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The biggest challenge of texture filtering is to smooth the strong gradient textures while

maintaining the weak structures, which is difficult to achieve with current methods.

Based on this, we propose a scale-adaptive texture filtering algorithm in this paper.

First, the four-directional detection with gradient information is proposed for structure

measurement. Second, the spatial kernel scale for each pixel is obtained based on the

structure information; the larger spatial kernel is for pixels in textural regions to enhance

the smoothness, while the smaller spatial kernel is for pixels on structures to maintain

the edges. Finally, we adopt the Fourier approximation of range kernel, which reduces

computational complexity without compromising the filtering visual quality. By subjective

and objective analysis, our method outperforms the previous methods in eliminating the

textures while preserving main structures and also has advantages in structure similarity

and visual perception quality.

Keywords: image smoothing, bilateral filter, structure measurement, adaptive spatial kernel, Fourier

approximation

INTRODUCTION

Natural images usually have complicated textures, which makes it difficult to understand the
main information of the image without texture removal. Structure-preserving texture smoothing
is an important issue in computer vision and digital image processing for image cognition. It
attempts to eliminate the meaningless textures while preserving dominant structure as well as
possible, which has a wide range of applications, such as tone mapping (Jia and Zhang, 2019),
detail enhancement (Fei et al., 2017), image abstraction (Winnemöller et al., 2006), and so on.
For structure-preserving texture filtering, the first is to detect pixels near structure edges and then
preserve structures while eliminating textures. Therefore, texture filtering plays an essential role in
many image preprocessing applications.

The early methods utilized were in contrast to pixel intensity for texture measurement (Tomasi
and Manduchi, 1998; Farbman et al., 2008; Xu et al., 2011). Such methods can remove fine
details but perform poorly when directly eliminating high-contrast and complicated textures
in the image. Subsequently, some more comprehensive texture measurement methods have
been proposed, such as local extrema (Subr et al., 2009), region covariance (Karacan et al.,
2013), and relative total variation (Xu et al., 2012), these methods can smooth out the textures
but also cause blurring of the small structure edges. Further, many scholars have improved
texture measurement methods to generate the guidance image in the joint bilateral filter. For
instance, the guidance image is calculated through patch shift for each pixel (Cho et al., 2014).
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Similarly, joint bilateral filtering was also employed in Jeon et al.
(2016), Song et al. (2018) and Xu and Wang (2019), where they
use an adaptive kernel scale to generate a smoothed image as
guidance. These methods perform better because they proposed
to use small window sizes near structures and large window sizes
in the textures region.

On the other hand, some methods were introduced by
adaptively adjusting the spatial kernel scale or range kernel
scale of the bilateral filter. For instance, the size of the range
kernel is changed at each pixel (Gavaskar and Chaudhury, 2018),
where the polynomials are adopted to approximate histograms
for accelerations of adaptive bilateral filtering. In addition, the
width of the spatial kernel is adapted by relying on local gradient
information (Ghosh et al., 2019), which can obtain structure-
preserving smoothing results. This paper modifies the structure
measure used in Ghosh et al. (2019) to implement the superior
performance of texture removal.

In recent years, deep learning algorithms have been
introduced to the area of edge-preserving texture filtering. Earlier
work included deep edge-aware filtering proposed by Xu et al.
(2015), which constructs a unified neural network architecture
in the gradient domain. Chen et al. (2017) and Lu et al. (2018)
both trained fully supervised Convolutional Neural Networks
for texture smoothing. Since the above methods require several
image pairs that are not readily available to train the model,
the semi-supervised method (Gao et al., 2020) and unsupervised
method (Zhu et al., 2017) are proposed to avoid the collection of
annotated training examples.

In this paper, we present a scale-adaptive texture smoothing
algorithm based on the traditional bilateral filtering framework,
which smooths multi-scale textures by adjusting the scale of
the spatial kernel at each pixel. First, we employ gradient
information along with the four-directional structure
detection to identify the structures from coarse textures.
Second, the spatial kernel size for each pixel is estimated
depending on the structure measure. Finally, we use the Fourier
approximation of the Gaussian range kernel to accelerate the
bilateral filtering for texture removal, where the computational
complexity does not change with the spatial kernel size. The
experimental results show that our method can effectively
achieve the outstanding capability of structure-preserving
smoothing results. The main contributions of this paper are
as follows:

• We propose a four-directional structure detection based on
gradient information, which uses the gradient information in
the pixel neighborhood to more accurately extract structures
from images containing complicated textures.
• We propose a mapping rule to determine the spatial kernel

scale of each pixel, which can adaptively adjust scale size
via structure information. The pixels in the vicinity of the
structure edges adopt smaller spatial kernel scales and the
pixels in textural regions adopt larger spatial kernel scales.
• The approximation algorithm of adaptive bilateral filtering is

presented for texture removal. This strategy claims that the
complexity of texture filtering does not lie on the scale of the
spatial kernel.

In the following section of this paper, the related work is
described in Section Related Work, our proposed method is
discussed in detail in Section Our Method, experimental analysis
is discussed in Section Experiments and Results, the applications
of our algorithm are presented in Section Applications, and a
conclusion is introduced in Section Conclusion.

RELATED WORK

The research of texture filtering has received a lot of attention in
the past several decades.

Traditional texture filtering algorithms include local weighted
averaging and global optimization. Bilateral filtering (BF)
(Tomasi and Manduchi, 1998), guided filter (He et al., 2013),
and anisotropic diffusion (Perona and Malik, 1990) are all
typical local weighted averaging methods. As one of the
classic non-linear filters, BF combines the spatial kernel and
the range kernel for noise removal. Algorithms based on
global optimization mainly include the total variation (TV)
model (Rudin et al., 1992), weighted least squares (WLS)
(Farbman et al., 2008), and L0 gradient minimization (Xu
et al., 2011); these methods optimize the global framework
that relies on gradient information, which can overcome some
limitations of local filters such as halo artifacts and gradient
reversals, but these optimization-based methods need to solve
a complex linear model which is time-consuming and cannot
remove high-contrast noise well. Subsequently, some edge-
preserving models have been proposed to optimize the global
framework, for example, Huang et al. (2018) took advantage of
global optimization together with local filtering to enhance the
smoothness. To improve smoothing quality and processing speed
based on WLS, Liu et al. (2017) proposed semi-global weighted
least squares which solve a sequence of subsystems iteratively,
and Liu W., et al. (2020) achieved high speed through Fourier
transform and inverse transform. However, these traditional
texture filters cannot effectively distinguish prominent structures
from complex details and completely smooth out the textures in
images with complex backgrounds.

Some new models have been proposed for extracting the
salient structure from the input images, which make use of
texture characteristics instead of gradient information to identify
regular or random textures. For example, Subr et al. (2009)
decomposed the structures and textures through local extrema,
and they defined textures as the oscillations between local
minima and maxima and calculated the average of the extremal
envelopes to smooth out the textures. Karacan et al. (2013)
proposed a patch-based region covariance that uses first-order
and second-order feature statistics to extract structures from
different types of textures; however, structures that have similar
statistical properties to textures may be incorrectly smoothed
out, which tend to overly blur the structures of the images.
Lee et al. (2017) proposed an interval gradient operator for
structure-preserving image smoothing. On the other hand, Xu
et al. (2012) observed that the inherent variation in a window
that includes structures is generally greater than that in a window
containing textures, so they propose a relative total variation
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(RTV) to capture the structures and textures characteristics of
the images. Subsequently, Zhao et al. (2019) proposed an activity-
driven LAD-RTV for texture removal. However, these methods
may incorrectly regard small structures as texture because of
the overlapping area between adjacent windows. The complex
textures cannot be completely smoothed out when the smoothing
window size is too small, while an excessively smoothed image
may be produced, and when the size is too large, it is difficult
to find a suitable window size to achieve the balance between
preserving main structures and removing unimportant textures.

To address the limitations of not smoothing out complicated
textures and structure edges blurring, filtering methods based on
structure-aware have been proposed to achieve high-smoothing
quality. That is, the smoothing scale for a pixel is adaptively
varied from pixel to pixel. These methods obtain smoothing
results through joint bilateral filtering, in which the guidance
image calculated by adaptive kernel scale is a particularly
important process. Jeon et al. (2016) propose a scale-adaptive
texture filtering based on patch-based statistics, and the optimal
smoothing scale of each pixel is estimated according to the
directional relative total variation (dRTV) measurement. Song
and Xiao (2017) used patches of two scales to represent pixels
by calculating the directional anisotropic structure measurement
(DASM) on each pixel; the smaller patches are adopted for
pixels at the structures and the larger patches are adopted
for pixels in texture regions. Subsequently, Song et al. (2019)
utilized directional anisotropic structure measure (DASM) to
replace dRTV in Jeon et al. (2016), then evaluate the exact
smoothing scale relying on four-direction statistics of DASM
value. With regard to texture measurement windows, Xu and
Wang (2018) adopted long and narrow small windows for texture
measurement because the structure edges are not always parallel
to the axes. Furthermore, Liu Y., et al. (2020) proposed texture
filtering based on the local histogram operator, which uses the
difference in color distribution to distinguish structures from
textures, and then they determined the width of the range kernel.
The above methods perform well in preserving structure while
smoothing out textures. However, the multiple iterations of joint
bilateral filtering may cause blurred structure and color cast.

Recently, deep learning has made significant progress in
the field of image texture smoothing (Chen et al., 2017; Kim
et al., 2018; Gao et al., 2020). Kim et al. (2018) designed a
new framework for structure-texture decomposition, and they
replaced the total variation prior with a network and plug
deep variational priors into an iterative smoothing process.
Gao et al. (2020) presented a semi-supervised algorithm relying
on Generative Adversarial Networks (GANs) for structure-
preserving smoothing, which designs different loss functions for
both labeled and unlabeled datasets. However, in neural network
training, their target outputs are usually generated by the existing
smoothing methods.

OUR METHOD

Classic bilateral filtering makes use of spatial kernel together
with range kernel, which not only notices the distance between

pixels but also pays attention to the similarity of the intensity
of pixels. Based on this, we propose a scale adaptive bilateral
filtering that allows the scale of the spatial kernel to adjust at
each pixel. Figure 1 shows the entire process of texture filtering
of our method.

Structure-Preserving Bilateral Filtering
Considering the general form of bilateral filtering Tomasi and
Manduchi, 1998, for the input image f , the output result is
obtained by scale adaptive bilateral filtering, written as:

u
(

p
)

=

∑

q∈�p
w(q−p)ϕ(f (q)−f (p))f (q)

∑

q∈�p
w(q−p)ϕ(f (q)−f (p))

, (1)

where u
(

p
)

is the output value at the pixel p, and w
(

l
)

and ϕ (t)
represent the spatial kernel and the range kernel, respectively.
We use a box function for the spatial kernel in this paper, that
is, the window�p of the spatial kernel centered at the pixel p. We
assume that Wp represents the scale of the spatial kernel at the

pixel p, then �p can be expressed as
∣

∣�p

∣

∣ =
(

2Wp + 1
)2

and q is
the pixel that belongs to �p. The Gaussian range kernel ϕ (t) in
Tomasi and Manduchi (1998) is defined as:

ϕ (t) = exp
(

− t2

2σ 2
r

)

, (2)

where t is the intensity difference between the pixels p and q. The
parameter σr is the standard deviation of the Gaussian kernel,
which determines the width of the range kernel, that is, the
smoothing parameter, and σr is fixed at each pixel. A small σr
gives rise to superior structure-preservation and inferior texture
smoothing, and on the contrary, a large σr gives rise to better
texture smoothing but the undesired blurring of the structure
edges. Hence, it is significant to find an appropriate parameter σr
for achieving better structure-preserving texture filtering results.

Structure Measurement
In our proposal, we apply the large spatial kernel sizes in the
homogeneous regions for texture elimination and the small sizes
near structures for edge-preserving. And the kernel size at each
pixel is adaptively optimized by structure measurement. So we
calculate the structure information as follows.

First, we blur the input image f using a Gaussian filter to get
image fσ . The gradient of the image fσ is calculated by:

Gp =
√

(

∂xfσ
)2

p
+

(

∂yfσ
)2

p
, (3)

where Gp is the gradient value at the pixel p, and ∂xfσ and ∂yfσ
are the partial derivatives of fσ in x and y directions.

The gradient map G is calculated by Equation (3), as shown
in Figure 1B. It is clear that the textures with strong gradients are
also preserved when only gradient information is considered, that
is, the structures and textures with similar gradients cannot be
completely distinguished. Therefore, in our proposal, we further
conduct four-directional structure detection relying on gradient

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 729924

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Xu et al. Adaptive Bilateral Texture Filter

FIGURE 1 | The process of texture filtering for the input image. (A) Input image; (B) Gradient map; (C) Structure map; (D) Scale map; (E) Smoothing result.

Reproduced with permission from Hyunjoon Lee, Junho Jeon, Junho Kim and Seungyong Lee, available at https://sci-hub.wf/10.1111/cgf.12875.

FIGURE 2 | Sub-neighborhoods of four direction for structure detection.

information. For each pixel, the detection neighborhood is a

(2m+ 1)× (2m+ 1) neighborhood centered at it. To determine
a more accurate structural inspection value for each pixel, we
detect the (m+ 1) × (m+ 1) sub-neighborhoods located in
four directions. Figure 2 shows the sub-neighborhoods in four
directions for structure detection. To be more specific, taking
into account the distance from the pixel to the exampled pixel,
we computer the weighted average of the gradient values in each

sub-neighborhood to obtain A
(j)
p , j = {NW,NE, SW, SE}, which

is used to evaluate the appearance of structure edges.
In the four detecting neighborhoods of each pixel, a strong

structure edge corresponds to a large Gp value while a weak
structure edge corresponds to a small Gp value. For this reason,

we adopt the Gaussian function as the weight to calculate theA
(j)
p

in the four directions, and the maximum value of A
(j)
p is selected

as the result of structure measurement for each pixel.























A
(j)
p =

∑

bǫ9
(i)
p
gm

(

p, b
)

Gb

gm
(

p, b
)

= 1
2π(m−1)2

exp

(

−
‖p−b‖2

2(m−1)2

)

Sp = maxj={NW,NE,SW,SE}

{

A
(j)
p

}

(4)

where 9
(j)
p represents jth sub-neighborhood, b is the pixel

that belongs to 9
(j)
p , gm

(

p, b
)

is the Gaussian function of the
distance between the pixel p and b, and max {•} represents

the maximum value of the elements in the bracket. A
(j)
p is the

comprehensive manifestation of the structure edges in the jth
sub-neighborhood for the pixel p, whose maximum value Sp
denotes more likelihood of the edges occurring. Therefore, the
larger value of Sp implies less smoothing and the smaller value of
Sp implies more smoothing around the pixel p.

Adaptive Spatial Kernel Scale Estimation
From the analysis of structure measurement, a large value of Sp
suggests that the pixel is in the vicinity of the structure edges,
where the scale of the spatial kernel should be adjusted as small
as possible. Conversely, the spatial kernel scale should be adjusted
as large as possible in textural regions. To estimate the scale Wp

in terms of Sp, we establish an inverse mapping function from
Sp toWp, so that the function satisfies the above conditions. The
mapping can be expressed as:

Wp = max

{

η
(

1
λ

)S2p , δ

}

, (5)

where S2p is the square of Sp. λ is the denominator of the base of
an exponential function, whose value must be greater than 1 to

ensure (1/λ)
S2p ranges in [0, 1]. η is the upper limit of the scale

of filtering windows, so η (1/λ)
S2p denotes the estimated value of

the spatial kernel scale. The introduction of δ is to keep the size
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FIGURE 3 | Filtering results with various parameter combinations. (A) Input image; (B) η=10,I=2; (C) η=10,I=3; (D) η=15,I=1; (E) η=15,I=2; (F) η=15,I=3.

Reproduced with permission from Li Xu, Qiong Yan, Yang Xia, Jiaya Jia, available at http://www.cse.cuhk.edu.hk/%7eleojia/projects/texturesep/.

of windows from approaching 0 so that it prevents the filtering
result from over-sharpening or aliasing (δ = 1 by default).
Therefore,Wp ranges in [ δ, η ].

Fourier Approximation
The brute force computation of Equation (1) requires O

(

W2
p

)

operations for each pixel, which is time-consuming in practical
applications, especially in textural regions, where the scale Wp

is usually large. For the computational limitation of traditional
bilateral filtering, various acceleration algorithms have been
proposed to approximate the bilateral filter (Chaudhury, 2011,
2015; Chaudhury et al., 2011), whose computational complexity
is decreased to O (1), that is, the complexity no longer depends
on the scale Wp. However, some of these algorithms cannot
guarantee that the error of the approximate value of the discrete

points is within the tolerance range, and the poor approximated
estimation may result in color distortion in the filtering image.

In this paper, we adopt the Fourier expansion of the range
kernel in Ghosh and Chaudhury (2016) to approximate the
scale adaptive bilateral filter. Specifically, Equation (2) can be
approximated in another manner:

ϕ̂ (t) =
N
∑

n=−N
cnexp (τnvt), (6)

where τ 2 = −1, v = π/T, ϕ̂ (t) is an approximate estimate
of ϕ (t), N denotes the order of Fourier expansion, cn is the
corresponding coefficient, t is the pixel intensity differences in
�p, and the range of t is {−T, · · · , 0, · · ·T}, where T can be
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FIGURE 4 | Visual effect comparison of texture filtering results. (A) Input image; (B) RTV (λ=0.015,σ=6); (C) SGTD (mu=0.31); (D) RGF (σs=5,σr=1); (E) BTF (k=9);

(F) SATF (sr=0.1, se=0.05); (G) ROG (σ1=1,σ2=3); (H) ours (σr=35,η=10,I=2). Reproduced with permission from Chengfang Song, Chunxia Xiao, Ling Lei, and

Haigang Sui, available at https://sci-hub.wf/10.1111/cgf.13005.

calculated by:

T = max
pǫf

max
qǫ�p

∣

∣f
(

q
)

− f
(

p
)∣

∣. (7)

For all t ∈ [−T,T], the following constraint must be satisfied:
∣

∣ϕ (t)− ϕ̂ (t)
∣

∣ ≤ ε, (8)

where ε is the tolerance of the approximation for the Gaussian
range kernel (ε = 0.01 by default).

For the given range kernel ϕ (t) and tolerance ε, the specific
solution of the approximation order N, and the corresponding
coefficients cn is provided in Ghosh and Chaudhury (2016).
By using Equation (6) to approximate Equation (2), we can
reformulate Equation (1) as:

û
(

p
)

=
E(p)
H(p)

, (9)

where û
(

p
)

is an approximation of u
(

p
)

, E
(

p
)

and H
(

p
)

represent the approximate value of numerator and denominator
of Equation (1), respectively, which can be expressed as:

E
(

p
)

=
∑

q∈�p

w
(

q− p
)

ϕ̂
(

f
(

q
)

− f
(

p
))

f
(

q
)

, (10)

H
(

p
)

=
∑

q∈�p

w
(

q− p
)

ϕ̂
(

f
(

q
)

− f
(

p
))

. (11)

We can further express Equations (10) and (11) as:

E
(

p
)

=
N
∑

n=−N
cn exp

(

−τnvf
(

p
))

en
(

p
)

, (12)

H
(

p
)

=
N
∑

n=−N
cn exp

(

−τnvf
(

p
))

hn
(

p
)

, (13)

where en
(

p
)

and hn
(

p
)

are expressed as follows:

en
(

p
)

=
∑

q∈�p

w
(

q− p
)

f
(

q
)

exp
(

τnvf
(

q
))

, (14)

hn
(

p
)

=
∑

q∈�p

w
(

q− p
)

exp
(

τnvf
(

q
))

. (15)

Since a box function is employed for the spatial kernel, in
conclusion, the adaptive bilateral filtering can be decomposed
into a series of box filtering. Therefore, Equations (14) and (15)
can be simplified as follows:

en
(

p
)

=
∑

q∈�p

f
(

q
)

exp
(

τnvf
(

q
))

, (16)

hn
(

p
)

=
∑

q∈�p

exp
(

τnvf
(

q
))

. (17)
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FIGURE 5 | Texture filtering results comparison. (A) Input image; (B) RTV (λ=0.015,σ=8); (C) SGTD (mu=0.31); (D) RGF (σs=5,σr=0.1); (E) BTF (k=9); (F) SATF

(sr=0.1,se=0.05); (G) ROG (σ1=1,σ2=4); (H) ours (σr=35,η=10,I=2). Reproduced with permission from Sanjay Ghosh, Ruturaj G. Gavaskar, Debasisha Panda and

Kunal N. Chaudhury, available at https://sci-hub.wf/10.1109/TCSVT.2019.2916589.

It can be added point-by-point in the neighborhood of the pixel
p to obtain en

(

p
)

and hn
(

p
)

, whose computation is expensive.
Hence, in our proposal, we compute Equations (16) and (17)
by the recursive algorithm in Crow (1984). We assume that the
integrated element of pixel p in en

(

p
)

is r
(

q
)

:

r
(

q
)

= f
(

q
)

exp
(

τnvf
(

q
))

. (18)

First, we compute the integral image R
(

p
)

at the pixel p:

R
(

p
)

= R
(

x, y
)

=
x

∑

k1=1

y
∑

k2=1

r
(

k1, k2
)

, (19)

where
(

x, y
)

is the coordinate of pixel p and
(

k1, k2
)

is the
coordinate of the pixel in the integral region.

By using recursive theory, the integral image R
(

x+ 1, y+ 1
)

at the pixel
(

x+ 1, y+ 1
)

can be expressed as:

R
(

x+ 1, y+ 1
)

= r
(

x+ 1, y+ 1
)

+R
(

x+ 1, y
)

+ R
(

x, y+ 1
)

−R
(

x, y
)

.

(20)

For any scaleWp, en
(

p
)

can be computed as follows:

en
(

p
)

= R
(

x+Wp, y+Wp

)

− R
(

x−Wp − 1, y+Wp

)

−R
(

x+Wp, y−Wp − 1
)

+ R
(

x−Wp − 1, y−Wp − 1
)

.

(21)

Similarly, hn
(

p
)

can be obtained.
In conclusion, we can calculate the Equations (10) and (11)

according to en
(

p
)

and hn
(

p
)

, and instead of directly computing
scale adaptive bilateral filtering, we replace each convolution
with pointwise operation through Fourier expansion of the range
kernel, as shown in Equations (12) and (13). Furthermore, we can
compute en

(

p
)

and hn
(

p
)

at O (1) complexity with a recursive
algorithm, that is, en

(

p
)

and hn
(

p
)

require a fixed number of
operations for any scaleWp.

To be specific, since Equation (21) requires three additions,
this means that it takes three additions to compute both
Equations (16) and (17). In summary, we can compute Equations
(16) and (17) using addition operations, then we can compute
Equations (12) and (13) in terms of Equations (16) and (17)
by pointwise operations. It is quite clear that the computation
of Equation (9) is based on Equations (12) and (13), which
proves that the scale adaptive bilateral filter can be computed at
O (1) complexity.

We compute the approximation of the output value in this
paper, particularly, we consider the error to be:

∥

∥u− û
∥

∥

∞
= max

{∣

∣u
(

p
)

− û
(

p
)∣

∣

: p ∈ f
}

, (22)

which provides the largest difference between the
exact and approximate scale-adaptive bilateral
filtering pixelwise.
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FIGURE 6 | Small structures comparison of different filtering results. (A) Input image; (B) RTV (λ=0.015,σ=6); (C) SGTD (mu=0.31); (D) RGF (σs=4,σr=0.05); (E)

BTF (k=9); (F) SATF (sr=0.1,se=0.05); (G) ROG (σ1=1,σ2=3); (H) ours (σr=25,η=10,I=2). Reproduced with permission from Hyunjoon Lee, Junho Jeon, Junho Kim

and Seungyong Lee, available at https://sci-hub.wf/10.1111/cgf.12875.

Necessary symbols.

Symbol Significance

f The input image

u (p) The output value at the pixel p

w (l) The spatial kernel of bilateral filtering

ϕ (t) The range kernel of bilateral filtering

Wp The scale of the spatial kernel at the pixel p

fσ The image blurred by input image f

Gp The gradient of the image fσ

A
(j)
p The comprehensive manifestation of the structure edges

Sp The likelihood of the edges occurring

ϕ̂ (t) The approximation of ϕ (t)

û (p) The approximation of u (p)

According to the Equation (6), the error comes from
the approximation of the range kernel, meanwhile, for all
t ∈ [−T,T],

∣

∣ϕ (t)− ϕ̂ (t)
∣

∣ ≤ ε. From the conclusion of

Algorithm 1 | Structure-preserving bilateral texture filtering.

Input: image f

Output: filtered result u

for all i = 1 : I do

S← structure measurement

W ← spatial kernel scale

N← order of Fourier expansion

E (p)← the numerator of the adaptive bilateral filter

H (p)← the denominator of the adaptive bilateral filter

û (p)← scale adaptive bilateral filtering of f

end for

Ghosh and Chaudhury (2016), we can ensure that Equation (22)
is within some tolerance:

∥

∥u− û
∥

∥

∞
≤ 2Tε

w(0)−ǫ
. (23)
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Since there are complex and irregular textures in many natural
images, generally, single iterative filtering cannot completely
smooth out the textures. Considering this limitation, we adopt

the multiple iteration operation of adaptive bilateral filtering
in this paper. Algorithm 1 summarizes the overall process of
our method.

FIGURE 7 | Comparison of gray image denoising. (A) Input image; (B) RTV (λ=0.015,σ=6); (C) SGTD (mu=0.31); (D) RGF (σs=4,σr=0.05); (E) BTF (k=9); (F) SATF

(sr=0.1,se=0.05); (G) ROG (σ1=1,σ2=3); (H) ours (σr=25,η=10,I=2). The picture can be found in the MATLAB public dataset, available at https://matlab.mathworks.

com/.

FIGURE 8 | Images used for quantitative evaluation. (A–D) Ground truth images; (E–H) Images with noise. Panel (A) is reproduced with permission from Ryo Abiko,

Masaaki Ikehara, available at https://www.jstage.jst.go.jp/article/transinf/E102.D/10/E102.D_2018EDP7437/_pdf. Panel (B) is reproduced with permission from

Xiaoyong Shen, Chao Zhou, Li Xu and Jiaya Jia, available at http://www.cse.cuhk.edu.hk/leojia/projects/mutualstructure/. Panels (C,D) are reproduced with

permission from Chao Dong, Chen Change Loy, Kaiming He and Xiaoou Tang, available at http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html.
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EXPERIMENTS AND RESULTS

Parameters Setting
Our method is implemented using MATLAB. In our algorithm,
the relevant parameters are σr ,m, λ, η, and I. σr determines the
scale of the Gaussian range kernel, as we adopt the suggested
setting by Ghosh et al. (2019): σr ranges in [20, 40]. While
evaluating structure measurement, generally, we manually set the
radius of detection neighborhoodm = 4 to practice a majority of
cases. λ is used to normalize the values of structure measurement
to the interval [0, 1], so we fix λ = 10 throughout.

The relatively important parameters are the upper limit of
the spatial kernel scale η and iteration number I. The value of η

depends on the roughness of the textures and the sharpness of the
structures and by the parameter recommendation of Ghosh et al.
(2019), we set η ranges in [8, 16]. In most situations, setting I = 2
can achieve the desired filtering visual effect. Figure 3 shows the
filtering results in different combinations of η and I.

Visual Comparison
For subjective evaluation, we compute our algorithm with the
state-of-the-art texture smoothing techniques, including relative
total variation (RTV) (Xu et al., 2012), structure gradient and
texture decorrelation regularization (SGTD) (Liu et al., 2013),
rolling guidance filter (RGF) (Zhang et al., 2014), bilateral
texture filtering (BTF) (Cho et al., 2014), scale-aware structure-
preserving texture filtering (SATF) (Jeon et al., 2016), and
relativity-of-Gaussian (ROG) (Cai et al., 2017). Generally, we use
the suggested parameters to obtain optimal filtering results for
previous methods. In Figures 4–6, we display the visual effect
comparison for three images containing various textures and
structures. The reason why we choose these three images is
that they contain different types of textures and different shaped
structures, which can illustrate the superiority of our algorithm
from many aspects.

Figure 4 shows the filtered results of different methods
on the mosaic art “Pompeii fish mosaic,” where the image
contains coarse textures and highlighted small-scale structure
edges. It is observed that all methods can eliminate fine details
in homogenous regions; however, the approaches of SGTD
and ROG perform better in removing high-contrast textures
effectively. Moreover, for the preservation of small structures
highlighted in the image, the methods of SGTD, RGF, BTF, and
ROG can hardly preserve the fine structures of fish’s eyes which
are overly smoothed since the size of the windows is oversize. In
the enlarged box, we can clear that the methods of RTV, SGTD,
and ROG may result in excessive sharpness near structure edges,
which appears as an unwanted jaggy artifact.

Compared with these existing advanced methods, our
algorithm works better in eliminating coarse textures while
preserving main structures as much as possible in Figure 4H.
Particularly, our method can completely preserve the structure
of fish’s eyes.

Figure 5 shows the smoothing effect on a face image.
Especially, we focus on the region highlighted with the red box,
whose meaningful structures and textures on the left and right
sides of the nose bridge are very similar in appearance. Since the

TABLE 1 | Comparison of the mean values of the objective evaluation indexes.

Methods PSNR SSIM FSIM BRISQUE

RTV 24.1967 0.8758 0.7975 48.1249

SGTD 21.7833 0.8448 0.7773 37.5636

RGF 22.7368 0.8374 0.7946 57.4815

BTF 23.7134 0.8673 0.8423 43.8964

SATF 24.3114 0.8693 0.8274 55.2322

ROG 22.9508 0.8551 0.7689 49.5998

Ours 31.3786 0.8799 0.8179 35.3667

The bold values indicates the maximum value of PSNR, the maximum value of SSIM, the

maximum value of FSIM, and the minimum value of BRISQUE respectively.

TABLE 2 | Timing statistics for a single iteration of a color image.

Step η = 8 η = 12 η = 16

Structure map S 0.02s 0.01s 0.02s

Scale map W 0.01s 0.01s 0.01s

Texture Filtering 3.07s 3.06s 3.11s

Total 3.10s 3.08s 3.14s

previous methods apply texture filtering with the fix-scale kernel
to remove textures, the visual effect is not always well. The results
of RTV, BTF, and ROG exist unwished artifacts in the bridge of
the nose. On the side, the methods of RGF and SATF perform
poorly when removing high-contrast textures.

Our algorithm handles the pixel around structures with a
small scale and the pixel in the textural region with a large scale.
In Figure 5H, we obtain a better filtering result than the state-
of-the-art methods and our method can remove coarse textures
without creating artifacts.

Figure 6 shows small structures comparison of different
filtering results on the mosaic art “fish.” All the existing methods
blur the fine structures and cause artifacts near edges. Relatively
serious are the results of RTV, SGTD, RGF, and ROG, and the
whiskers and teeth of fish even became sticky. Meanwhile, in
methods of BTF and SATF, the teeth of fish are barely preserved.

In contrast, our method achieves the superior property of
preserving multi-scale structures, as shown in Figure 6H. The
edges and details can maintain the original structure as much
as possible.

Figure 7 shows the comparison of denoising effects on a gray
image. Intuitively, it can be seen that the effects of RGF, BTF, and
SATF methods are not ideal when removing gray image noise,
and cannot completely smooth the noise in the background. The
methods of RTV and ROG cause edge sharpening in smoothing
results.

In comparison, our proposed algorithm can remove the noise
of gray images and retain the edge features of people in the image,
as shown in Figure 7H.

Quantitative Evaluation
The widely used image objective quantitative evaluation methods
include Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity Index (SSIM). PSNR is an image quality evaluation
based on error sensitivity. SSIM comprehensively measures
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FIGURE 9 | Filtered results using our method. (A) Input image; (B) (σr=25,η=8,I=2); (C) (σr=25,η=12,I=2); (D) (σr=25,η=16,I=2). Reproduced with permission from

Li Xu, Qiong Yan, Yang Xia, Jiaya Jia, available at http://www.cse.cuhk.edu.hk/%7eleojia/projects/texturesep/.

image similarity from the aspects of brightness, contrast, and
structure. In our evaluation, we also take the Feature Similarity
index (FSIM) (Zhang et al., 2011) and Blind Image Spatial Quality
Evaluator (BRISQUE) (Chen et al., 2018) as the evaluation
indexes. We selected four ground truth images in Dong et al.
(2015), Abiko and Ikehara (2019), and Shen et al. (2015), and
then added salt and pepper noise along with periodic noise to
these four images as the texture images, as shown in Figure 8,
using ground truth images as the reference to calculate PSNR,
SSIM, and FSIM. In contrast, the BRISQUE is obtained only by
the filtered result.

Table 1 shows the statistics of the mean values of the objective
evaluation indexes of four images in Figure 8. First, on the metric
of PSNR, our method performs best among these seven methods,
which suggests that our results have less image distortion. The
methods of RTV and SATF get higher PSNR results that are
only inferior to ours. Concerning SSIM results, our method
also achieves the highest result. In contrast, we only obtain the

third-highest FSIM value, which is inferior to BTF and SATF.
In general, the similarity between the results filtered by our
approach and ground truth images is relatively good. Finally,
we take a look at BRISQUE results, whose smaller score implies
better perceptual quality. It just so happens that our method has
the smallest BRISQUE value.

Timing Data
To verify that the complexity of our algorithm does not depend
on the size of the spatial kernel, we set different parameters for
the upper limit of the spatial kernel scale, that is, we change the
width of scale to smooth the 400 × 324 image and recode the
timings required for a single iteration.

Table 2 shows the statistics of timings for a single iteration
of the image in Figure 9A, Figures 9B–D show the different
filtering results for different η. It can be seen that the timings
required for the filtering process are not much different when
the values of η are different, which illustrates that the complexity
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FIGURE 10 | Detail enhancement. (A,D) Input images; (B,E) Filtered results using our method; (C,F) The detail enhancement results. Reproduced with permission

from Wei Liu, Pingping Zhang, Xiaogang Chen, Chunhua Shen and Xiaolin Huang, available at https://arxiv.53yu.com/pdf/1812.07122.

of the adaptive bilateral filtering does not depend on the size of
scales. This result verifies our algorithm that the complexity is
decreased to O (1) by our approximation of bilateral filtering.

APPLICATIONS

Detail Enhancement
Our approach can be applied to image detail enhancement
(Fei et al., 2017). It aims to highlight image details and
improve the visual effects of the images. Figure 10 displays
the application of our method in detail enhancement. We first
subtract the filtered image from the input image to generate
the textures, which are magnified three times and superimposed
on the input image, so that we can achieve the purpose of
detail enhancement.

Edge Detection
The existence of high-contrast textures will keep some irrelevant
information and produce false edges in edge detection. Due to the

severe influence of textures, we execute our method for texture
removal before edge detection. As shown in Figure 11, compared
to the edge detection of the original image, the edge map of the
filtered image extracted by the canny detection (Canny, 1986)
operator is clearer.

Image Abstraction and Pencil Sketching
The texture smoothing method proposed in this paper can
also be applied to image abstraction and pencil sketching.
Following (Winnemöller et al., 2006), our method is
employed in replacing the bilateral filter to generate
abstraction results. Furthermore, we obtain pencil sketching
results based on image abstraction. The results are shown
in Figure 12.

CONCLUSION

To preservemulti-scale structures while filtering various textures,
we propose an adaptive bilateral texture filter for image
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FIGURE 11 | Edge detection. (A) Input image; (B) Edge detection of input image; (C) Filtered result using our method; (D) Edge detection of filtered result.

Reproduced with permission from Li Xu, Qiong Yan, Yang Xia, Jiaya Jia, available at http://www.cse.cuhk.edu.hk/%7eleojia/projects/texturesep/.

smoothing, whose spatial kernel scale is adjusted adaptively.
To distinguish prominent structures from textures, we combine
gradient information and four-direction structure inspection to
generate the structure map of the image. Then, the optimal

spatial kernel scale corresponding to each pixel is estimated
via structure measurement, which satisfied large smoothing
window sizes in texture regions and small smoothing window
sizes around structures. In addition, the Fourier expansion
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FIGURE 12 | Image abstraction and Pencil sketching. (A,D) Input images; (B,E) Image abstraction results; (C,F) Pencil sketching results. Panel (A) is reproduced with

permission from JiaXianYao, available at https://github.com/JiaXianYao/Bilateral-Texture-Filtering. Panel (D) is reproduced with permission from By Sylvain Paris,

Samuel W. Hasinoff and Jan Kautz, available at https://cacm.acm.org/magazines/2015/3/183587-local-laplacian-filters/abstract.

of the range kernel is used to reduce the computational
complexity. Through the subjective and objective evaluation
of the experimental results, we conclude that our method
performs better than existing methods in texture removal and
structure preservation.
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