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To solve the ghosting artifacts problem in dynamic scenemulti-scale exposure

fusion, an improvedmulti-exposure fusionmethod has been proposedwithout

ghosting based on the exposure fusion framework and the color dissimilarity

feature of this study. This fusion method can be further applied to power

systemmonitoring and unmanned aerial vehicle monitoring. In this study, first,

an improved exposure fusion framework based on the camera responsemodel

was applied to preprocess the input image sequence. Second, the initial weight

map was estimated by multiplying four weight items. In removing the ghosting

weight term, an improved color dissimilarity feature was used to detect the

object motion features in dynamic scenes. Finally, the improved pyramid

model as adopted to retain detailed information about the poor exposure

areas. Experimental results indicated that the proposed method improves the

performance of images in terms of sharpness, detail processing, and ghosting

artifacts removal and is superior to the five existing multi-exposure image

fusion (MEF) methods in quality evaluation.

KEYWORDS

ghosting artifacts, electric power monitoring, camera response model, color

dissimilarity feature, pyramid, multi-exposure image fusion

1. Introduction

Since the objects are constantly in motion, compared with most natural scenes, the

dynamic range of the existing ordinary cameras is very narrow (Akçay et al., 2017).

Therefore, the captured image cannot have all the details in the high dynamic range

(HDR) scene at disposable. Dynamic range refers to the ratio between the brightness

in the brightest and darkest areas of the images. To address the issue of low dynamic

range (LDR) images, we used HDR imaging technology tomerge LDR images of different

scenes captured into HDR images (Debevec and Malik, 2008).
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At present, there are twomethods for HDR imaging, namely,

MEF and tone mapping. The tone mapping method requires

the camera response function (CRF) for correction in the HDR

imaging process and also uses the tone mapping operator

to convert HDR images to LDR images that can be shown

on traditional LDR devices. The MEF method directly fuses

images taken at different exposure levels in the same scene

to generate HDR images with rich information. It makes up

for the shortcomings of the tone mapping method. Exposure

evaluation, CRF correction, and tone mapping operation are not

required during HDR imaging. Therefore, it saves computation

costs and is widely used in high-dynamic-range imaging.

In recent years, many MEF methods have been successfully

developed. According to whether the objects in the input

image sequence are moving or not, they were divided into two

methods, namely, the static scene MEF method (Mertens et al.,

2007; Heo et al., 2010; Gu et al., 2012; Zhang and Cham, 2012;

Shen et al., 2014; Ma and Wang, 2015; Nejati et al., 2017; Huang

et al., 2018; Lee et al., 2018; Ma et al., 2018; Wang et al., 2019;

Ulucan et al., 2021; Wu et al., 2021; Hu et al., 2022) and the

dynamic scene MEF method (Li and Kang, 2012; Qin et al.,

2014; Liu and Wang, 2015; Vanmali et al., 2015; Fu et al.,

2016; Ma et al., 2017; Zhang et al., 2017; Hayat and Imran,

2019; Li et al., 2020; Qi et al., 2020; Jiang et al., 2022; Luo

et al., 2022; Yin et al., 2022). Mertens et al. (2007) proposed

a technique for fusing exposure sequences into high-quality

images using multi-scale resolution. It can generate natural-

color images, but the edge texture details of the fusion image

are largely lost. Zhang and Cham (2012) proposed a method to

process static and dynamic exposure compositions using image

gradient information. This method can reduce the tedious tone

mapping steps but cannot deal with the ghosts caused by the

movement of objects and cameras. Gu et al. (2012) proposed a

MEF method using the Euclidean metric to measure intensity

distance in gradient domain feature space. It can produce fused

images with rich information. Shen et al. (2014) proposed

an advanced exposure fusion method. The method integrates

local, global, and saliency weights into the weight processing

problem. Ma andWang (2015) proposed a patch decomposition

MEF method to save running time. It improves the color

appearance of the fusion image based on the decomposition

of the image patches into three components, namely, average

intensity, signal structure, and signal strength. Later, Ma et al.

combined structural similarity with patch structure. Ma et al.

(2018) proposed a MEF method to increase the perceptual

quality by optimizing the color structure similarity index (MEF-

SSIMc). Nejati et al. (2017) first disaggregated the source

input image into basic and detail levels. Second, the exposure

function is adopted to handle the weight problem. Although this

method improves computational efficiency, it cannot remove

the ghosts of dynamic scenes. Lee et al. (2018) designed

an advanced weight function. Its function is to increase the

weights of the bright regions in underexposure images and

the dark regions in overexposure images while suppressing the

oversaturation of these regions. Huang et al. (2018) proposed

the color multi-exposure image fusion method to enhance the

detailed information of fusion images. The method is based on

decomposing the images into three weights, including intensity

adjustment, structure preservation, and contrast extraction, and

fusing them separately, preserving a great deal of detailed

information for the input images. Wang et al. (2019) proposed

a multi-exposure image fusion method in YUV color space.

Simple detail components are used to strengthen the fused image

details, which can retain the brightest and darkest area details

in the HDR scene. A few pieces of literature (Ulucan et al.,

2021; Wu et al., 2021; Hu et al., 2022) describe the recent

results of the MEF method. Ulucan et al. (2021) designed a

MEF technology to obtain accurate weights of fused images.

The weight map is constructed by watershed masking and linear

embedding weights. Then, the weight map and the input image

are fused. This method can produce fusion images with lots of

details and a good color appearance. Wu et al. (2021) presented

a MEF method based on the improved exposure evaluation

and the dual-pyramid model. The method can be applied in

the computer vision field and the medical, remote sensing,

and electrical fields. Hu et al. (2022) proposed a MEF method

for detail enhancement based on homomorphic filtering. In

terms of weight map calculation, threshold segmentation and

Gaussian curves are utilized for processing. In terms of detail

enhancement, the pyramid model of homomorphic filtering is

used for processing weight maps and input image sequences.

In the dynamic sceneMEF process, there is an object motion

phenomenon in the input image sequence. Therefore, we should

consider removing ghosting caused by object motion. Heo

et al. (2010) proposed a high-dynamic-range imaging (HDRI)

algorithm using a global intensity transfer function to remove

ghosting artifacts. Li and Kang (2012) proposed a MEF method

to remove ghosting utilizing histogram equalization and color

dissimilarity feature using median filtering. Qin et al. (2014)

used a random walk algorithm to maintain the content of

the moving objects and provide more details. Therefore, this

method can process dynamic scenes and reduce the ghosting

artifacts of fused images. To increase the color brightness of

the fused image, Vanmali et al. (2015) proposed a weight-

forced MEF method without ghosting. Mertens et al. (2007)

presented an algorithm to obtain the weighted map and used

the weight-forced technology to force the weight of newly

detected objects to zero. Therefore, it can produce ghost-

free images with good color and texture details. Li and Kang

(2012) presented a multi-exposure image fusion method based

on DSIFT deghosting. It was adopted to extract the local

contrast of the source image and remove the ghosting artifacts

in the dynamic scene using the dense SIFT descriptor. To

enhance the quality of ghost-free fusion images, Ma et al. (2017)

proposed a MEF method (SPD-MEF) based on structural patch

decomposition. It uses the direction of signal structure in the
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patch vector space to detect motion consistency, which removes

ghosts. Zhang et al. (2017) introduced the inter-consistency

of pixel intensity similarity in input image sequences and the

intra-consistency of the interrelationships between adjacent

pixels. To reduce the cost of motion estimation and accelerate

MEF efficiency, Hayat and Imran (2019) presented a MEF

method (MEF-DSIFT) based on dense SIFT descriptors and

guided filtering. The method calculates the color dissimilarity

feature using histogram equalization and median filtering,

which removes the ghosting phenomenon in the MEF of

dynamic scenes. Recently, Qi et al. (2020) proposed a MEF

method based on feature patches. This method removes ghosts

in dynamic scenes by prior exposure quality and structural

consistency checking, which improves the performance of ghost

removal. Li et al. (2020) proposed a fast multi-scale SPD-MEF

method. It can decrease halos in static scenes and ghosting in

dynamic scenes.

The available MEF methods are mainly suitable for static

scene fusion, but they lack robustness to dynamic scenes,

which causes a poor ghost removal effect. Therefore, this study

adopts the multi-exposure image fusion method of weighted

term deghosting. Based on the Ying method, an improved

exposure fusion framework based on the camera response

model is proposed to process input image sequences. Based

on the Hayat method, an improved color dissimilarity feature

is proposed for dynamic scenes, which is used to remove

ghosting artifacts caused by object motion. In this study, the

proposed method can generate images without ghosting fusion

with pleasing naturalness and sharp texture details. Overall,

the main advantages of the proposed method are summarized

as follows:

(1) This study proposes an improved exposure fusion framework

based on the camera response model. For the first time, the

input image sequences processed by the fusion framework

are used as multi-exposure input source image sequences.

Through the fusion framework processing, the brightness

and contrast of the source image are enhanced, and vast

details are retained.

(2) The initial weight map is designed. It is obtained by

calculating four weight terms, namely, local contrast,

exposure feature, brightness feature, and improved color

dissimilarity feature, of the input image and multiplying the

four weight terms together. For dynamic scenes, an improved

color dissimilarity feature is proposed based on a hybrid

median filter and histogram equalization, which strengthens

the sharpness of the image and has a better deghosting effect.

(3) Weighted guided image filtering (WGIF) is utilized

to refine the initial weight map. The improved multi-

scale pyramid decomposition model is used to add the

Laplacian pyramid information to the highest level of the

weighted mapping pyramid to weaken halo artifacts and

retain details.

The rest of the study is organized as follows: Section 2

describes in detail the proposed multi-scale fusion deghosting

method. In section 3, the effectiveness of the proposed method

is obtained by analyzing the experiment results. Finally, section

4 concludes this study and makes prospects for the future.

2. Multi-scale image fusion
ghosting removal

2.1. Improved exposure fusion framework
based on the camera response model

There are overexposure/underexposure areas in the input

image sequence. The input image sequence used for direct multi-

scale image fusion may affect the contrast and sharpness of

the fused images. Therefore, we transform the brightness of all

images in the exposure sequence and carry out a weighted fusion

of images before and after brightness transform to enhance

image contrast, as in Equation (1).







Ii(x, y) = M(x, y) ◦ Pci (x, y)+(1-M(x, y)) ◦ Pci

′

(x, y)

Pci

′

(x, y)=g(Pc, ki) = βPγ = eb(1−ka)Pk
a
(x, y)

(1)

where g is the brightness transfer function, which uses the β-

γ correction model. Pi(x,y), I = 1, 2, 3 ...; N is the input image;

Pi
′
(x, y) is the image of Pi(x,y) brightness change in the exposure

sequence; and ki is the exposure rate of the i-th image. M is

the weight map of the input image of Pi(x,y); “
◦” indicates the

dot product operator; c is the index of three-color channels; a

= −0.3293 and b = 1.1258 are the parameters of the CRF; and

Ii(x,y) is the enhancement result.

For low-light images, image brightness Li(x,y) is obtained

using the maximal value in the three color channels in

Equation (2).

Li(x, y) = max
c∈{R,G,B}

Pi
c(x, y) (2)

The illumination map T estimation algorithm has been

extensively studied. This study adopts the morphological closure

operation to calculate the initial illumination map Ti by Fu et al.

(2016), as shown in Equation (3).

Ti(x, y) =
Li(x, y)·Qi(x, y)

255
(3)

where Qi(x,y) denotes a structural element, and “·” denotes

an end operation. The range is mapped to [0,1] downstream

operations by dividing by 255. Then, weighted guided image

filtering (WGIF) (Li et al., 2014) is used to optimize the initial

illumination map Ti(x,y), which can better remove the halo

phenomenon than the existing guided image filter (GIF). The V

level in the HSV color space for the input images is regarded as

the guiding image in WGIF.
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FIGURE 1

Results of dynamic scene “Arch” image sequence processed with/without CRF exposure fusion framework. (A) “Arch” image sequence; (B)

Without CRF exposure fusion framework processing method (Hayat and Imran, 2019); (C) ICCV image processing method (Ying et al., 2017b);

(D) CAIP image processing method (Ying et al., 2017a); (E) The image processing method proposed in this study.

It should be noted that the key point of image fusion

enhancement is the design of the weight mapM(x,y). The weight

map M(x,y) is calculated using the method proposed by Ying

et al. (2017a) in Equation (4).

M(x,y)=(T
op
i (x, y))θ (4)

where θ = 0.5 is a parameter to control the enhanced

intensity and T
op
i (x, y) represents the optimized illumination

map. Besides, we used the Ying et al. (2017a) exposure rate

determination method to obtain the best exposure rate k. To

obtain images with good sharpness, the non-linear unsharp

masking algorithm (Ngo et al., 2020) proposed by Ngo et al. is

used to increase the naturalness and sharpness of fused images.

Figure 1 shows the effect with/without CRF exposure fusion

framework on experiment results. Figure 1B shows the results

of the without CRF exposure fusion framework. Figures 1C–

E are the result of the CRF exposure fusion framework. In

Figure 1D, although the contrast of the image is improved,

the image suffers from oversaturation distortion. The proposed

fusion framework (see Figure 1E) significantly improves the

brightness and sharpness of over/underexposure regions in the

source input image sequences. Therefore, we used the proposed

exposure fusion framework for related experiments in the

following algorithm.

2.2. Multi-exposure image fusion without
ghosting based on improved color
dissimilarity feature and improved
pyramid model

This section proposes an improved multi-exposure image

fusion method without ghosting. The proposed method is

mainly for motion scenes in multi-exposure images. Figure 2

shows the flow schematic drawing of the proposed method.

2.2.1. Improved color dissimilarity feature

An improved color dissimilarity feature based on fast multi-

exposure image fusion with a median filter and recursive filter is
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FIGURE 2

Schematic diagram of the proposed method.

proposed by Li and Kang (2012). Unlike themethod proposed by

Li and Kang (2012), static background images IS of the scene are

processed by a hybrid median filter (mHMF) (Kim et al., 2018)

as in Equation (5).

IS=mhmf (IHEmin(x, y)) (5)

where IS represents the static background of the scene andmhmf

(·) denotes an operator. The hybrid median filter (mHMF)

(Kim et al., 2018) was applied to the worst image IHEmin(x, y)

in the histogram equalized exposure sequence IHEi (x, y), which

is more beneficial to preserving the image edges in regions

such as mutation than the median filter. Besides, the color

dissimilarity feature Di(x,y) of moving objects is calculated

between the static background image IS and histogram equalized

image IHEi (x, y) in Li and Kang (2012) and Hayat and Imran

(2019).

Comparisons of the color dissimilarity feature by Li and

Kang (2012) and the proposed method have been conducted,

as shown in Figure 3. The fused image in Figure 3B generated

by the method of Li and Kang (2012) has ghosting artifacts at

the ellipsoid. The proposed algorithm is validated by adopting

underexposure, exposure normal, and overexposure source

images, as shown in Figures 3C–E. According to Figure 3E,

it can be seen that the results generated by underexposure

images have a good effect on deghosting and are better
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FIGURE 3

The results of processing the dynamic scene of the “Puppets” image sequence using the original/improved color dissimilarity features. (A)

“Puppets” image sequence; (B) using the original color dissimilarity feature (Li and Kang, 2012); (C) hybrid median filter processing the brightest

exposure image; (D) hybrid median filter processing the good exposure image; (E) hybrid median filter processing the darkest exposure image.

FIGURE 4

General flow of multi-scale exposure fusion. Ii(x,y) is an LDR image. Wi(x,y) is a weighted mapping. The Laplacian pyramid is obtained by LDR

image decomposition, and the weighted mapping decomposition obtains the Gaussian pyramid. R1(x,y)–Rn(x,y) is the resulting level of the

Laplacian pyramid.

than in Figure 3B. Therefore, in the following algorithm,

we utilized the mHMF to handle underexposure images for

related experiments.

2.2.2. Exposure feature and brightness feature

Because of the correlation between the three channels in

RGB color space, which affects the final multi-scale pyramid

decomposition and fusion, the input source image is converted

from RGB to YUV color space. The exposure feature weight item

Ei(x,y) of the input image is measured in the Y channel as in

Equation (6).

Ei(x, y) = e
−

[Yi(x,y)−(1−Yi)]
2

2σ2 (6)

where Yi(x,y) is the standardized value of the Y channel,

Y i is the mean value of Yi(x,y), and σ is a Gaussian kernel

parameter taken as σ = 0.2. Besides, to increase the SNR of

the input image sequence and retain the detailed information

of the brightest/darkest regions, this method uses the brightness

quality metric Bi = Y i
2
in Kou et al. (2018).
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FIGURE 5

Experimental results of processing a dynamic scene “Tate” image sequence using the original/improved pyramid model. (A) “Tate” image

sequence; (B) using the original pyramid model (Mertens et al., 2007); (C) using the improved pyramid model.

2.2.3. Local contrast using dense SIFT
descriptor

The local contrast is measured using Equation (7), which

is extracted by non-standardized dense filtering in dense SIFT

descriptor (Liu et al., 2010).

Ci(x, y) =
∥

∥

∥
DSIFT(I

gray
i (x, y))

∥

∥

∥

1
(7)

where DSIFT(.) represents the operator that computes

the non-normalized dense SIFT source image mapping,

Ci(x,y) represents a simple indicator vector for local contrast

measurement, and I
gary
i (x, y) denotes the grayscale image

corresponding to the input image sequence Ii(x,y). At each

pixel, the I
gary
i (x, y) mapping is regarded as the l1 norm of

Ci(x,y). Besides, this study selects a winner-take-all weight

allocation strategy (Liu and Wang, 2015; Hayat and Imran,

2019) to obtain the final local contrast weight term C
final
i (x, y).

2.2.4. Estimation and refinement of the weight
map

First, the following four weight items of the input image

sequence are calculated: color dissimilarity feature, exposure

feature, brightness feature, and local contrast. Second, weight

items are multiplied to generate a weighted mapping, as in

Equation (8).











Wi(x, y) = C
final
i (x, y)× Bi × Ei(x, y), for static scene

Wi(x, y) = C
final
i (x, y)× Bi × Ei(x, y)× Di(x, y),

for dynamic scene

(8)

Using WGIF (Li et al., 2014) directly refines and filters the

weight map obtained by Equation (8), which is different from

the refinement of the weight map in Liu and Wang (2015) and

Hayat and Imran (2019). In the process of filter refinement, both

the source image and the guide image are used Wi(x, y). Then,

normalizing refined weight maps makes weight maps sum to 1

at every pixel. The final weight map is shown in Equation (9).

Wi(x, y) =





N
∑

i=1

∧
WWF

i (x, y)+ε





−1

(
∧
WWF

i (x, y)+ε) (9)

where ŴWF
i (x, y) denotes the weight map after WGIF

refinement, Wi(x, y) denotes the final normalized weight map,

and ε = 10−5 is a small positive value, avoiding a zero

denominator in the calculation process.

2.2.5. Improved pyramid decomposition fusion
model

Utilizing the original multi-scale pyramid model (Mertens

et al., 2007) may produce fusion images with a loss of details
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FIGURE 6

Source image sequences used in experiments. (A) Farmhouse; (B) Brunswick; (C) Cli�; (D) Llandudno; (E) Cadik; (F) Landscape; (G) Venice; (H)

Balloons.

and the halo phenomenon. Therefore, an improved pyramid

fusion model is used. In this pyramid model, the Laplacian

and Gaussian pyramids are disaggregated into n levels, as

shown in Figure 4. The total number of levels n is defined by

Equation (10).

n = [log2(min(ro, co))]− 2 (10)

where ro and co are the number of rows and columns of input

image pixels, respectively.

It is considered that, at the highest level of the Gaussian

pyramid, improper smoothing of edges is the main reason for

producing halos. On the lower levels of the Gaussian pyramid,

the improper smoothing of the edges is not evident for the

generation of halos. Therefore, on the n-th level of the RGB

color space pyramid, using the single-scale fusion algorithm in

Ancuti et al. (2016) adds the Laplacian pyramid information of

the source image to the Gaussian pyramid weighted mapping as

in Equation (11).

Rin = [Gn{Wi(x, y)} + λ
∣

∣L1{Ii(x, y)}
∣

∣]Ii(x, y) (11)

where Ii is the input image of LDR, Rin is the result of fusing

the i-th image and the i-th image weight on the n-th level,

and G
n

{

Wi(x, y)
}

is the n-th Gaussian pyramid of Wi(x, y).

In Ancuti et al. (2016), n is the maximum number of levels

of the Gaussian pyramid, L1
{

Ii(x, y)
}

is the first level of the

input image Ii(x,y) Laplacian pyramid, and λ is the coefficient of

L1
{

Ii(x, y)
}

, which controls the amplitude of the high-frequency

signal L1
{

Ii(x, y)
}

.

To retain detailed information on

overexposed/underexposed areas, on the n-th level, the

improved multi-scale exposure fusion algorithm proposed by

Wang et al. (2019) is used as in Equation (12).

Rin(x, y) = [Gn{Gn{Wi(x, y)}} + λ
∣

∣L1{Ln{Ii(x, y)}}
∣

∣]Ln{Ii(x, y)}

(12)
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FIGURE 7

Comparison results of di�erent methods on the dynamic “Brunswick” image sequence. (A) Hayat and Imran (2019); (B) Mertens et al. (2007); (C)

Li and Kang (2012); (D) Liu and Wang (2015); (E) Lee et al. (2018); (F) the proposed method in this study.

FIGURE 8

On dynamic “Cli�” image sequence, the available MEF methods compare with the proposed method. (A) Hayat and Imran (2019); (B) Mertens

et al. (2007); (C) Li and Kang (2012); (D) Liu and Wang (2015); (E) Lee et al. (2018); (F) the proposed method in this study.

For underexposure source images,
∣

∣L1
{

Ln
{

Ii(x, y)
}}

∣

∣ in

Equation (12) is introduced at the n-th level to correct the

incorrect weights introduced by the weighted mapping

smoothed by the Gaussian smoothing filter. It also

reasonably enhances the weight of the well-exposure areas

in the underexposure image, which retains the details of

the underexposure areas. For overexposure images, the

weight map of the n-th level adopts the primary Gaussian

smoothing filter to smooth, which retains the details of the

overexposure area.
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FIGURE 9

Fusion results of di�erent methods on the dynamic “Llandudno” image sequence. (A) Hayat and Imran (2019); (B) Mertens et al. (2007); (C) Li and

Kang (2012); (D) Liu and Wang (2015); (E) Lee et al. (2018); (F) the proposed method in this study.

For other scales, the improved pyramid fusion is the same

as the original pyramid fusion (Mertens et al., 2007). Finally,

reconstructing the Laplacian pyramid composed of Rl(x,y) in

Equation (13) generates the fused image R.

Rl(x, y) =
N

∑

i=1

Ril(x, y), l = 1, 2, . . . , n (13)

where l represents the level number of the pyramid. The image

details and brightness enhancementmethod proposed by Li et al.

(2017) is adopted to enhance fusion image detail information,

which obtains the final multi-scale exposure fusion image.

Comparisons of the original and improved pyramid models

have been conducted, as shown in Figure 5. Compared with

the original pyramid model (see Figure 5B), the generated

image in Figure 5C by the improved pyramid model performs

well in contrast and detail processing aspects, especially in

pedestrian and white cloud areas. It is considered that multi-

scale pyramid decomposition and fusion, loss of details, and

the halo phenomenon are complex problems in pyramid

decomposition and fusion. Therefore, this study selects

the improved pyramid model to decompose and fuse the

input image.

3. Experimental analysis

3.1. Experimental setup

In our experiments, five and six image groups were

selected from seventeen static scene (Kede, 2018) and twenty

dynamic scene (DeghostingIQADatabase, 2019) image groups,

respectively. As shown in Figure 6, two images with different

brightnesses are extracted from the above input image

sequences. We utilized eleven image groups to test five existing

MEF methods and the proposed method. The five MEF

methods were presented by Mertens et al. (2007), Li and Kang

(2012), Liu and Wang (2015), Lee et al. (2018), and Hayat
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FIGURE 10

Comparison of the proposed method with Mertens et al. (2007), Li and Kang (2012), Hayat and Imran (2019), Liu and Wang (2015), and Lee et al.

(2018) in the static “Venice” image sequence. (A) Hayat and Imran (2019); (B) Mertens et al. (2007); (C) Li and Kang (2012); (D) Liu and Wang

(2015); (E) Lee et al. (2018); (F) the proposed method in this study.

and Imran (2019), respectively. All experiments are run on

MATLAB 2019a [Intel Xeon X5675 3.07 GHz desktop with 32.00

GB RAM].

3.2. Subjective evaluation

In this section, to thoroughly discuss the content

of the experimental results, we performed a local

amplification close-up shot of the results of most

sequence images.

3.2.1. Dynamic scenes

Figure 7 shows the experimental results of different

methods in the dynamic Brunswick sequence. In terms of

ghost removal, the methods (see Figures 7B–E) presented

by Mertens et al. (2007), Li and Kang (2012), Liu and

Wang (2015), and Lee et al. (2018) have poor effects and

cannot effectively remove ghosts in pedestrian areas. The

pixel oversaturation distortion in Figure 7A significantly

reduces the visual quality. The proposed method can

produce a good result (see Figure 7F). No ghosting artifact

phenomenon exists in the image, and human visual perception

is natural.

Figure 8 shows the fusion results of different methods

in the dynamic Cliff sequence. The images in Figures 8A, B

generated by the methods of Mertens et al. (2007) and Hayat

and Imran (2019) are dark in color, the local contrast is not

apparent, and the ghosting phenomenon exists in the water

waves, which reduces the visual observation effect to a certain

extent. Although the methods (see Figures 8C–E) of Li and Kang

(2012), Liu and Wang (2015), and Lee et al. (2018) increase

the contrast of the image, there are still darker colors and

ghost phenomena. Figure 8F is the method proposed in this

study. In contrast, the ghost removal performance significantly

improved. On the waves and beaches, detailed information, local

contrast, and naturalness aremaintained, consistent with human

visual observation.

Figure 9 shows the performance comparison of different

methods in the dynamic Llandudno sequence. The results (see

Figures 9B–D) acquired by Mertens et al. (2007), Li and Kang

(2012), and Liu and Wang (2015) show that there are apparent

ghosting artifacts in the area of characters and that there is a

loss of detail information and color distortion. In Figure 9A,

the overall image deghosting effect is good, but the color above

the house is dark. The image in Figure 9E is unclear, and there

is a color distortion phenomenon. The proposed method can

produce a good result (see Figure 9F). The characters in the

image have no noticeable ghosting artifacts, details are well
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FIGURE 11

Comparison results of di�erent methods on the static “Landscape” image sequence. (A) Hayat and Imran (2019); (B) Mertens et al. (2007); (C) Li

and Kang (2012); (D) Liu and Wang (2015); (E) Lee et al. (2018); (F) the proposed method in this study.

preserved, and the exposure level is consistent with human

visual observation.

3.2.2. Static scenes

Experimental results on the static Venice sequence using

different methods are shown in Figure 10. In terms of image

sharpness and detail processing, the proposed method (see

Figure 10F) is superior to the methods (see Figures 10A–E)

proposed by Mertens et al. (2007), Li and Kang (2012), Liu and

Wang (2015), Lee et al. (2018), and Hayat and Imran (2019).

Especially in Figures 10B–D, in the sky and church areas of the

image, exposure and sharpness are poor, local contrast is not

apparent, and fused image details are lost. In the results of the
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TABLE 1 MEF-SSIMd of six MEF methods.

Dataset Hayat Mertens Li Liu Lee Proposed

Arch 0.9503 0.8423 0.9464 0.9417 0.8711 0.9267

Brunswick 0.8592 0.8834 0.8586 0.8261 0.8378 0.9270

Cliff 0.8873 0.9401 0.9243 0.9006 0.9035 0.9687

Llandudno 0.9072 0.8483 0.8926 0.8746 0.9771 0.9260

Puppets 0.8357 0.7791 0.8085 0.8035 0.8481 0.8900

Tate 0.8306 0.8076 0.8044 0.8298 0.8258 0.9123

Cadik 0.9247 0.9268 0.9032 0.9474 0.9290 0.9004

Landscape 0.9936 0.9941 0.9924 0.9883 0.9935 0.9941

Venice 0.8141 0.8612 0.8654 0.8250 0.8631 0.9170

Balloons 0.9756 0.9597 0.9429 0.9205 0.9539 0.9651

Farmhouse 0.9824 0.9824 0.9824 0.9872 0.9791 0.9588

Average 0.9055 0.8932 0.9019 0.8950 0.9075 0.9351

Rank 3 6 4 5 2 1

Total 9.9607 9.825 9.9211 9.8447 9.982 10.2861

The bold value indicates the maximum value, and the larger the value, the better the image fusion.

TABLE 2 NIQE comparison results of the MEF method.

Dataset Hayat Mertens Li Liu Lee Proposed

Arch 2.4484 2.6802 2.5456 2.6763 2.4354 2.2921

Brunswick 2.7688 2.4740 3.0447 3.0847 2.9462 2.8631

Cliff 3.4004 3.5940 3.4480 3.5294 3.5791 2.9777

Llandudno 3.1018 3.9349 3.3978 3.4781 3.9544 2.8940

Puppets 3.0152 2.9780 3.2068 3.2526 3.0909 3.2955

Tate 3.0066 2.6109 2.9594 2.9954 2.7553 2.8802

Cadik 3.5912 3.5379 3.7545 3.7202 3.5309 3.4117

Landscape 2.7917 2.8495 2.8220 2.7845 2.8128 2.7497

Venice 3.4862 3.8663 3.3296 3.3251 3.4182 3.2924

Balloons 3.3137 3.2691 3.5863 3.4309 3.4333 3.0047

Farmhouse 2.9762 2.9537 3.017 2.9744 2.9261 2.7657

Average 3.0818 3.159 3.1920 3.2047 3.1744 2.9479

Rank 2 3 5 6 4 1

Total 33.9002 34.7485 35.1117 35.2516 34.8826 32.4268

The bold value indicates the minimum value, the smaller the NIQE value is, the better the image quality is, and the image more accords with the requirements of the visible human system

to observe the scene.

method proposed by Lee et al. (2018) and Hayat and Imran

(2019), the sharpness of the fused image has improved, but there

is still local contrast that is not obvious, and details are lost (see

Figures 10A, E).

The fusion results of six MEF methods on static scene

landscape sequences are shown in Figure 11. In Figures 11B–E,

in the sky area (white cloud parts), the sharpness is not good

enough. In the method (see Figure 11A) proposed by Hayat and

Imran (2019), although the sharpness and naturalness of the

image are enhanced in the sky area, the fused image details are

seriously lost. Compared with the methods (see Figures 11A–

E) presented by Mertens et al. (2007), Li and Kang (2012),

Liu and Wang (2015), Lee et al. (2018), and Hayat and Imran

(2019), the proposed method in this study (see Figure 11F) has

good saturation and contrast in the sky area, and the detailed

information is retained better.
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TABLE 3 Test results of LPC-SI.

Dataset Hayat Mertens Li Liu Lee Proposed

Arch 0.9767 0.9710 0.9758 0.9774 0.9728 0.9770

Brunswick 0.9691 0.9620 0.9699 0.9703 0.9678 0.9785

Cliff 0.9671 0.9619 0.9637 0.9653 0.9643 0.9777

Llandudno 0.9737 0.9724 0.9737 0.9736 0.9734 0.9767

Puppets 0.9785 0.9731 0.9782 0.9763 0.9759 0.9821

Tate 0.9739 0.9686 0.9736 0.9723 0.9702 0.9795

Cadik 0.9691 0.9626 0.9655 0.9650 0.9687 0.9700

Landscape 0.9516 0.9484 0.9516 0.9522 0.9477 0.9512

Venice 0.9692 0.9633 0.9675 0.9659 0.9537 0.9709

Balloons 0.9701 0.9689 0.9696 0.9681 0.9690 0.9700

Farmhouse 0.9729 0.9728 0.9752 0.9760 0.9754 0.9780

Average 0.9711 0.9659 0.9695 0.9693 0.9672 0.9738

Rank 2 6 3 4 5 1

Total 10.6819 10.625 10.6643 10.6624 10.6389 10.7116

The bold value indicates the maximum value, a more considerable LPC-SI value of the fused image represents a clearer image, which conforms to the evaluation of human visual

observation.

3.3. Objective evaluation

3.3.1. Evaluation using dynamic scene
structural similarity index (MEF-SSIMd)

The structural similarity index (MEF-SSIMd) (Fang et al.,

2019) is applied to measure structural similarity between input

image sequences and fused images in dynamic ranges. The

overall MEF-SSIMd is defined in Equation (14).

qoverall =
qs+qd
2

(14)

where qd represents MEF-SSIMd of dynamic scenes and qs

represents MEF-SSIMd of static scenes.

The data range of MEF-SSIMd is [0,1]. The greater the

value, the better the deghosting efficiency, and the stronger

the robustness of the dynamic scene. The smaller the value

is, the opposite is true. As shown in Table 1, using MEF-

SSIMd objectively evaluates six MEF methods for the quality

of generating fused images. Overall, the proposed method

is superior to the other five existing MEF methods in the

performance evaluation of MEF-SSIMd.

3.3.2. Evaluation using natural image quality
evaluator (NIQE)

In multi-exposure image fusion, the fused image should

meet the requirements of the human visual system to observe

the scene. Since the general purpose does not reference the

IQA (image quality assessment), the algorithm requires much

training to meet the IQA. Thus, a non-reference quality metric,

NIQE (Mittal et al., 2012) was proposed. The smaller the NIQE

value is, the better the image quality is, and the image more

closely accords with the requirements of the visible human

system to observe the scene. On the contrary, the greater the

NIQE value is, the fewer images conform requirements of the

human visual system observation scene. As shown in Table 2,

NIQE is used to evaluate the quality of fusion images produced

by different MEF methods. Overall, the proposed method can

acquire images with better naturalness.

3.3.3. Evaluation of image sharpness using local
phase coherence (LPC)

In multi-exposure image fusion, sharpness is a critical factor

in the visual evaluation of image quality. The sharpness of the

image to achieve the human visual system can effortlessly detect

blur and observe visual images. Therefore, Hassen et al. (2013)

used sharpness in the complex wavelet transform domain to

evaluate the local solid phase coherence (LPC) of the image

features. Then, the overall sharpness index of LPC (LPC-SI) is

proposed. A more considerable LPC-SI value of the fused image

represents a clearer image, which conforms to the evaluation

of human visual observation. A smaller LPC-SI value of the

fused image represents a blurred image. The value range of LPC-

SI is [0,100]. Table 3 shows the comparison results of LPC-SI

values between the other five MEF methods and the presented

method. A comprehensive comparison shows that the proposed

method in this study outperforms the other five existing

MEF methods.
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FIGURE 12

The mean values of MEF-SSIMd, NIQE, LPC-SI, and AG are obtained by di�erent methods.

3.3.4. Mean value analysis of objective
evaluation indexes

As shown in Figure 12, the proposed method in this study

ranks first in the line graph of the mean values of the entire

reference objective evaluation index MEF-SSIMd and non-

reference objective evaluation index NIQE, LPC, and average

gradient (AG). The proposed MEF method without ghosting

based on the exposure fusion framework and color dissimilarity

feature can effectively remove ghosting in dynamic scene MEF.

It also improves the sharpness and naturalness of the fused

image and retains many details.

4. Conclusion

An improved MEF method has been proposed in this study

without ghosting based on the exposure fusion framework

and color dissimilarity feature. It generates ghost-free, high-

quality images with good sharpness and rich details. The

proposed algorithm in this study can be further applied

to power system monitoring and unmanned aerial vehicle

monitoring fields. An improved exposure fusion framework

based on the camera response model has been utilized to

improve the contrast and sharpness of over/underexposure

regions in the input image sequence. The WGIF refined

weight map with an improved color dissimilarity feature was

adopted to remove ghosting artifacts and to retain more

image details utilizing an improved pyramid model. In the

experimental tests of qualitative and quantitative evaluation

for eleven image groups, including five static scene image

groups and six dynamic scene image groups, this method

ranks first compared with the five available MEF methods.

However, when objects move frequently or move more widely,

the fusion results may produce ghosting artifacts. Therefore,
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we hope that the researchers further study to overcome the

above problems.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found here: https://github.com/h4nwei/MEF-

SSIMd.

Author contributions

SC and ZL: conceptualization, methodology, software, and

validation. DS: data curation. ZL: writing and original draft

preparation. YA: writing, review, and editing. JY, BL, and SC:

visualization. GZ: funding acquisition. All authors agreed to be

accountable for the content of the study. All authors contributed

to the article and approved the submitted version.

Funding

This research was funded by the National Natural Science

Foundation of China (Grant Number: 51807113).

Acknowledgments

The authors thank the editors and the reviewers for their

careful work and valuable suggestions for this study.

Conflict of interest

SC, DS, JY, BL, and GZ were employed by the company

Hangzhou Xinmei Complete Electric Appliance Manufacturing

Co., Ltd.

The remaining authors declare that the research was

conducted in the absence of any commercial or financial

relationships that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References
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