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UWB indoor positioning
optimization algorithm based on
genetic annealing and clustering
analysis

Hua Guo*, Mengqi Li, Xuejing Zhang, Xiaotian Gao and

Qian Liu

College of Electronic and Information Engineering, Shandong University of Science and

Technology, Qingdao, China

Indoor location information is an indispensable parameter for modern

intelligent warehouse management and robot navigation. Indoor wireless

positioning exhibits large errors due to factors such as indoor non-line-of-

sight (NLOS) obstructions. In the present study, the error value under the

time of arrival (TOA) algorithm was evaluated, and the trilateral positioning

method was optimized to minimize the errors. An optimization algorithm for

indoor ultra-wideband (UWB) positioning was designed, which was referred

as annealing evolution and clustering fusion optimization algorithm. The

algorithm exploited the good local search capability of the simulated annealing

algorithm and the good global search capability of the genetic algorithm to

optimize cluster analysis. The optimal result from sampled data was quickly

determined to achieve e�ective and accurate positioning. These features

reduced the non-direct aiming error in the indoor UWB environment. The

final experimental results showed that the optimized algorithm significantly

reduced noise interference as well as improved positioning accuracy in an

NLOS indoor environment with less than 10 cm positioning error.

KEYWORDS

UWB, triangulation method, fuzzy c-means, annealing evolution algorithm,

positioning

Introduction

Strategies for optimization to improve the accuracy of indoor wireless positioning

have been widely explored in the past (Yin et al., 2019; Guo et al., 2020; Khalaf-Allah,

2020; Khan et al., 2020; Liu et al., 2020). Positioning accuracy is limited by various

obstacles in the indoor environment, especially the NLOS environment which affects

signal dispersion and occlusion. Therefore, it is imperative to explore strategies for

reducing or eliminating these errors. Currently, the commonly used indoor positioning

methods aremainly based on Received Signal Strength Indication (RSSI), Time of Arrival

(TOA), Time Difference of Arrival (TDOA) and Angle of Arrival (AOA) (Pahlavan

et al., 2002; Yin et al., 2015; Sadowski and Spachos, 2018; Li and Rashidzadeh, 2019).

Indoor ultra-wideband (UWB) positioning utilizes a positioning method based on signal

arrival time, which estimates the location information of the target point based on
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trilateral ranging. The positioning accuracy of UWB strategy

is higher compared with that of other indoor wireless

positioning methods. Notably, UWB can be optimized to

further improve its accuracy. Several studies have been

conducted on UWB application in indoor positioning. A

previous study proposed an incremental smoothing method

based on Tukey’s kernel function to combine UWB and

Pedestrian dead reckoning (PDR) data (Li et al., 2019). The

performance of incremental smoothing was then compared with

the performance of the optimal fusion algorithm based on

EKF (Extended Kalman filter). The finding indicated that real-

time positioning was achieved through combination of UWB

and PDR, and the two algorithms exhibited high robustness

to the intermittent noise of UWB data. A dynamic adaptive

covariance Kalman filter based on ultra-wideband positioning

and inertial measurement sensor fusion was proposed in a

previous study (Briese et al., 2017). The state covariance

matrix was adjusted based on absolute acceleration data of

the inertial sensor resulting in a good solution for static

and dynamic measurement. Furthermore, a low-precision

miniature inertial measurement unit (MIMU)/UWB integrated

positioning scheme was used for analysis and verification of the

integrated system performance, exhibiting a relatively optimal

effect (Shi et al., 2017). Moreover, a fusion positioning system

based on IMU (Inertial Measurement Unit) and UWB was

previously evaluated (Feng et al., 2020). The EKF algorithm

based on multiple observation base stations was added to the

method to improve the positioning accuracy. In addition, AUM

(Approximate uniform motion) and AUAM (Approximate

uniform acceleration motion) approximate motion models were

used to optimize the positioning results, thereby reducing

inaccuracy of positioning data. Analysis was based on the

Gaussian noise environment, and further optimization was

required in the complex environment. A stable SINS (Strapdown

inertial navigation system)/UWB shearer integrated positioning

system based on the multi-model intelligent switching method

was previously proposed (Yang et al., 2019). The SINS/UWB

shearer integrated positioning system was established based on

the tightly coupled integration model and the decision tree

fault-tolerant model. The findings indicated that the algorithm

effectively overcame the positioning errors observed with the

tightly coupled model and the decision tree model by exploiting

advantages of the two algorithms. A federated EFIR (Equiripple

finite impulse response) filter was previous applied in INS/UWB

integrated human body positioning (Xu et al., 2018). The

federated EFIR filter uses sub-filters to integrate UWB and INS

(Inertial navigation system) measurement distance between the

reference node and the target person. The optimal navigation

solution is determined according to the INS position and the

output of the federated EFIR filter. The findings from the

study indicated that this method had a higher positioning

accuracy compared with that of the traditional federated EKF

method. A sensor fusion scheme based on binocular visual

odometer (VO)/UWB was previously reported (Zeng et al.,

2019). In the study, the adaptive Kalman filtering method

was used to fuse the UWB raw distance measurement data

and the binocular VO position information. Further, feasibility

of the algorithm was verified by collecting the experimental

data of two sets of wheeled vehicles. The findings from the

study have potential application in solving the limitation of

indoor positioning of moving vehicles with inaccurate GPS

operation. An integrated positioning method was proposed

based on ultra-wideband and improved PDR (Chen et al.,

2017). The position data of the two methods were merged to

achieve complementary advantages and realize the positioning

requirements in complex indoor environments. The findings

indicated that this method significantly improves UWB Indoor

positioning accuracy. The performance of a complete UWB

positioning system based on TWR (Two-way ranging) was

previously evaluated by testing various configurations and

algorithms to improve the positioning accuracy (Barral et al.,

2019). The results showed that use of IEKF (Iterative extended

Kalman filter) as the positioning algorithm and K-NN (k-

Nearest neighbor) or NN (Neural network) for detection of

the NLOS ranging value exhibited the optimal performance

in the evaluation of the algorithms. However, the mitigation

effect of non-direct aiming effects was not optimal, because they

strongly depend on the training algorithm environment, thus

they require further improvement. A previous study reported

a summary of the reliability of the Gauss-Newton method for

ultra-wideband positioning (Wang et al., 2020). Moreover, the

effect of the second-order partial derivative on the parameter

estimation deviation was evaluated, and a hypothesis test

judgment index based on Mahalanobis distance was proposed

to explore whether the deviation was significant. The findings

indicated that a positioning system with the smallest deviation

can be designed by detection of the significant deviation caused

by the functionalmodel error. In addition, deep learningmethod

was previously developed for UWB positioning (Poulose and

Han, 2020). The method uses long short-term memory (LSTM)

network to predict the user’s position, and performance of

the UWB positioning system was evaluated based on LSTM

model. An indoor seamless pedestrian tracking scheme was

designed based on least squares support vector machine-assisted

unbiased finite impulse response (UFIR) filter (Xu et al., 2019).

The position of the inertial navigation system and the ultra-

wideband navigation system were integrated based on a loosely

coupled combined positioning model. Seamless and reliable

indoor pedestrian tracking was achieved through compensation

of the position error of the inertial navigation system. A

combined positioning method based on ultra-wideband and

visual guidance used for location of the AGV by identifying

the fixed ArUco code on the AGV was previously designed

(Hu et al., 2020). The findings from the study showed that the

system was characterized by low technical difficulty, low cost,

and higher positioning accuracy for paths without obstacles.
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Several experiments have been conducted to optimize the UWB

transceiver to improve the signal transmission efficiency of

UWB. A non-coherent UWB receiver was previously designed

by exploiting the cluster-sparsity of the received UWB signal

(Sharma et al., 2017). The proposed receiver structure enhanced

the signal-to-noise ratio at the receiver output compared

with the energy detector (ED) by barring inter-clusters noise

accumulation. A simple peak detection based non-coherent

UWB receiver was designed in a previous study, which can

be used for low data rate WSN and IoT based applications

(Sharma et al., 2017a). The proposed receiver divides each data

symbol frame duration into smaller multiple time windows.

The peak of received signal in each time window is detected

independently through threshold comparison. The proposed

receiver had better system performance compared with the

ED receiver, and it exhibited low power consumption and less

system implementation complexity. Joint estimation of TOA

and data symbols was previously conducted by exploiting the

cluster sparsity of the received UWB signal in the presence of

impulsive interference (Sharma et al., 2017b). The proposed

receiver structure enhanced the signal-to-noise ratio at the

receiver output by minimizing the impulsive interference and

barring inter-clusters noise accumulation. An iterative TR (ITR)

UWB receiver was designed for joint time of arrival and data

symbol estimation in a previous study (Sharma and Bhatia,

2018). The proposed ITR receiver only used single reference

pulse for a burst of data symbols. The ITR receiver estimated

a new reference pulse from the burst of data symbols’ pulses,

which further enhanced the signal-to-noise ratio (SNR) of UWB

system. The findings indicated that the proposed ITR receiver

had high energy efficiency and data rate transmission efficiency

with improved SNR relative to that of a TR receiver. UWB

positioning is an extensively researched field. However, the

positioning accuracy of UWB approach does not meet the

optimal accuracy required in industrial application. Therefore,

studies should be conducted to explore strategies for improving

the software algorithm.

Currently, the positioning accuracy of UWB wireless

positioning technology ranges from 0.1 to 1m. This implies that

its accuracy for positioning in a non-line-of-sight environment

can be significantly improved. The aim of the present study was

to explore a strategy to improve the clustering algorithm for

the indoor positioning system based on UWB technology. An

improved fuzzy clustering analysis method for indoor wireless

positioning optimization was used for large-scale filtering of

error and noise, thus rapidly obtaining an optimal positioning

value. In the current study, the error form of the TOA trilateral

positioning algorithm was evaluated, then the basic positioning

accuracy was increased by improving and optimizing the

trilateral positioning algorithm. Subsequently, an improved

fuzzy c-means (FCM) algorithm was designed to optimize UWB

NLOS environment positioning. An annealing evolutionary

algorithm (AEA) for optimization was then designed that

FIGURE 1

TOA positioning method. M represents the positioning tag, Bi

indicates the base station node, and the distance between M to

each base station is denoted di.

combines genetic algorithm (GA) and simulated annealing (SA)

algorithm to alleviate improper selection of the initial value for

the FCM algorithm, which results in easy convergence to a local

minimum. The AEA algorithm combines the advantages of GA

and SA, thus achieving the global optimal solution within a

shorter time, and solves the optimization problem faster and

more efficiently. In addition, the results from experimental

verification showed that the method designed in the present

study exhibited significant optimization effect on UWB indoor

positioning. The 0.1m error exhibited 90% accumulation

distribution indicating that the algorithm had high accuracy

and positioning stability. Moreover, the error value stabilized

within 10 cm. The findings indicate that the method has good

theoretical feasibility in positioning optimization field.

Improved trilateral positioning
algorithm to optimize UWB basic
positioning

The UWB positioning method used in the study was based

on the TOA method, which is a positioning method based

on distance. The principle of the method is to obtain the

distance between the base station and the tag by determining

the time delay from the node to the base station. Subsequently,

the specific location of the node is determined and tested

using trilateral positioning algorithm (Aditya andMolisch, 2018;

Chrabieh, 2020) (Figure 1). TOA positioning uses the high time

resolution of the ultra-wideband signal to accurately estimate

the distance from the node to the base station by evaluating the

signal time delay.
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FIGURE 2

(A–F) Possible error forms.

FIGURE 3

Principle of improved trilateral positioning algorithm.

The actual coordinates of the tag M can be obtained using

the equation below:

di=

√

(xi−x)2+
(

yi−y
)2
(i = 1,2,3) (1)

This method exhibits errors in the ranging value during

actual positioning due to internal factors and environmental

factors. This results in various deviations in positioning.

Therefore, the error associated with this method was evaluated

in the present study and the algorithm was optimized

and improved.

FIGURE 4

A representation of the separation of two circles.

TOA algorithm error analysis

Deviations were observed for the distance measurement

between nodes during actual measurement, due to the NLOS

error in the indoor positioning environment and the effect of the

hardware. Therefore, the circle obtained by trilateral positioning

algorithm did not exactly correspond to the representation

shown in Figure 1, but had multiple error forms as shown in

Figure 2.

Analysis indicated that the errors in trilateral positioning

algorithm can be attributed to five factors as shown in Figure 2.

In the first case, the circles were separated implying that the

measured distance was less than the true distance; intersection
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FIGURE 5

Details of the intersection.

of two circles as well as three circles implies that the measured

value was less than the true distance value, indicating occurrence

of a positioning error. Intersection of two circles occurs when the

measured distance is less than the true distance resulting in the

representation shown in Figure 2B. The representation shown

in Figure 2C occurs when the measured distance is greater than

the true distance. In this case, the two circles were separated,

tangent, or intersected; and the two circles overlapped. The

absolute high accuracy shown in Figure 1 does not exist in actual

positioning, especially under NLOS environment. Various errors

occur during positioning as shown in Figure 3. Therefore, it is

imperative to design an algorithm to reduce the error in the

trilateral positioning algorithm to minimize the impact on this

algorithm. The findings from the experiments in the present

study showed that the trilateral positioning algorithm mainly

exhibited the form presented in Figures 2B,C in the actual

application test. In addition, the results showed that the centroid

positioning algorithm can be used to accurately estimate the tag

point position by calculating the center point coordinate value

of the intersection line between the two circles. Notably, other

forms of errors in the figure can be transformed into the form

FIGURE 6

A representation of the four classification e�ects of FCM algorithm.
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of intersection of two circles using an algorithm, so that the

precise tag node position can be estimated through the centroid

positioning algorithm.

Improved trilateral positioning algorithm

The error analysis of the trilateral positioning method

indicated that unified algorithm optimization can be performed

by conversion of the circles into intersected range circles in

pairs for various error manifestations. In this method, the

midpoint of the intersection line of the intersecting circles

was calculated using the trilateral positioning algorithm, and

then the obtained midpoint coordinates were substituted into

the centroid positioning algorithm to acquire the position

coordinates of the tag node. The principle of the unified

optimization algorithm is shown in Figure 3.

In the figure, M1, M2, M3 represent the center points of

the intersection lines between the circles, which are also located

on the intersection lines of the centers of the circles. The

coordinates (x, y) of the centroid O (the position coordinates of

the tag node) were obtained by centroid positioning algorithm

using M1, M2, M3 as three known vertices. The error forms of

separation and tangents can be converted using an algorithm

according to the positioning forms in the presence of errors

listed in Figure 2. For example, the radius length of the

two separated circles was proportionally increased to achieve

intersection, thenM points were solved in the current study. The

algorithm calculation process under separation of the circles is

presented in detail in the subsequent section.

It was assumed that the actual measured distance values were

r1 and r2, and the distance between two projection points of the

two base station nodes wasDist for the projection of the tag node

M and the two base station nodesB1(x1, y1),B2(x2, y2) on a two-

dimensional plane (Figure 4). The length of Dist was calculated

using formula (2) below.

Dist=

√

(x1−x2)
2+(y1−y2)

2 (2)

The circles formed with radius r1 and r2 were separated when

r1 + r2 < Dist, and there was no intersection between

them implying that there was an error. The circles B1 and

B2 were increased in equal proportions until they intersected

to effectively eliminate the adverse effects of the error. The

proportional coefficient was expressed as shown in formula (3).

op=
Dist

r1+r2
+0.01 (3)

In the formula, op represents the proportionality coefficient.

Notably, 0.01 was added to the expression to ensure that the

enlarged circle always intersected, indicating that there was

always two intersection points to prevent too small op value

that causes separation of the circles. This value can be slightly

larger, but if it is too large, the two circles may present an

inclusion relationship and will not intersect. Assuming that

circles B1 and B2 are enlarged to become circles B1
′ and B2

′,

the corresponding radii will be expressed as r1
′ = r1 × op,

r2
′ = r2 × op.

The radii of the two circles are increased according to the

proportional coefficient of formula (3) to make them intersect

(Figure 4) if the horizontal and vertical coordinates of circles

B1 and B2 are not equal. The formula indicates that the two

intersection points are very close. The intersection of the circles

B1
′ and B2

′ in Figure 4, is enlarged as shown in Figure 5 to

facilitate derivation of the formula.

The findings indicate that circle B1
′and circle B2

′intersect at

point M and point N. The coordinate of the intersection of the

line where B1
′B2

′ is located and the line where MN is located is

presented as P
(

x0, y0
)

. The radii of circles B1
′ and B2

′are r1
′

and r2
′, respectively, and the distance between the centers of the

two circles is Dist. The aim is to find the coordinate value of

point P
(

x0, y0
)

. The equation set shown below can be obtained

from the known variables and the triangle relationship in the

figure by setting the length of B1
′P as d1, and the length of B2

′P

as d2:

{

r1
′2−d1

2=r2
′2−d2

2

Dist=d1+d2
(4)

There are two unknown variables in formula (4), namely d1 and

d2. Formula (5) is obtained after simplifying equation (4):

d1=
r1

′2−r2
′2+Dist2

2Dist
(5)

where d1 represents the length of B1
′P. Similar triangles result

in the expression shown below:

d1

x0−x1
=

Dist

x2−x1
(6)

Equation (5) can be substituted into equation (6), to obtain

the expression presented below.

x0=x1+(x2−x1)
r1

′2−r2
′2+Dist2

2Dist2
(7)

The abscissa information of point P can be obtained from

the equation, and the line where B1
′B2

′ is located has a slope of

k = (y2 − y1)/(x2 − x1). The vertical axis coordinate of point P

is then expressed as follows:

y0=y1+k(x0−x1) (8)

Therefore, the coordinate value of each midpoint is

calculated separately. The coordinate information of the
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TABLE 1 Optimization e�ciency of FCM algorithm under di�erent clustering conditions.

Cluster point 1 2 3 4 5 6 7 8

Average test value (5.068,2.923) (5.061,2.929) (5.045,2.943) (5.059,2.954) (5.061,2.939) (5.056,2.949) (5.059,2.923) (5.062,2.935)

Error 0.1027 0.0936 0.0726 0.0748 0.0863 0.0757 0.097 0.0898

Time consumption of algorithm 0.1175 0.1258 0.1182 0.1213 0.1502 0.1346 0.1442 0.1524

tag node can be obtained by substitution equation 8 into

equation (9).

(

x,y
)

= (

∑k
i=1 xi

k
,

∑k
i=1 yi

k
) (9)

The step of solving the scale factor op can be bypassed when

determining the intersection error. A hypothesis statement that

compares the size of r1 + r2 with Dist can be added when

designing the program. The basic positioning optimization of

UWB is completed through the above calculations. Therefore,

the FCM algorithm in the cluster analysis algorithm will be

introduced in the subsequent section to further optimize the

accuracy of UWB indoor positioning.

Improved FCM algorithm for UWB
indoor positioning

Fuzzy C-means clustering algorithm
(FCM)

Fuzzy C-means clustering (FCM) is a commonly used

clustering method (Havens et al., 2012; Huang and Chuang,

2012; Lin, 2014; Cardone, 2020). It is a popular form of K-

means clustering algorithm based on the fuzzy theory (Im

et al., 2020). FCM provides more flexible clustering results

compared with the hard clustering of the K-means algorithm.

In most cases, the objects in the data set cannot be divided

into distinctively separated clusters, so assigning an object to

a specific cluster is uncertain, and errors may also occur.

Therefore, it is imperative to assign a weight to each object and

each cluster, and indicate the degree to which the object belongs

to the cluster. Notably, probability-based methods can provide

these weights, but sometimes it is challenging to determine

a suitable statistical model. Therefore, FCM with natural and

non-probabilistic characteristics should be used (Fan and Zhen,

2003).

Assuming n data samples are expressed as X =

{x1, x2, . . . , xn}, c(2 ≤ c ≤ n) represents the number of

data sample types to be divided, {A1,A2, . . . ,Ac} represents

the corresponding c categories and U indicates the similarity

classification matrix, the cluster center of each category

is expressed as {v1, v2, . . . , vc}, µk(xi), which indicates the

membership degree of the sample xi to the classAk (abbreviated

as µik). The objective function Jb can then be expressed

as follows:

Jb (U,v)=

n
∑

i=1

c
∑

k=1

(µik)
b(dik)

2 (10)

where,

dik=d (xi−vk)=

√

√

√

√

m
∑

j=1

(xij−vkj)
2 (11)

dik represents the Euclidean distance, which is used to

determine the distance between the i-th sample xi and the k-

th type center point; m indicates the sample feature number;

b represents the weighting parameter, and the value range is

1 ≤ b ≤ ∞. FCM clustering method was used to find an optimal

classification, so that the classification can result in the smallest

function value Jb. If the sum of membership values of a sample

for each cluster is 1 then formula (12) is obtained:

c
∑

j=1

µj (xi)=1, i=1,2,. . .,n (12)

Equations (13) and (14) were used to calculate the

membership degree µik of the sample xi to the category Ak and

c cluster centers {vi}, respectively:

µik=
1

∑c
j=1 (

dik
djk

)
2

b−1

(13)

Suppose Ik = {i|2 ≤ c ≤ n; dik = 0}, for all i types, i ∈ Ik,

µik = 0 then the following expression is obtained:

vij=

∑n
k=1 (µik)

bxkj
∑n

k=1 (µik)
b

(14)

Formulas (13) and (14) can be used to optimize the

clustering center, data membership degree and classification.

The various cluster centers and the membership degree of each

sample to each model class can be theoretically obtained when

the algorithm converges, thus completing the fuzzy clustering

division. Although FCM has a high search speed, it is a local

search algorithm, which is very sensitive to the initial value of

the cluster center. The algorithm converges to a local minimum

if the initial value is not selected accurately.
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FIGURE 7

Crossover and mutation processes using the genetic algorithm.

FIGURE 8

A schematic representation of the improved AEA algorithm.

FIGURE 9

The experimental site.

Limitations of traditional FCM clustering
algorithm in UWB positioning

FCM algorithm was used to optimize the UWB positioning.

A total of 400 sets of data were read per second to obtain

the location information of the positioning point based on the

high transmission rate and low transmission power of UWB.

The obtained data was identified and classified using the FCM

algorithm. The obtained cluster center value of each category

was expressed as ci(xi, yi), and the coordinates A(x, y) of the

positioning point were obtained using Equation (15). In the

equation, c represents the number of classification categories

based on the clustering algorithm.

x=

∑c
i=1 xi

n
, y=

∑c
i=1 yi

n
(15)
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The location point (5.00, 3.00) was used as an example to

test the positioning performance of the algorithm. The power

exponent was set to 2, the maximum number of iterations was

set to 10, and the target termination tolerance to 1 × 10−3

when category cwas 4. The positioning effect after the algorithm

optimization is shown in Figure 6.

The objective function value Jb = 6.68654 in Figure 6. The

results obtained from multiple runs were different, which was

attributed to the selected center point of the initial clustering.

The cluster center of each category, the calculated position

point coordinates and the true coordinates of the point to

be located are indicated. The findings showed that a better

positioning effect were achieved under the FCM algorithm, but

the algorithm optimization also had a certain position error

due to its limitations such as easy convergence to local extreme

value. The error and algorithm running time were tested under

different classification conditions, and the data shown in Table 1

were obtained.

The experimental data showed that the UWB positioning

under the optimization of the three-category FCM clustering

algorithm had relatively high accuracy and small algorithm

delay. In the next sections, the algorithm was further modified

using the three-category FCM clustering method.

Improved FMC algorithm based on
annealing evolution (AEA-FCM)

FCM algorithm is a local search optimization algorithm,

thus it converges to a local minimum if the initial value

is not accurately selected. Therefore, the annealing evolution

algorithm was used in this study to optimize the FCM

clustering algorithm to circumvent this shortcoming. Annealing

Evolutionary Algorithm (AEA) integrates simulated annealing

algorithm (SA) and genetic algorithm (GA). Therefore, it utilizes

SA local search ability and GA global search ability, thus

overcoming limitations of poor SA global search ability and

low efficiency as well as the poor GA local search ability and

prematurity (Krishna, 1999; Huo et al., 2020). The advantages

of the two algorithms complement each other, and the outcome

is significantly improved through mutation and selection to

simultaneously search the solution space. Metropolis criterion

was used in the selection hence the advantage of SA algorithm

in easily jumping out of a local extremum “trap” was retained.

As a result, the algorithm converged to the global minimum

more rapidly and efficiently, making it possible to find the global

optimal solution faster. The genetic coding method and fitness

function were designed according to the specific conditions of

the clustering problem, such that the algorithm converged to the

global optimal solution effectively and faster.

The algorithm first used genetic algorithm to perform a

global search, then the best partial individuals were selected

for annealing after a new population was obtained, and

ultimately local searches were performed in their respective

neighborhoods. Individuals far from the global optimal solution

were not searched, which minimized unnecessary searches and

markedly reduced the algorithm calculation time.

FCM parameter setting

The FCM clustering parameters were set before conducting

the calculations. In the present study, the power exponent was

set to 2, the maximum number of iterations was set to 30, and

the termination tolerance of the objective function to 1× 10−5.

All control parameters were then initialized, including setting

the population size sizepop, annealing temperature cooling

coefficient k, and initializing c cluster centers.

Some parameters of the annealing evolution algorithm were

defined using the following code in MATLAB.

%% Parameters of simulated annealing algorithm

q=0.2; % Cooling coefficient

T0=100; % Initial temperature

Tend=1; % Final temperature

%% Define the genetic algorithm parameters

sizepop=10; % Number of individuals

MAXGEN=7; % Maximum number of generations

NVAR=m∗cn; % Dimension of the variable

PRECI=5; % Precision of variables

GGAP=0.95; % Generation gap

pc=0.7; % Crossover probability

pm=0.01; % mutation probability

Individual coding

The parameters to be optimized in the genetic clustering

algorithm were c initial cluster centers. Binary coding was used

for the optimization process. Each chromosome utilized c cluster

centers to create the initial population Chrom. The number of

variables to be optimized for an m-dimensional sample vector

was c×m. Assuming that each variable used a k-bit binary code,

then the chromosome was a binary code with a length c×m×k.

The area descriptor FieldD was then established to convert the

binary matrix Chrom into real values. In the present study, the

following expression was used:

FieldD=

























PRECI PRECI · · · PRECI

lb lb · · · lb

ub ub · · · ub

1 1 · · · 1

0 0 · · · 0

1 1 · · · 1

1 1 · · · 1

























7×NVAR

(16)
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FIGURE 10

A representation of the simulation process at the experimental site.

FIGURE 11

A representation of the experimental simulation.
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FIGURE 12

UWB module used in the present study.

where the FieldD dimensionality NVAR was determined by the

dimensionality of the input value and the number of clustering

categories, PRECI represents the defined binary digits of the

variable, and lb and ub represent the lower and upper bounds

of the input value, respectively.

Fitness function design

Each individual utilized Jb obtained by formula (10) as the

objective function. A small Jb indicated a high fitness value of

the individual. The fitness distribution function fi = ranking(Jb)

in the MATLAB genetic algorithm toolbox was used for the

fitness function design. The individual target values Jb were

sorted in ascending order, and the column vector containing the

corresponding individual fitness value fi was determined. The

fitness value was calculated using Equation (16) shown below:

where, sp represents the selected pressure difference used to

determine the offset or selection intensity. The fitness value of

each individual was calculated according to its position Pos in

the sorted population.

FitnV (Pos)=2− sp+
2

(

sp− 1
)

(Pos− 1)

sp− 1
, sp ∈[1,2] (17)

Genetic operator

Selection operator

Random traversal sampling was used to select operators,

and the probability of each selected individual was determined

using the previously determined fitness value FitnV. Individuals

with high fitness after conducting repeated experiments had

higher chance of being inherited into the next generation

population when the generation gap between individuals (the

ratio of individuals selected in the next generation) was set

to 0.95. The individuals with low fitness had low probability

of being inherited into the next generation population. The

aim of selection operation was to select some individuals from

the parent population to be inherited in the next generation

population. The selection process adopted the roulette selection

method. The probability that individual xi in the population

was selected if the population size was n was determined by the

formula shown below:

p (xi)=
fi(xi)

∑n
j fi(xj)

(18)

Thismethod ensures that a high fitness corresponds to a high

probability of individuals being selected.

Crossover and mutation operator

A single-point crossover method was used in the crossover

operator to perform genetic recombination on the individuals

selected by the selection operator according to probability. The

mutation operator adopted the basic bit mutation operator.

The number of mutated genes was generated with a certain

probability using the mutation operator, and the mutated

genes were selected using random methods. For the individual

represented by the binary coded symbol string, if the original

gene on a certain locus that should be mutated was 0, it was

changed to 1. On the contrary, if the original gene value was 1,

it was changed to 0. The operating principle of binary crossover

and mutation is shown in Figure 7.

Combination of genetic algorithm and
simulated annealing algorithm

Traditional genetic algorithms have a limitation of

premature convergence. This implies that a few individuals

in the evolutionary group had superior fitness function

value compared with other individuals, leading to premature

convergence of the evolutionary process. Therefore, annealing

of excellent individuals was utilized to induce excellent

individuals to produce some similar new solutions in respective

neighborhoods. This minimizes population occupation by very

few excellent individuals and prevented the algorithm from

premature convergence. The annealing operator was used in

the present study to further optimize the algorithm, with the

process presented below:

The first nAnneal individuals for annealing were selected

after sorting the new population generated by the genetic

algorithm as shown in the expression below:

nAnneal= round(
sizepop

2R
) (19)

where, round indicates approximating the outcome using

rounding method, and R represents the upper limit of the

number of new solutions accepted in the inner loop of

the algorithm.

Each individual was then annealed individually. The total

number of new solutions obtained by annealing is shown below:

nPopAnn=

nAnneal
∑

i=1

r(i) (20)
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FIGURE 13

A schematic representation of the upper computer interface.

FIGURE 14

Schematic diagram showing the static positioning.
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where, r(i) indicates the number of new solutions accepted

by the i-th individual within L iterations. r(i) ≤ R, so

nPopAnn ≤ sizepop/2. popSize/2 was used to prevent the

annealing-generated individuals from occupying the entire

population and from entering a local minimum.

The new solutions were then added to the original

population, and the first sizepop after sorting was selected for

the next step of calculation.

The improved AEA algorithm workflow is shown in

Figure 8.

Nomenclature

Experimental results and analysis

The experimental site is presented in Figure 9. The

experimental site was a flat ground. The xoy plane represented

the positioning node located in the horizontal plane, which

was used to establish a two-dimensional rectangular coordinate

system in order to simplify the calculation during the

experimental process. The x and y coordinates of the positioning

node were analyzed during the experiment (Figure 10). Laser

ranging modules were installed on the tag platform, and

two laser ranging modules were used to obtain the real-time

coordinate information of the tag. The positioning tag and the

ranging module were connected to the mobile station by a

rotating shaft to ensure that the two laser ranging modules were

always perpendicular to the wall (Figure 11).

DW1000 chip produced by DecaWave was used as

positioning module in the experiment. It contained 3 base

stations and 1 positioning tag. The positioning module

supported data rates of 110 kbps, 850 kbps and 6.8 Mbps with an

effective transmission distance of 300 meters. The actual module

is presented in Figure 12.

The computer tools used in the experiment were compiled

in C# programming language. The main base station connected

to the computer was used for transmission and reception of

the positioning data. In addition, the base station displayed

the relative position coordinates of the tag and the distance

to each base station in real time. The interface is shown in

Figure 13. The interface displayed the ranging circles of each

base station according to the trilateral measurement algorithm

under static positioning.

A number of fixed points in the experimental site were

selected to place positioning tags to determine the positioning

accuracy of the UWB indoor wireless network positioning

system and the optimization performance of the clustering

algorithm in a static environment (as shown in Figure 14).

Subsequently, each algorithm was tested separately, then the

measured data were analyzed and compared.

The positioning data exhibited an error of ±1m in UWB

positioning without the optimization algorithm due to effects T
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FIGURE 15

Comparison of errors under the two algorithms under di�erent sampling points.

FIGURE 16

The positioning e�ect under FCM algorithm without optimization.

of the hardware and indoor environment. The error was

presented as a Gaussian distribution around the actual value.

Determination of the number of samples points is an important

step if clustering algorithm is used to optimize wireless indoor

positioning. The appropriate sampling points should be selected

to minimize the time the algorithm takes while maintaining
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FIGURE 17

The positioning e�ect under AEA_FCM algorithm optimization.

TABLE 3 Mean square error under the two algorithms.

Anchor coordinates FCM algorithm FCM algorithm optimized by AEA

locator data MSE locator data MSE

(2.00, 3.00) (1.901, 3.093) 0.0092 (1.964, 3.047) 0.0018

(6.00, 5.00) (6.105, 5.102) 0.0107 (6.052, 5.043) 0.0023

(8.00, 9.00) (8.096, 8.889) 0.0108 (8.047, 8.957) 0.0020

(14.00, 11.00) (14.123, 10.911) 0.0115 (13.954, 10.955) 0.0021

(15.00,16.00) (15.094, 16.118) 0.0114 (15.057, 16.042) 0.0025

(20.00, 19.00) (20.127, 19.081) 0.0113 (19.943, 19.044) 0.0026

(23.00, 22.00) (23.131, 22.129) 0.0169 (23.058, 21.967) 0.0029
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FIGURE 18

Comparison of positioning e�ects under application of the two algorithms.

high accuracy. A summary of some test data is presented in

Table 2. The results indicated that a higher number of sampling

points was correlated with a smaller positioning error value.

However, the time taken by the algorithm gradually increased

with increase in number of sampling points. Analysis of the

data showed that the positioning error was smaller under

AEA-FCM algorithm optimization, and the overall accuracy

was increased by about 35.17% compared with the value

before optimization. The positioning error using the FCM

algorithm without optimization for 400 sampling points was

about 16.23 cm, and the algorithm took approximately 130ms to

converge. The positioning error decreased to 9.96 cm when the

annealing evolution was used to optimize the FCM algorithm,

and the algorithm took about 280ms to converge. The accuracy

of the optimized algorithm was increased by 38.63% compared

with that of the algorithm before optimization. In addition,

the algorithm consumed relatively less time with 400 sampling

points compared with the time taken by the algorithm before

optimization. This implies that the algorithm had optimal

efficiency and relatively better positioning effect with 400

sampling points (Figure 15).

The positioning data was collected once every 500 µs during

the experiment, and 400 samples were collected once every

200ms for analysis owing to the high transmission rate of

UWB technology. The FCM algorithm was initially used to

cluster the data and obtain the optimized clustering center.

Two coordinate points (7,11) and (8,5) were selected for

testing (Figure 16). The test error was approximately 20 cm. The

findings showed that FCM algorithm, which is a local search

optimization algorithm, is highly effective for application in

indoor positioning. However, the algorithm can easily converge

to a local minimum if the initial value is not accurately selected,

resulting in increase in positioning instability.

Subsequently, annealing evolution algorithm was used to

optimize FCM clustering. The AEA-FCM algorithm exhibited

good optimization effect on wireless positioning after repeated

tests. The accuracy after optimization increased by 37.12%

compared with the positioning algorithm using FCM without
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FIGURE 19

Cumulative distribution of positioning error.

optimization, and the accuracy increased by 52.73% compared

with the accuracy of the original UWB positioning. The

positioning error was stabilized within 10 cm. The positioning

effect is shown in Figure 17. Multiple positioning points were

selected for testing, and the mean square error of the test

results was compared. The results showed that the positioning

mean square error optimized by the algorithm was controlled

below 3 × 10−3, indicating a significant optimization effect

(Table 3). Point (7,11) was sampled to demonstrate the effect of

optimization. The positioning error range of UWB positioning

when using FCM algorithm alone was compared with that of the

FCM algorithm optimized by AEA as shown in Figure 18. The

powerful local search ability of simulated annealing algorithm

and the powerful global search ability of genetic algorithm

effectively solved the cluster center value in real time. The

findings showed that combination of the two algorithms

improved the positioning stability as well as markedly increased

the positioning accuracy.

The cumulative distribution function (CDF) of the

positioning error is presented in Figure 19. The abscissa

represents the positioning error, and the ordinate represents

the probability that the error is smaller than or equal to the

abscissa value. The results indicated that the 0.1m error

cumulative distribution of UWB positioning without algorithm

optimization was about 40% under indoor environment. The

error after optimization of the FCM algorithm exhibited a

local minimum point due to poor selection of the initial value,

resulting in about 70% of 0.1m error cumulative distribution.

The blue line in the figure represents the results obtained

after optimization using the fusion algorithm proposed in the

current study. The 0.1m error cumulative distribution was

approximately 90%, indicating high accuracy and positioning

stability of the algorithm. Notably, the error was highly stable

within 10 cm. In summary, the findings indicate that UWB

positioning using FCM algorithm has some shortcomings.

However, combination of FCM algorithm with AEA algorithm

significantly improved the positioning accuracy and markedly

increased the positioning stability.

Conclusion

In the present study, the effect of NLOS error on positioning

accuracy was evaluated to improve the accuracy of indoor

positioning system based on UWB. An optimization algorithm

established by combining AEA and FCM algorithms was

proposed and an UWB positioning test system was established.

The experimental results showed that the algorithm had the

optimal positioning effect when positioning data from 400

sampling points were collected every 200ms. In addition, the

error was significantly reduced by 37.12% compared with that

obtained using the FCM algorithm without optimization. The

positioning results for the combined algorithm showed better

robustness and higher accuracy. The 0.1m error cumulative

distribution of the optimized algorithm was approximately

90%, and the error value was stable within 10 cm. This

implies that this method has good theoretical feasibility. The

positioning algorithm in the current study can be used in

indoor object positioning, elderly condition monitoring as

well as prevention of object theft. Further experiments should

be conducted in larger and more complex environments to

further evaluate the performance of the algorithm. Multi-

label parallel location should be explored to improve the

response speed and reduce the delay. Further, FPGA hardware

acceleration can be used to improve the operation speed of

the algorithm.
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