comprises

of 1,035 RGB-D images with a resolution of 640 × 480

pixels of 240 different real objects with 5,110 positive

and 2,909 negative grasps. The annotated ground truth

consists of several grasp rectangles representing grasping

possibilities per object. The Jacquard Grasping Dataset is

built on a subset of ShapeNet which is a large CAD models

dataset. It consists of 54 k RGB-D images and annotations

of successful grasping positions based on grasp attempts

performed in a simulated environment. In total, it has 1.1 M

grasp examples.

4.2. Task area

In this section, we mainly discuss the results of semantic

region classification. Different states are given to the robot

according to the task, and the robot has a more specific

functional area classification for the tool. As shown in Figure 3,

when the robot acts as the “leader,” the tools are classified

according to their affordance. Such classification enables the

robot to grasp more accurately, and avoids damage to the object

or the gripper caused by the wrong grasping position. When

the robot acts as an “assistant,” it always expects the human

to grasp the most suitable position for grasping. Therefore, the

robot needs to avoid this grasping area as much as possible and

find a suitable area for handover. Through the delivery of the

robot, human can always grasp the tool most efficiently and

safely. For example, when passing scissors, such classification

can avoid being accidentally injured by scissors due to people’s

carelessness.

To further test the effectiveness of our two-layer

segmentation network, we compare it with other methods

on the IIF-AFF Dataset, as shown in the Table 1. Among them,

grasp#2 and handover#2 represent the classification results

when the robot is “assistant.” It can be seen that our network

still has high accuracy.

4.3. Grasp detection metric

In order to better compare our results with the results of

previous researchers, we refer to the comparison scale in Jiang

et al. (2011) and make some optimizations. Since our grasp is

aimed at a smaller task area, we set the iou value between ground

truth grasp rectangle and the predicted grasp rectangle to two

types: (1) The iou value is >25% for rough grasping. (2) The

iou value is >50% for stable and accurate grasping. In addition,

The offset between the grasp orientation of the predicted grasp

rectangle and the ground truth rectangle is <30◦.
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FIGURE 4

Qualitative results on di�erent datasets.

4.4. Grasp detection

We discuss the results of our experiments here. We evaluate

MGR-Net on our tools datasets, and demonstrate that ourmodel

is able to adapt to various types of tool objects. In addition, our

method can not only grasp the whole object, but also understand

the robot operation information contained in the task and grasp

a certain area of the tool, so as to help people safely grasp the

target tool. Figure 4 shows the qualitative results obtained on

previously unseen tools.

The Table 2 shows the changes in the overall grasp due

to the improvement of the network module. After obtaining
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the grasping representation of the tool through our detection

network. Based on the robot platform, we use Sawyer robot

to verify the grasping representation. Since the coordinate

relationship between the camera and the robot is known,

we transform the grasp representation from the image space

to the robot coordinate system. Figure 5 shows the process

of our verification through Sawyer robot, where Figures 5A,

D are the result graphs generated by our capture of the

detection network. After the camera space is converted to

the robot space, Sawyer reaches the designated position and

closes the gripper, as shown in Figures 5B, E. Figures 5C, F

lift the object upward to prove whether our grasp is successful

or not. We used 20 unseen real tools. Each test object

contains five different positions and directions and the grasp

accuracy is 92%. The experiment proves the effectiveness of our

method.

TABLE 2 Ablation study.

Network
structure

Accuracy (25%) Accuracy (50%)

Residual block 0.95 0.83

Only block 0.95 0.84

GR-block 0.96 0.87

4.5. Comparison of di�erent approaches

Considering that the traditional method does not involve

the content of the state task area, we regard the entire object

as an area with a grasp attribute, that is, the mask is the entire

tool. We compared the accuracy of our network with the results

of previous experiments on the Jacquard dataset (as shown in

Table 3). It can be seen that the more accurate what needs to be

captured, the more obvious the superiority of our method is. To

further test the effectiveness of our grasping network, we tested

it on a dataset of tools constructed by ourselves. Tool images

are captured by a realsense camera. It is worth mentioning that

our training set does not contain images from our homemade

TABLE 3 We compared our grasp network with other work.

References Accuracy (25%) Accuracy (50%)

Depierre et al. (2018) 0.74 –

Zhou et al. (2018) 0.92 –

Kumra et al. (2020) 0.94 0.72

Depierre et al. (2021) 0.86 –

Shukla et al. (2022) 0.90 0.69

Ours 0.95 0.77

FIGURE 5

Verification through robot platform. (A, D) The results of grasp detection. (B, E) The robot grasping tools. (C, F) The robot lifting tools to indicate

whether the grasping is successful or not.
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FIGURE 6

Untrained single tool images.

FIGURE 7

Untrained multi-tools images.

dataset. We have compared with Kumra et al. (2020) and Shukla

et al. (2022), as shown in Figures 6, 7. It can be seen from the

Figure 6 that in the untrained real images with uneven lighting,

our method can more accurately find the grasp configuration of

objects, and adopt a suitable size of the grasp box. For example,

when grasping a cup, a small frame is generated at the handle

of the cup to avoid the collision between the gripper and the

rest of the cup. Figure 7 shows the strong anti-interference

ability of our method and proves the necessity of generating

object mask.

5. Conclusion

We presented a modular solution for tool usage issues in

the context of human-robot interaction. A multi-layer instance
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segmentation network helps robots understand the regional

attributes and semantics of objects under different states. Based

on the state assigned to the robot based on the task, it is able to

grasp or handover novel objects using our convolutional neural

network MGR-Net that uses n-channel input data to generate

images that can be used to infer grasp rectangles for each pixel

in an image.

We validate our proposed system on our robotics platform.

The results demonstrate that our system can perform accurate

grasps for previously unseen objects with different state, even

our method is able to adapt to changes in lighting conditions

to a certain extent.

We hope to extend our solution to more complex object

environments, such as where tools overlap and occlude each

other. Besides, combining multiple visual angles to improve

the success rate of grasping should also be considered in our

later work.
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