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Aiming at the situation that the structural parameters of the general manipulators are

uncertain, a time-varying impedance controller based on model reference adaptive

control (MRAC) is proposed in this article. The proposed controller does not need to use

acceleration-based feedback or to measure external loads and can tolerate considerable

structure parameter errors. The global uniform asymptotic stability of the time-varying

closed-loop system is analyzed, and a selection approach for control parameters is

presented. It is demonstrated that, by using the proposed control parameter selection

approach, the closed-loop system under the adaptive controller is equivalent to an

existing result. The feasibility of the presented controller for the general manipulators

is demonstrated by some numerical simulations.

Keywords: adaptive, intelligent control, time-varying, human–robot interaction, MRAC

1. INTRODUCTION

The control issues of a multi-degree-of-freedom (multi-DOF) mechanical system with force and
motion task constraints are significant for many advanced practical applications, such as minimally
invasive surgeries (Burgner-Kahrs et al., 2015), rehabilitation nursing (Jutinico et al., 2017; Ansari
et al., 2018), in-situ inspection, and machining for the repair of aeroengine parts (Dong et
al., 2017; Su et al., 2020), life rescues (McMahan et al., 2006), teleoperation based on haptic
interfaces (Sharifi et al., 2016), etc. The operation tasks with force and motion constraint include
force-position approximately decoupled operation tasks and more general force-position coupled
operation tasks. With regard to the operation task with decoupling force and motion constraint,
the closed-loop control system can be stabilized through hybrid force/motion control strategies
(Yip and Camarillo, 2016). As to the task with coupling force and motion constraints, in general,
an impedance controller has to be utilized to track the time-varying trajectories of the constraint
task (Kronander and Billard, 2016). At present, most researches focus on the invariant impedance
control of the robot system. The adjustment range of the manipulator’s dynamic characteristics
under the invariant impedance controller is limited, and it can only complete some rough human-
machine cooperation/coordination tasks. For mechanical assembly tasks, especially for those
relatively precise assembly operations, such as bearing press-mounting and quantitative fastening
of screws/nuts, it is necessary to accurately control the position and pose of the end-effector in
the direction of force, as well as the force/torque during the operations. Therefore, the application
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of invariant impedance control is relatively limited, and the time-
varying impedance control has important practical application
requirements in engineering tasks. Since the time-varying
impedance control has extensive and important application
requirements in complex systems or high-level applications such
as the universal operation of industrial robots, the interactive
motion of rehabilitation robots, human–machine fusion control
of exoskeleton robots, telepresence teleoperation robots, etc., in
recent years, scholars have conducted related research on time-
varying impedance control. The time-varying impedance closed-
loop system is a kind of time-varying dynamic system, and it is
difficult to analyze its global or large range asymptotic stability.
The integration of robotics and artificial intelligence promotes
the development of controllers under time-varying operation
tasks (Su et al., 2018; Wu et al., 2021a,b). The theoretical and
practical research of artificial intelligence control methods based
on fuzzy control, neural network and other theories have been
carried out internationally for more than 30 years (Deng et
al., 2021a,b; Wu et al., 2021c,e). Artificial intelligence control
methods often use large-scale inference rule bases or network
structures with a large number of nodes and layers in order to
ensure their large-scale effectiveness. Due to their good learning
ability, artificial intelligence methods are often used in the
cognitive science of human–machine interaction systems (Wu et
al., 2020b, 2021d).

In practical engineering applications, the control systems
often encounter comprehensive characteristics such as strong
non-linearity, uncertainty, and time-varying parameters (Liu et
al., 2020; Liang et al., 2021b), which will affect the stability
of the system. Because the accurate dynamic modeling of the
robot system is rather hard, which brings difficulties to the
control law design of the system and reduces the dynamic
characteristics of the closed-loop system, it is difficult for the
robot to achieve high-quality practical applications. Adaptive
control and its improvement (Tong et al., 2020; Liu et al.,
2021b), sliding mode control and its improvement (Zhai and
Xu, 2021), non-linear feedback control and its improvement,
observers and its improvement (Liang et al., 2021a; Li et al.,
2021; Liu et al., 2021a), and other methods (Yang et al., 2021)
can be used to solve this problem. In literature (Li, 2021), a
novel command filter adaptive tracking controller is designed
to achieve asymptotic tracking for a class of uncertain non-
linear systems with time-varying parameters and uncertain
disturbances by introducing a smooth function with positive
integrable time-varying function to compensate the unknown
time-varying parameters and uncertain disturbances. In this
article, we study adaptive time-varying impedance controllers.
In recent years, adaptive impedance control problems have
attracted the attention of many scholars due to the wide and
different application requirements (Xu et al., 2011; Jamwal et al.,
2017), such as the relevant developments about haptic interfaces
(Sharifi et al., 2016), upper/lower limb rehabilitation robots
(Li et al., 2017; Liu et al., 2017), robotic exoskeleton systems
(Hussain et al., 2013), and so on (Wu et al., 2020a; Deng
et al., 2021b). At present, most research studies on adaptive
impedance control are actually focused on online “impedance

planning,” which means online searching for a target impedance
profile for the purpose of improving the application effects
of robots. The stability issues of the time-varying closed-loop
systems with regard to the target impedance profile are not
analyzed except few works (Ferraguti et al., 2013; Kronander
and Billard, 2016). In some application-oriented research studies,
experiments are always used to demonstrate the stability of the
controlled plants (Hamedani et al., 2019; Pena et al., 2019; Perez-
Ibarra et al., 2019). However, demonstrating the stability of an
adaptive impedance control system by experiments is commonly
task-depended, and different operating tasks require different
experiments to verify the stability of the system. Therefore, an
analysis or control method that can ensure the stability of the
time-varying impedance control system is required. To this end,
the literature (Kronander and Billard, 2016) and (Ferraguti et
al., 2013) addressed this issue. Through an in-depth analysis of
the method presented in Ferraguti et al. (2013), the literature
(Kronander and Billard, 2016) presented the stability conditions
for the variable damping and stiffness system, and the proposed
stability conditions do not rely on the controlled plant’s states.
The benefit of the stability conditions is that they can be verified
offline before performing a task. However, this approach has
two main shortcomings: (1) accurate dynamics model of
the controlled plant is needed in the controller; and (2)
measurement of external loads or joint accelerations is required
in the controller.

In this article, aiming at the above two problems, a globally
uniform stability condition is proposed in which the variable
damping and stiffness are independent of the state of the robot.
As we all know, the closed-loop system under an adaptive
impedance controller is actually a time-varying dynamic system,
and it is also a complex non-linear system, which makes it
difficult to design the controller. To be specific, the main
contribution of this article is summarized as follows:

1) In this article, we use variable damping and stiffness control to
adjust damping and stiffness parameters to improve compliant
operation performance and use adaptive control to adjust the
parameters to achieve the stability of the system when the
system parameters are disturbed.

2) Under the frame of model reference adaptive control
(MRAC), the rigorous canonical reduction form of the
dynamics of the general robot system can be transformed
into linear or special non-linear “recursive canonical form.”
By using the recursive canonical expression and the design
method of the time-varying impedance controller of the
linear system, the analytical expression of the parameter
adaptive regulation law can be obtained, and the time-varying
impedance controller with parameter adaptive characteristics
can be designed.

3) The time-varying impedance controller is reconstructed
under the frame of MRAC, and the stability condition given in
Kronander and Billard (2016) remains unchanged. Therefore,
the stability condition under the adaptive control frame is
still state independent, while the above two shortcomings are
eliminated.
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The remainder of this article is organized as follows. Section
2 presents the stability condition provided by Kronander and
Billard (2016), since it does not depend on any controllers.
Section 3 presents our main contributions, the time-varying
impedance controller based on MRAC and a control parameter
selection approach. As an example, the method is tested through
an uncertain planar 2R manipulator in section 4. Section 5 gives
the conclusions.

2. EXISTING TIME-VARYING IMPEDANCE
CONTROLLER FOR MANIPULATORS

In general, the dynamic equation of the manipulators has the
following form

M(2)2̈ + C(2, 2̇)2̇ + N(2)− τe = τa (1)

where 2 ∈ ℜn represents the generalized coordinates of the
manipulator in configuration space, M(2) ∈ ℜn×n represents
the inertial matrix of the system, C(2, 2̇)2̇ ∈ ℜn represents
centrifugal and Coriolis torque vector, N(2) ∈ ℜn represents the
gravity and elastic force vector, τe ∈ ℜn represents an equivalent
torque caused by the external forces, while τa ∈ ℜn represents
the actuation torque.

For time-varying impedance control issues, the closed-loop
target dynamic equation of a manipulator can be given as follows

H ¨̄2 + D(t) ˙̄2 + K(t)2̄ = τe (2)

where 2̄ = 2 − 2d is defined to be an error vector of the
generalized coordinates and 2d denotes the desired position of
the generalized coordinates, H denotes a positive definite and
symmetric constantmatrix,D(t) denotes a time-varying damping
matrix, and K(t) denotes a time-varying stiffness matrix. Both of
D(t) and K(t) are also positive definite and symmetric. Usually,
K(t) should be determined by the designated operation tasks,
and D(t) should be selected to ensure the global asymptotic

stability at the origin (2̄, ˙̄2) = (0, 0) of the closed-loop system
(2) when the equivalent external torque satisfies τe = 0. If the
equivalent external torque τe does not equal to zero, then the

origin (2̄, ˙̄2) = (0, 0) of the closed-loop system (2) should be
globally stable in Lyapunov’s sense. An elegant result of designing
a time-varying impedance controller of the manipulator can be
stated as Lemma 1, which is an adapted result that was first
presented in the literature (Kronander and Billard, 2016).

Lemma 1. For the dynamic systems (1) and the target system
(2), suppose the stiffness matrix K(t) is continuous, then K̇(t)
is bounded, which means

∥

∥K̇(t)
∥

∥ ≤ �, where � is a positive
constant. Then there exists a positive constant α and a matrix D(t)
satisfying the following set of inequalities















α > 0
K(t)+ αD(t)− α2H > 0
−D(t)+ αH < 0

K̇(t)+ αḊ(t)− 2αK(t) < 0

(3)

which makes the following closed-loop system







M(2)2̈ + C(2, 2̇)2̇ + N(2)− τe = τa

τa = M2̈d + C2̇d + N + (M −H) ¨̄2 +
[

C − D(t)
] ˙̄2

−K(t)2̄

(4)

globally uniformly asymptotically stable at the origin (2̄, ˙̄2) =

(0, 0) when τe = 0. When τe 6= 0, then the origin (2̄, ˙̄2) = (0, 0)
is globally uniformly stable.

REMARK 1. By applying a Lyapunov candidate function

V( ˙̄2, 2̄, t) = 1
2 (

˙̄2 + α2̄)TH( ˙̄2 + α2̄) + 1
2 2̄

Tβ(t)2̄ with the
time-varying function definition β(t) = K(t) + αD(t) − α2H,
it is not hard to show that the first two inequalities in (3) are
used to ensure the positive definiteness of Lyapunov function

V( ˙̄2, 2̄, t), and the last two inequalities in (3) can ensure the

negative definiteness of V̇( ˙̄2, 2̄, t). Furthermore, by proving the

function V( ˙̄2, 2̄, t) is also a decrescent function, then the global
uniform asymptotic stability of the closed-loop system (2) can
be concluded. For the purpose of simplifying control parameters
selection, in He et al. (2020) the authors presented a simple
stability condition

D(t) = αH + εI (5)

where ε > 0 is a small constant and I denotes an identity matrix.
Even though the damping matrix given in (5) shows certain
conservatism for some applications, it is sufficient to show that
the solution of the inequality group (3) exists.

REMARK 2. Note that the torque controller τa(t) in (4) uses
acceleration feedbacks, and the dynamics model (1) is supposed
to be accurate. In real world applications, these two points may
not be easily achieved, since the acceleration sensors are not
standard accessories for many manipulators and it is also rather
difficult to accurately determine the dynamics parameters of a
multi-DOF mechanical system. In the next section, it will be
shown that these problems can be resolved by developing an
MRAC based time-varying impedance controller.

3. A MRAC BASED TIME-VARYING
IMPEDANCE CONTROLLER FOR
MANIPULATORS

For a controlled system with an adaptive controller, in general,
the uniformly asymptotical stability of the closed-loop system
cannot be concluded by following the same method as that
provided in Remark 1. The main reason is that a parameter
estimation law is also included in the closed-loop system besides a
control law, such that the Lyapunov candidate function cannot be
constructed as that presented in Remark 1. On the contrary, the
following lemma (Slotine and Li, 1991) can be utilized to analyze
the uniformly asymptotical stability of a closed-loop system with
an adaptive controller.

LEMMA 2. If a scalar function V(t) has the following properties,
then lim

t→∞
V̇(t) → 0.
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(1). V(t) is lower bounded;
(2). V̇(t) is negative semi-definite;
(3). V̇(t) is uniformly continuous in time.

Now, we derive the adaptive time-varying impedance controller.
First, we define a virtual velocity error vector

s = ˙̄2 + 32̄ = 2̇ − 2̇d + 32̄ = 2̇ − 2̇r (6)

where 3 ∈ ℜn×n is a symmetric and positive definite matrix, or
more generally a matrix so that −3 is Hurwitz, 2̄ ∈ ℜn, and the
virtual reference velocity 2̇r ∈ ℜn in Equation (6) is defined as

2̇r = 2̇d − 32̄. (7)

It is well known that the dynamics of a mechanical system
commonly satisfies the linearly parameterized property, that is,
the left-hand side of the dynamic system (1) can be expressed as
the following form

M(2)2̈ + C(2, 2̇)2̇ + N(2)− τe = χ(2, 2̇, 2̈)ρ (8)

where χ(2, 2̇, 2̈) denotes a matrix, ρ denotes an unknown
parameter vector that describes the mass properties of a
mechanical system. If we replace the differential variables 2̇ and
2̈ of the system (1) with the virtual reference velocity 2̇r and its
differential variable 2̈r , then the linearly parameterized property
does not change, and the resulted virtual dynamic system can also
be expressed as a similar form

M(2)2̈r + C(2, 2̇)2̇r + N(2)− τe = χ(2, 2̇, 2̇r , 2̈r)ρ. (9)

By applying the linearly parameterized form Equation (9), we can
obtain the following result.

THEOREM 1. For the dynamic systems (1), by applying the
following controller

τa = χ(2, 2̇, 2̇r , 2̈r)ρ̂ − KDs (10)

and the following parameter estimator

˙̂ρ = −Ŵ−1χTs (11)

where KD in Equation (10) is a continuous positive definite
matrix, i.e., K̇D is bounded, ρ̂ denotes the estimation of ρ, and
the matrix Ŵ in Equation (11) is also positive definite, then the

origin (2̄, ˙̄2) = (0, 0) of the closed-loop system







M(2)2̈ + C(2, 2̇)2̇ + N(2)− τe = τa
τa = χ(2, 2̇, 2̇r , 2̈r)ρ̂ − KDs
˙̂ρ = −Ŵ−1χTs

(12)

is globally uniformly asymptotically stable when the external

loads τe = 0. If the external loads τe 6= 0, the origin (2̄, ˙̄2) =

(0, 0) of the system Equation (12) is globally uniformly stable in
the Lyapunov’s sense.

PROOF. Let us define ρ̄ = ρ̂ − ρ to be an error vector of the
parameter estimates ρ̂ and select a Lyapunov candidate function

V(t) =
1

2

(

sTMs+ ρ̄TŴρ̄

)

. (13)

By using the definition of the virtual velocity error vector given by
Equation (6), the time derivative of Equation (13) can be given as

V̇(t) = sTMṡ+ 1
2 s

TṀs+ ρ̄TŴ ˙̄ρ = sT
(

M2̈ −M2̈r

)

+ 1
2 s

TṀs

+ρ̄TŴ ˙̄ρ.
(14)

Since Ṁ − 2C is a skew-symmetric matrix (Murray et al., 1994),

which means that
(

Ṁ − 2C
)T

= −
(

Ṁ − 2C
)

, we have

ṀT + Ṁ = 2CT + 2C (15)

and since M is a symmetric and positive definite (Murray et al.,
1994), which means that M = MT, then from Equation (15) we
can get

ṀT + Ṁ = 2Ṁ = 2CT + 2C (16)

So

Ṁ = C + CT (17)

By using the equation above, Equation (14) can be written as

V̇(t) = sT
(

M2̈ −M2̈r

)

+
1

2
sT

(

C + CT
)

s+ ρ̄TŴ ˙̄ρ. (18)

Referring to the dynamics Equation (1), it is easy to obtain

M2̈ = τa − C2̇ − N + τe (19)

and from (6) we can obtain

2̇ = s+ 2̇r . (20)

Substituting Equations (20) into (19) and then bringing
Equations (19) into (18), it can be shown that

V̇(t) = sT
[

τa −M2̈r − C
(

s+ 2̇r

)

− N + τe
]

+
1

2
sT

(

C + CT
)

s+ ρ̄TŴ ˙̄ρ

= sT
[

τa −M2̈r − C2̇r − N + τe
]

+ ρ̄TŴ ˙̄ρ.
(21)

Due to ρ̄ = ρ̂−ρ and ρ is a constant for anymanipulator system,
we have ˙̄ρ = ˙̂ρ. Therefore, Equation (21) follows that

V̇(t) = sT
[

τa −M2̈r − C2̇r − N + τe
]

+ ρ̄TŴ ˙̂ρ. (22)

By applying the linearly parameterized form Equation (9),
Equation (22) can be expressed as

V̇(t) = sT
[

τa − χ(2, 2̇, 2̇r , 2̈r)ρ
]

+ ρ̄TŴ ˙̂ρ. (23)
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If we adopt the controller Equation (10), it is straightforward that
the Equation (23) can be rewritten as

V̇(t)= sT
[

χρ̂ − KDs− χρ
]

+ρ̄TŴ ˙̂ρ = sTχρ̄ − sTKDs+ ρ̄TŴ ˙̂ρ.
(24)

By using the parameter estimator Equation (11), which is given
as ˙̂ρ = −Ŵ−1χTs, then we can obtain

V̇(t) = −sTKDs ≤ 0 (25)

since KD is positive definite. This implies V(t) ≤ V(0), and
therefore, both of the vectors s and ρ̄ are bounded [see Equation
(13)]. To observe the uniform continuity of the function V̇(t), we
calculate the second order differential function ofV(t), and it can
be written as

V̈(t) = −2sTKD ṡ− sTK̇Ds. (26)

See definition Equation (6), it shows the vector s is smooth. On
the other hand, the differential matrix K̇D is supposed to be
bounded. Then we can conclude that V̈(t) is bounded. According
to Lemma 2, we can get lim

t→∞
V̇(t) → 0, which means s → 0 as

t → ∞. It is obvious that ṡ is bounded.
On the surface s = 0, referring to the definition s = ˙̄2 + 32̄,

we can conclude the origin (2̄, ˙̄2) = (0, 0) of the closed-loop
system Equation (12) is uniformly asymptotically stable since−3

is Hurwitz. In addition, the function V(t) is unbounded, thus the
stability of the closed-loop system is globally effective.

REMARK 3. Theorem 1 shows that both the control law
Equation (10) and the parameter estimator (11) only use state

feedback s = ˙̄2+32̄. This is helpful for improving the feasibility
of the controller in real world applications. In particular, the
adaptive controller does not need an accurate dynamic model,
thus better robust stability of the closed-loop system Equation
(12) could be expected.

REMARK 4. Even though Theorem 1 gives an adaptive controller
for the dynamic system Equation (1), so far the adaptive
controller is not related to the time-varying impedance control
issues of the manipulators. By using the following result, we can
get that the time-varying impedance control problems can be
resolved under the adaptive control strategy.

THEOREM 2. If the control parameters3 andKD of the adaptive
controller Equation (10) are chosen as

3 = γM−1,KD =
1

γ
K(t)M − C (27)

where γ > 0 is a constant, then the origin (2̄, ˙̄2) = (0, 0) of the
closed-loop system Equation (12) is globally uniformly stable in
Lyapunov’s sense.

PROOF. By subtracting Equation (9) from Equation (1), we have

Mṡ+ Cs = τa − χρ (28)

where s = 2̇ − 2̇r is considered. Then, substituting the adaptive
control law Equation (10) into Equation (28), we can obtain that

Mṡ+ (C + KD) s = χρ̄ (29)

where ρ̄ = ρ̂ − ρ is considered. Since the vector also satisfies the

relationship s = ˙̄2 + 32̄, we can obtain

M ¨̄2 + (M3 + C + KD) ˙̄2 + (C + KD)32̄ = χρ̄. (30)

According to Equation (27), if we select 3 = γM−1 and KD =
1
γ
K(t)M − C, then Equation (30) can be written as

M ¨̄2 + D(t) ˙̄2 + K(t)2̄ = χρ̄ (31)

where

D(t) = M3 + C + KD = γ I +
1

γ
K(t)M. (32)

Comparing Equation (32) with Equation (5), it shows the
damping matrix given by (32) satisfies the stability condition
Equation (5) if we select α = 1

γ
K(t) and ε = γ . In addition,

on the basis of Theorem 1, under the control law (10) and the
parameter estimator Equation (11), the error vector ρ̄ is bounded.

According to Lemma 1, the origin (2̄, ˙̄2) = (0, 0) of the closed-
loop system Equation (31) is globally uniformly asymptotically
stable when ρ̄ = 0. If the error vector ρ̄ 6= 0, the origin

(2̄, ˙̄2) = (0, 0) of the system Equation (31) is globally uniformly
stable in Lyapunov’s sense.

REMARK 5. It is worth noting that, in Equation (2), the inertial
matrixH is generally different from the inertial matrixM, so that

the term (M − H) ¨̄2 is appeared in the controller Equation (4),
and then an accelerated feedback or sensing the external loads τe
is necessary. If we selectH = M, the closed-loop system Equation
(4) is given by

M ¨̄2 + D(t) ˙̄2 + K(t)2̄ = τe (33)

which is very similar to the adaptive control law based closed-
loop system Equation (31). However, if the dynamics model
Equation (1) is not accurate, then the error terms 1M(2)2̈,
1C(2, 2̇)2̇, and 1N(2) will appear in the closed-loop system
Equation (4), as well as in the system Equation (33), so that some
more complex robust controllers have to be used to overcome
the effects caused by the un-modeled errors for guaranteeing
the stability of the closed-loop system Equation (4). On the
contrary, the adaptive control law Equation (10) has considered
the un-modeled error and updated the virtual reference model
χ(2, 2̇, 2̇r , 2̈r)ρ̂ in the controller Equation (10) online by using
the parameter estimator Equation (11). This makes the virtual
velocity vectors s and the parameters errors ρ̄ be bounded, and
finally, the virtual velocity vectors s → 0 as t → ∞. On the

surface s = ˙̄2 + 32̄ = 0, the stability of the state (2̄, ˙̄2) of
the closed-loop system is ensured by the Hurwitz matrix −3.
Thus, the two problems mentioned in Remark 2 can be resolved
or relaxed by using the MRAC based time-varying impedance
controller.
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REMARK 6. It is also worth noting that, in general, the external
loads τe cannot be estimated by using the linearly parameterized
form Equation (9). Thus, for some accurate force tracking control
tasks, the linearly parameterized form Equation (9) should be
changed as

M(2)2̈r + C(2, 2̇)2̇r + N(2) = χ(2, 2̇, 2̇r , 2̈r)ρ (34)

then under the control law Equation (10) and the parameter
estimator Equation (11), the closed-loop system can be given as

M ¨̄2 + D(t) ˙̄2 + K(t)2̄ = χρ̄ + τe (35)

where the control parameter selection Equation (27) is
considered. Since the right side of Equation (35) is bounded
under control law Equation (10) with the parameter estimator

Equation (11), the origin (2̄, ˙̄2) = (0, 0) of the system Equation
(35) is still globally uniformly stable in the Lyapunov’s sense.
However, the error term χρ̄ on the right side of Equation (35)
will cause certain force tracking errors. Thus, for accurate force
tracking control tasks, measurement of external loads is required,
and the MRAC based control law should be changed as

{

τa = χ(2, 2̇, 2̇r , 2̈r)ρ̂ − KDs− τe
˙̂ρ = −Ŵ−1χTs

(36)

then the closed-loop system Equation (35) will changed to that
same as Equation (31).

4. NUMERICAL SIMULATIONS

To test the feasibility of the proposed adaptive time-varying
impedance controller, a model-uncertain planar 2R manipulator
is adopted as the plant. Suppose the mass of two links arem1 and
m2, respectively, the inertia of two links is I1 and I2, respectively,
the length of two links is L1 and L2, respectively, the distance
between the mass center of links and joint axes are Lc1 and Lc2,
respectively, the dynamic equation of planar 2R manipulator can
be given as

[

m11 m12

m21 m22

] [

θ̈1
θ̈2

]

+

[

c11 c12
c21 c22

] [

θ̇1
θ̇2

]

=

[

τ1
τ2

]

(37)

where θ1 and θ2 are the joint angles of the two links, m11 =

ρ1 + 2ρ3 cos θ2, m12 = ρ2 + ρ3 cos θ2, m21 = m12, m22 = ρ2,
c11 = −ρ3 sin θ2θ̇2, c12 = −ρ3 sin θ2(θ̇1 + θ̇2), c21 = ρ3 sin θ2θ̇1,
and c22 = 0 with ρ1 = I1 + m1L

2
c1 + I2 + m2(L

2
1 + L2c2), ρ2 =

I2 + m2L
2
c2, and ρ3 = m2L1Lc2. For the planar 2R manipulator,

the linearly parameterized form Equation (34) can be expressed
as

χρ =

[

χ11 χ12 χ13

χ21 χ22 χ23

]





ρ1
ρ2
ρ3



 (38)

TABLE 1 | Physical parameters of the planar 2R manipulator.

Parameter

Symbols

Initial value

used in ρ̂

Actual value

of the plant

Physical

Units

m1 0 2.0 kg

m2 0 2.0 kg

L1 0 0.5 m

L2 0 0.6 m

Lc1 0 0.3 m

Lc2 0 0.4 m

I1 = m1L
2
c1 0 0.18 Kg ·m2

I2 = m2L
2
c2 0 0.32 Kg ·m2

TABLE 2 | Control parameters of the adaptive controller.

Parameters Symbols Values Physical

Units

Coefficient γ 0.04 /

Inertial ma-

trix
M Given by (37) Kg ·m2

Coefficient

matrix
3 γM−1 (Kg ·m2 )

−1

Coefficient

matrix
Ŵ 80I /

Desired stif-

fness matrix
K(t)





5+ 4 sin(π t) 0

0 5− 4 cos(π t)



 Nm/rad

Coefficient

matrix
KD

1
γ
K(t)M− C /

Desired dam-

ping matrix
D(t) γ I+ 1

γ
K(t)M Nm/rad/s

where χ11 = θ̈1r , χ12 = θ̈2r , χ13 = (2θ̈1r + θ̈2r) cos θ2 − (θ̇2θ̇1r +
θ̇1θ̇2r + θ̇2θ̇2r) sin θ2, χ21 = 0, χ22 = θ̈1r + θ̈2r , χ23 = θ̈1r cos θ2 +
θ̇1θ̇1r sin θ2. In the simulation, the control task is described as



















θd1 (t) =
π

4
+

π

6
sin(2π t) t ≤ 6s

θd2 (t) = −
π

4
+

π

5
sin(2π t) t ≤ 6s

θd1 (t) =
π

4
, θd2 (t) = −

π

4
t > 6s

(39)

and










τe =
[

0 0
]T

t ≤ 10s

τe =
[

5 −5
]T

10s < t ≤ 14s

τe =
[

0 0
]T

t > 14s

. (40)

The physical parameters of themanipulator are shown inTable 1,
and the control parameters are shown in Table 2, then the
response results of the closed-loop system Equation (35) are
plotted in the Figures 1–5.

According to the numerical simulation results, even though
the physical parameters of the plant are supposed to be zero
at the initial moment (see Figure 3 and Table 1), it shows that
system Equation (35) is uniformly stable for the controlled planar
2R manipulator. From Figures 1, 2, it can be seen that the joint
trajectory tracking errors are bounded and converge to zero
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FIGURE 1 | Responses of the joint position and their desired trajectories.

FIGURE 2 | Responses of the joint position errors.

FIGURE 3 | Trajectories of the parameter estimates.

FIGURE 4 | Actuation torques of the 2R manipulator during the control task.

when the trajectory tracking task is switched to a stabilization
task after the time is larger than 6s. Meanwhile, from Figure 3,
it is observed that the parameter estimates ρ̂ are changed to
constant values, and from Figure 4, one sees that the actuation

FIGURE 5 | A local enlarged drawing of the actuation torques when the

external loads are acting.

FIGURE 6 | Responses of the joint position and their desired trajectories of

the comparison method.

torques converge to zero after the desired joint trajectories θdi (t)
are constants. When the time is falling in the interval t ∈

(10, 14](s), there are non-zero external loads τe =
[

5 −5
]T

acting on the joints, and then the joint angles demonstrate large
deviations (as shown in Figure 2) due to the small given closed-
loop stiffness K(t) (as shown in Table 2). Since the desired joint
stiffness K(t) is time-varying, the joint position deviations are
varying even though the external loads τe are constant. Figure 5
shows a local enlarged drawing of the actuation torques during
τe 6= 0. It is observed that the average values of the actuation

torques happen to be τa ≈
[

5 −5
]T
, since the planar 2R

manipulator moves in the horizontal plane [see Equation (37)
where the gravity of the manipulator is not considered here],
then the actuation torques τa should balance the external loads
τe. However, due to the desired time-varying stiffness K(t), the
parameter estimates ρ̂ show certain fluctuations (such that ρ̄ 6=

0), then the error term χρ̄ shown in Equation (35) causes the
actuation torques τa to show certain fluctuations. The selection
of controller parameters γ and Ŵ affect the performance of the
system. We make a performance analysis of the closed-loop
control system with different parameters γ and Ŵ. We found
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FIGURE 7 | Responses of the joint position errors of the comparison method.

FIGURE 8 | Actuation torques of the 2R manipulator during the control task of

the comparison method.

that with other conditions unchanged, when Ŵ increases within a
certain range, the root-mean-square error (RMSE) of the joint
position will increase, and the peak value of the error 2̄ will
also increase, while the RMSE of control torque will decrease.
When γ is too large or too small, the performance of the
control system will deteriorate. Therefore, the state-independent
property allows us to tune the controller parameters offline in
advance through simulation, which lays a good foundation for
ensuring the performance of the robot.

In order to verify the effectiveness of the controller proposed
in this article, we also compared it with the controller in He
et al. (2020). Under the same initial conditions and parameters
as the proposed controller, the simulation of the comparison
controller is carried out, and the response results of the closed-
loop system under the comparison controller are shown in
Figures 6–8. Comparing Figures 2, 7, we can get that the RMSE

of the joint position under the proposed controller in Figure 2

is 0.416 and 0.494, while the RMSE of the joint position under
the comparison controller in Figure 7 is 0.865 and 1.337. Then, it
can be concluded that the controller proposed in this article can
better realize the trajectory tracking control with higher accuracy.
From the simulation results, we can also get that the proposed
controller has a smaller peak error. All these simulation results
verify the effectiveness of the controller proposed in this article.

5. CONCLUSION

Under the design frame of an MRAC based control system, a
time-varying impedance controller is proposed for manipulators
with uncertain structure parameters. We show that the proposed
controller does not need to use acceleration-based feedback
or measurement of the external loads, and the adaptive
controller can tolerate considerable structure parameter errors.
By employing a Lyapunov-like stability analysis approach,
the globally uniform stability of the time-varying closed-loop
system is analyzed, and a simple controller parameters selection
approach is presented. Through a planar 2R manipulator, the
feasibility of the proposed control method is verified by some
numerical simulations. Our future work will focus on the anti-
interference ability of the proposed controller.
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