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Assistive exoskeleton robots are being widely applied in neurorehabilitation to improve

upper-limb motor and somatosensory functions. During robot-assisted exercises, the

central nervous system appears to highly attend to external information-processing (IP)

to efficiently interact with robotic assistance. However, the neural mechanisms underlying

this process remain unclear. The rostromedial prefrontal cortex (rmPFC) may be the core

of the executive resource allocation that generates biases in the allocation of processing

resources toward an external IP according to current behavioral demands. Here, we used

functional near-infrared spectroscopy to investigate the cortical activation associated

with executive resource allocation during a robot-assisted motor task. During data

acquisition, participants performed a right-arm motor task using elbow flexion-extension

movements in three different loading conditions: robotic assistive loading (ROB), resistive

loading (RES), and non-loading (NON). Participants were asked to strive for kinematic

consistency in their movements. A one-way repeated measures analysis of variance and

general linear model-based methods were employed to examine task-related activity.

We demonstrated that hemodynamic responses in the ventral and dorsal rmPFC were

higher during ROB than during NON. Moreover, greater hemodynamic responses in

the ventral rmPFC were observed during ROB than during RES. Increased activation

in ventral and dorsal rmPFC subregions may be involved in the executive resource

allocation that prioritizes external IP during human-robot interactions. In conclusion,

these findings provide novel insights regarding the involvement of executive control during

a robot-assisted motor task.

Keywords: frontal pole, prefrontal cortex (PFC), NIRS (near-infrared spectroscopy), Hybrid Assistive Limb (HAL®),
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INTRODUCTION

Stroke represents the second most common cause of mortality
and the third most common cause of disability worldwide
(Lozano et al., 2012). Despite considerable progress in the
management of acute stroke, many stroke survivors experience
various functional deficits, which severely affect their ability to
fulfill daily tasks. Robotic devices have emerged as rehabilitation
tools capable of providing task-specific, intensive, and multi-
sensory training (Sivan et al., 2011; Turner et al., 2013; Calabrò
et al., 2016) while reducing manpower and labor requirements
during the therapeutic process. Among the multiple types of
robots developed, assistive exoskeleton robots based on human
motion intention detection represent a promising technology,
given their ability to augment the performance and improve
the motor function of users (Godfrey et al., 2013; Klamroth-
Marganska et al., 2014; Sale et al., 2014; Takahashi et al.,
2016). Due to their direct reflection of a human movement
intention, bioelectrical signals from muscle regions have been
commonly employed in techniques used for controlling assistive
exoskeleton robots (e.g., Hybrid Assistive Limb system) (Sankai
and Sakurai, 2018). Additionally, exoskeleton robots can also
be controlled using a performance-based method, in which
assistive forces are adjusted to support the user’s movement
based on his or her motor performance (e.g., InMotion 2.0
system) (Krebs et al., 2003). Brain-controlled exoskeletons have
been used as brain-computer interfaces (BCIs) in assistive
exoskeleton robots to decode brain processes from brain
signals, such as electroencephalography (EEG) (Hong and
Khan, 2017; Choi et al., 2020) or hemodynamic signals
(Khan and Hong, 2017; Asgher et al., 2021), and convert
them into output motor commands (e.g., BCI-Manus system).
Determining the effects of robot-assisted rehabilitation requires
a deeper understanding of the mechanisms underlying human-
robot interactions.

Since processing resources are limited (Miller and Cohen,
2001), the executive processes that direct the central nervous
system to the most relevant information processing (IP)
according to the current behavior constitute an important feature
of high-level function (Burgess et al., 2007a; Dixon et al.,
2014). Regarding the motor domain, external IP deals with
behavior that requires interaction with external influences, while
internal IP occurs during self-generated or -paced movements.
A series of earlier studies by Burgess et al. proposed that when
the human mind is occupied with a given task, it involves
high-level processes that govern the allocation of processing
resources (Burgess et al., 2007a,b; Burgess and Wu, 2013). In
particular, such processes engage an executive control system
centered on the rostral prefrontal cortex (also known as the
frontopolar cortex) to evaluate the ongoing behavior and bias
the allocation of processing resources toward the IP relevant
to the current behavioral goal, termed as executive resource
allocation. Under this framework, the lateral part of the rostral
PFC (rlPFC) biases toward internal IP, whereas the medial part of
the rostral PFC (rmPFC), especially its most anterior subdivision,
prioritizes external IP. Supporting this hypothesis, converging
neuroimaging evidence has revealed increased activation in
the rmPFC and rlPFC during task performance influenced by

external and internal IP, respectively (Gilbert et al., 2006, 2007;
Simons et al., 2008; Henseler et al., 2011).

Multiple lines of evidence suggest that performing a motor
task with an assistive exoskeleton robot requires the central
nervous system to focus on external IP. For instance, assistive
exoskeleton robots provide physical support for the subject
to perform a task via assessing their motion intentions in
real-time (Lenzi et al., 2012). Therefore, the somatosensory
response generated by the external physical coordination of
the human limb with the assistive exoskeleton robot plays
an important role in the adaptive control of human-robot
interaction. Furthermore, robot-assisted motor learning is
strongly associated with augmented somatosensory feedback
processing (Sigrist et al., 2013; Maeda et al., 2018). Human-robot
interactions specifically yield robust somatosensory feedback of
assisted movements to the central nervous system, facilitating
improved generation of internal dynamic models for movement
guidance in the performer (Sigrist et al., 2013). These processes
form closed-loop action-perception pathways that promote
sensorimotor stimulation, which drives brain plasticity. Based
on the above findings, the processing of external information
contributes substantially to motor performance and learning
by assistive exoskeleton robots. This necessitates prioritizing
external IP during human-robot interactions, thereby involving
the executive resource allocation that depends on the rmPFC.
Although sensorimotor system involvement in robot-assisted
motor tasks has been investigated extensively (Kim et al., 2016;
Saita et al., 2017, 2018; Simis et al., 2018; Berger et al., 2019),
the underlying high-level control mechanisms that govern the
allocation of processing resources during a motor task with an
assistive exoskeleton robot have not been elucidated.

The role of the rmPFC in top-down executive control in
the performance of novel motor tasks has been investigated
in a variety of study contexts. For example, several functional
near-infrared spectroscopy (fNIRS) studies have reported that
the involvement of high-level cognitive activities of PFC areas,
including the rmPFC, is involved in learning novel upper limb
motor skills (Ishikuro et al., 2014; Kobayashi et al., 2021). Recent
work on fNIRS-based neurofeedback training also found that
the anterior PFC, which corresponds to the rmPFC in this
study, plays a role in top-down modulation of activity in the
sensorimotor cortex in order to optimize motor performance
(Ota et al., 2020). Studies on BCI have also shed light on rmPFC
functions. In fNIRS-based BCI systems, rmPFC hemodynamic
signals during motor imagery and execution have been used
to detect user’s intention of movements (Naseer and Hong,
2015; Hong et al., 2017; Peng et al., 2018a; Khan et al., 2020).
Movement-related cortical potentials have also been successfully
decoded from EEG-based signals in the rmPFC (Min et al., 2017;
Koizumi et al., 2018). These signals are useful in controlling
brain-controlled exoskeletons designed to augment the user’s
sensorimotor functions (Agashe et al., 2016; Hong and Khan,
2017; Khan and Hong, 2017; Liu et al., 2018; Asgher et al., 2021).
Moreover, a limited number of studies have been conducted
to investigate the effect of robot-assisted tasks on cortical
reorganization (Youssofzadeh et al., 2016; Saita et al., 2017,
2018; Memar and Esfahani, 2018; Berger et al., 2019; Peters
et al., 2020). Most of these investigations, however, did not
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look at the rmPFC activity. Notably, A few EEG studies have
reported significant functional connectivity among brain regions
within the fronto-centro-parietal network during robot-assisted
gait training (Youssofzadeh et al., 2016; Memar and Esfahani,
2018). This network has been regarded as the top-down executive
control network, with the rmPFC area being a higher-order
component (Peng et al., 2018b), may be involved in human-robot
interactions. Despite the findings of the previous studies, the role
of the rmPFC in top-down executive control over human-robot
interactions remains unclear.

fNIRS is emerging as a practical imaging tool for assessing
the cortical activity of the cerebrum during motion-demanding
tasks. fNIRS is a non-invasive and low-cost optical technique
that measures concentration changes in oxygenated hemoglobin
(oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) in cortical
microvasculature. fNIRS signals have been proven to be
associated with cortical activation (Okamoto et al., 2004; Hoge
et al., 2005) and BOLD signals (Cui et al., 2011; Scarapicchia et al.,
2017), indicating the feasibility of fNIRS analysis to detect human
cortical activity. Because this modality has no restriction on the
participant and high tolerance against motion artifacts, fNIRS-
based experiments are carried out in unconstrained settings with
free limb movements, allowing for more robust reproductions of
genuine cognitive processes. fNIRS, therefore, has been widely
applied in many motor control studies involving upper limb
movement (Ishikuro et al., 2014), walking (Mihara et al., 2007),
and social interaction (Urakawa et al., 2015). Thus, fNIRS is
an optimal neuroimaging approach for investigating the cortical
activity of the cerebrum during human-robot interactions.

The present study aimed to investigate the cortical activity
associated with executive resource allocation during a motor
task with an assistive exoskeleton robot. We employed a single-
joint version of the Hybrid Assistive Limb (HAL-SJ) system,
a wearable assistive exoskeleton robot developed to aid upper
and lower limb functions (Sankai and Sakurai, 2018). HAL-
SJ provides robotic assistance for human limb movement
by detecting bioelectrical signals from extensor-flexor muscle
regions (Morishita and Inoue, 2016; Suzuki et al., 2016). Elbow
flexion-extension movements that require kinematic consistency
were adopted as the primary task. During fNIRS recordings,
healthy participants prepared for and performed the motor
task in three loading conditions requiring different degrees of
external IP in ascending order: non-loading (NON), resistive
loading (RES), and robotic assistive loading (ROB) condition.
Investigating brain activation during robot-assisted motor tasks
in healthy participants will aid in understanding how this
task activates the brain differently across clinical groups. The
outcomes of this study would serve as a baseline for future
research to further investigate the neural mechanisms of human-
robot interactions in healthy and disease-affected populations.
We hypothesized that by providing robotic assistance to
voluntary elbow movements, the executive process would be
involved in generating bias for the allocation of processing
resources toward external IP during the motor task, resulting in
greater activation of rmPFC subregions during ROB compared
to other loading conditions. To the best of our knowledge, this
is the first study using fNIRS to assess the cortical manifestation

of the executive resource allocation during a robot-assisted
motor task.

MATERIALS AND METHODS

Participants
In total, 26 healthy participants (13 females and 13 males,
age range: 22.12 ± 1.34 years) were enrolled in this study.
Participants were right-hand dominant as assessed using the
Edinburg Handedness Questionnaire (88.74 ± 15.63). None
of the participants reported a medical history of neurological
or psychiatric disorders, or any orthopedic injuries that
impaired upper limb sensorimotor function. Participants were
instructed to avoid consuming any caffeine or alcohol-containing
substances for at least 12 h prior to experiments. Participants
were informed about the study’s purpose and provided written
informed consent before participation. All procedures were
in compliance with the Declaration of Helsinki and the
United States Code of Federal Regulations for the protection
of human participants. The present study was approved by the
Human Ethics Committee of Hiroshima University (No. C-114).

Apparatus
The HAL-SJ (Cyberdyne Inc., Tsukuba, Irabaki, Japan) is a
wearable assistive exoskeleton robot that can be attached to the
elbow or knee to support flexion and extension joint motions.
The Cybernic Voluntary Control mode in HAL-SJ provides
assistive forces to facilitate joint movements based on human
motion intentions for human motion detected via bioelectrical
signals from muscles. In this study, the HAL-SJ was set on the
lateral side of each participant’s right arm with two pairs of
surface electrodes attached to the muscle belly of the biceps and
triceps brachii muscles (Figure 1A). The setting parameters for
HAL-SJ were standardized across participants, with an assistive
gain of 45% and an assistive balance of zero between flexor and
extensor motions.

A self-built resistance exoskeleton device was designed to
apply constant resistive force on voluntary elbow movements of
the right elbow. The resistance exoskeleton device was set on the
medial side of the right arm and consisted of a 1◦-of-freedom
elbow joint with two bars attached to the arm and forearm
(Figure 1A). During experiments, the resistance degree imposed
by the device was controlled at∼95 Nm/rad for all participants.

Task Conditions
Participants were seated in an upright position facing an LCD
monitor (23 inches; Flexscan EV 2316V, Eizo, Japan) with a
participant-monitor distance of 90 cm. Participants placed their
right elbow on an elbow-rest and aligned the right arm to
the starting posture, in which the arm was in line with the
horizontal plane, with a 30◦-flexed shoulder and a 40◦-flexed
elbow (Figure 1B). A chinrest was used to limit participants’
head motion. As the present study focused on the information-
processing of somatosensory feedback induced by human-robot
interactions, participants were required to visually fixate on
a cross displayed at the center of a monitor throughout the
experiments in order to focus on somatosensory feedback while
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FIGURE 1 | Experimental setup. (A) The HAL-SJ and the resistance exoskeleton device are mounted on the lateral and medial sides of the right arm, respectively. (B)

Experimental setup from a sagittal view. During the task execution phase, participants were required to perform cyclic elbow flexion-extension movements with the

ROM from 40 to 120◦ (dash line). (C) The simplified schematic of the experimental trial protocol. Each task period was 30 s long, including a 10-s preparation phase

and a 20-s execution phase. The post-task period was pseudo-randomized between 20, 30, and 40 s. HAL-SJ, single-joint version of the Hybrid Assistive Limb;

ROM, range-of-motion.

minimizing visual feedback during motor performance. Three
different loading conditions for right elbow movements were
assigned to each participant in a pseudo-randomized order:
NON, RES, and ROB conditions. In the NON condition,
elbow movements were self-controlled without external loading,
demanding minimal operation of external IP. In the RES
condition, a self-built resistance exoskeleton device was used to
impose constant resistive force on elbow movements, apparently
involving a higher level of external IP than NON. In the ROB

condition, elbow movements were performed using a combined
configuration of HAL-SJ and the resistance exoskeleton device
(Figure 1A), which applied assistive and resistive forces on joint
motions. The HAL-SJ was set to the Cybernic Voluntary Control
mode which allows it to provide real-time external assistance
to elbow movements by detecting human motion intention via
bioelectrical signals from muscle activation. During ROB, the
physical interaction between voluntary movement and intention-
based robotic assistance may induce new and complex sensory
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feedback, requiring the highest degree of external IP among the
three conditions.

Task Procedure
Each session consisted of four consecutive trials in a block
paradigm, carried out as follows: Baseline period—Task period—
Rest period (Figure 1C). Each task trial commenced with a
baseline period, during which participants were required to
relax their right arm for 20 s while baseline hemodynamic
responses were recorded. We designed a 30-s task period
comprising two phases: a 10-s task preparation and a 20-s task
execution. The start of the preparation phase was signaled by
a verbal command “10 s left” from the experimenter, during
which participants were instructed to prepare for the upcoming
motor task without performing any actual movements or muscle
contractions. The execution phase commenced after a beep was
presented. Participants were then allocated 20 s to perform cyclic
elbow flexion-extension movements with a range of motion
(ROM) from ∼40◦ to 120◦ (Figure 1B). Movement frequency
was limited to 0.5–1Hz. Participants were encouraged to strive
for kinematic consistency in their ROM of flexion-extension
movements, referred to as task performance. The task period
ended after two beeps, which cued participants to return their
arms to the starting posture and rest until the next trial.

A complete experimental session lasted ∼4min, with a 5-
min inter-session interval for setting up the new condition.
The total experimental duration was 25min per participant.
After completing the experimental conditions, participants were
required to complete a VAS that examined subjective measures
of effort on the task performance (from “very low degree” to
“very high degree”) for each condition. Prior to participation,
participants were familiarized with the task by undergoing several
practice trials for each condition.

Behavioral Data Acquisition and Exclusion
Criteria
To measure the absolute angle information of the forearm, a
motion sensor (MPU9250; TDK InvenSense, CA, USA) was
set up at the right wrist. The device featured 16-bit data
outputs in the range of ±2G for each of the three acceleration
axes and ±2,000 degrees per second (dps) for each of the
three gyroscopic axes, with a sampling frequency of 500Hz. A
microcontroller (ARM mbed LPC1768; NXP Semiconductors,
Eindhoven, Netherlands) input the acquired data to a Madgwick
filter, calculated the attitude estimation of the absolute angle of
the forearm with a sampling frequency of 20Hz, and sent the
absolute angle information to a PC. The ROM for each cyclic
elbow movement was determined by subtracting the minimal
angle from the maximum angle. The standard deviation (SD) of
the ROM for each trial was generated across all movements. For
statistical analysis, kinematic variability in each condition was
quantified by calculating the average SD values across trials.

Behavioral performance was recorded using a video recording
device (iPhone; Apple Inc., CA, USA). To additionally assess
the quality of interaction between voluntary movements of
participants and external assistance of the HAL-SJ, the number
of jerks during ROB performance was measured for each trial

using visual inspection. For statistical analysis, the mean number
of jerks across four trials was calculated for each participant.

To confirm the participant’s compliance with task instructions
during the experiment, their behaviors were evaluated visually
and electromyographically. To monitor the muscular activity of
arm muscles, bipolar surface electrodes with an inter-electrode
distance of 10mm were placed over the muscle belly of the
right bicep and tricep muscles. A reference electrode was
attached to the left wrist. EMG signals were acquired with
a band-pass filter from 10 to 500Hz at a sampling rate of
1 kHz using an EMG system (EMG Master; Mediarea Support
Business Union, Okayama, Japan). The processed EMG tracings
were visually inspected to detect muscle contractions. One
individual participant data with more than two trials containing
incorrect behaviors such as poor performance, marked body
movements, lack of attention, or noticeable muscle activity
during non-execution periods in any condition were excluded
from subsequent data processing and statistical analyses. As a
result, there was a total of the remaining 18 participants analyzed
(10 females and 8 males, age range: 22.11± 1.49 years).

fNIRS Data Acquisition
A multi-channel fNIRS system (FOIRE-3000; Shimadzu, Kyoto,
Japan) was employed to measure cortical hemodynamic activity
during experiments with a sampling rate of 7.69Hz or a
temporal resolution of 130ms. The temporal resolution used
in this study is relatively comparable to that used in previous
fNIRS studies of human-robot interactions (Saita et al., 2018;
Berger et al., 2019). Given that task-related brain activities
were assessed across a 10-s interval or longer, a sampling rate
of 7.69Hz offered adequate bandwidth to detect changes in
hemodynamic responses. Specifically, the measured changes in
light absorption recorded at three wavelengths (780, 805, and
830 nm) via semiconductor laser diodes were transformed into
corresponding concentration changes in oxy-Hb, deoxy-Hb, and
total hemoglobin (total-Hb) using the modified Beer–Lamberts
law (Delpy et al., 1988). These values were assessed using the unit
of molar concentration multiplied by length (mM×mm). Given
that changes in oxy-Hb signal are the most sensitive indicator
of changes in regional cortical blood flow and have the highest
signal-to-noise ratio (Okamoto et al., 2004; Hoge et al., 2005),
the analysis and discussion in this study focused primarily on
changes in oxy-Hb concentration.

Optodes were fixed to each participant’s scalp using a
customized head cap with a 30-probe layout (14 sources and
16 detectors) (Figure 2A). Optical probes comprised 42 long-
separation channels (with a 3-cm source-detector distance),
covering cerebral cortical regions including the rmPFC, dlPFC,
premotor area (PM), primary motor cortex (M1), and primary
somatosensory cortex (S1) (Figure 2B). As the fNIRS signal
is derived from both regional cortical blood flow and scalp
blood flow (Takahashi et al., 2011), we also used four short-
separation channels (with a 1.5-cm source-detector distance)
that measured hemodynamic signals from extracranial tissues
(e.g., scalp and skull). Signals from these short channels were
used for data processing. Probes were placed according to the
international 10–20 electroencephalogram electrode system, with
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FIGURE 2 | fNIRS data acquisition. (A) fNIRS optode layout design. Red and blue-filled circles represent light sources and detectors, respectively. Yellow and gray

rectangles represent long separation channels with and without short separation channels, respectively. The midline central point (Cz) is located underneath the 12th

channel. The source-detector distance is 3 cm. (B) The cortical mapping shows estimated spatial information of the measurement on the surface of the cerebral

cortex using the current fNIRS optode configuration. (C) Grand-average oxy-Hb responses in the ventral rmPFC during ROB (red line), RES (blue line), and NON

(green line). The task onset is at 0 on the x-axis. The time series were corrected to the baseline defined as the mean value over 2 s before the onset. fNIRS, functional

near-infrared spectroscopy; oxy-Hb, oxy-hemoglobin; rmPFC, rostromedial prefrontal cortex. Data are expressed as the mean with standard error (SE).
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the midline central point of the scalp (Cz) positioned beneath the
12th channel. To obtain channel-related anatomical information,
a 3D digitizer (FASTRAK, Polhemus, Colchester, Vermont,
USA) was used to record the 3-dimensional position of each
optical probe and four reference landmarks including nasion,
Cz, left auricular, and right auricular points. Channel locations
were estimated from coordinates of optodes and reference
points using the Montreal Neurological Institute standard
space coordinates. To anatomically label fNIRS channels,
probabilistic mapping between each fNIRS channel and its
corresponding Brodmann Areas (BA) was performed using the
open-source software package Statistical Parametric Mapping
for NIRS (NIRS-SPM, BISP Lab, Daejeon, Korea) implemented
in MATLAB (MathWorks, Natick, Massachusetts, USA). The
channel sets for regions of interest (ROIs) were selected based
on BAs and anatomical locations of cortical areas for each
participant (Table 1). To investigate neural signals in subregions
of the rmPFC, channels within BA 10 were classified into two
subdivisions along the ventral-dorsal axis: the ventral rmPFC,
located in the ventral-middle part of BA 10 adjacent to BA 11
(orbital prefrontal cortex); and the dorsal rmPFC, positioned in
the dorsal-middle part of BA 10 adjacent to BA 9 (dorsolateral
prefrontal cortex).

To deal with motion artifacts possibly induced by body
movements, fNIRS signals were processed using a method based
on moving SD and spline interpolation (Scholkmann et al.,
2010). This approach computed the SD of each data segment
and identified motion artifacts based on the SD threshold.
The data segments containing the motion artifact would then
be spline interpolated. A band-pass filter with a 0.01–0.1Hz
cutoff frequency range was then applied to remove concomitant
systemic responses from the signal. Next, we employed a
technique called direct subtraction to remove these extracerebral
hemodynamic components from the neural data. Each long
channel was linked with the short channel that is closest to it. The
corrected hemodynamic response was obtained by subtracting
the corresponding short channel signal from the long channel
signal. The preceding data analyses were carried out with the

use of commercial fNIRS analysis software (Advanced ROI;
WAWON DIGITECH, Japan). The oxy-Hb time-series in each
channel were corrected to baseline values, determined as the
mean over 2 s prior to the onset of the task period. Subsequently,
the oxy-Hb time-series were averaged across trials and ROI-
wise channels to generate ROI time-series for each condition.
Based on the ROI time-series, mean oxy-Hb changes were used
as an index of cortical activation and were calculated separately
for each task phase, namely the preparation phase (0 to 10 s)
and execution phase (15 to 35 s), with the task onset set at
0 s. The time window for the execution phase was defined
based on the temporal characteristics of blood oxygenation
hemodynamic responses.

Based on previous evidence (Schroeter et al., 2003), we
employed effect size as an index of brain activation due
to its robustness to differential path-length factors. For each
channel, the effect size in each execution period was calculated
as the difference between the mean oxy-Hb changes in the
execution window (15–35 s) and baseline window (−5–5 s),
divided by the SDs of the baseline window. For statistical
analysis, the effect sizes were averaged across trials and
ROI-wise channels to generate the average effect sizes for
each condition.

The fNIRS data were also analyzed using general linear
model-based approaches in NIRS-SPM (Ye et al., 2009), in which
actual hemodynamic responses were compared to models of
theoretical responses to calculate t-statistics for each channel.
Three comparisons were investigated: ROB vs. RES, ROB vs.
NON, and RES vs. NON. The general linear model method
compared the theoretical model with actual hemodynamic
responses to calculate t-statistics for each channel. Group-level
t-statistic maps were generated to visualize execution-related
activation for each comparison at a p < 0.0167 or 0.05/3.
The results on the map were interpolated across participants
and between channels due to anatomical variation (e.g., head
shape and size) and channel spacing, respectively (Ye et al.,
2009). Alignment of analysis results based on mean oxy-Hb
changes, average effect sizes of hemodynamic responses,

TABLE 1 | Anatomically labeled fNIRS channel locations using Brodmann areas.

Channels Brodmann areas (BA) Regions of interest (ROI) Abbreviation

1, 3 BA 1, 2, 3 Right primary somatosensory cortex Right S1

2, 5 BA 1, 2, 3 Left primary somatosensory cortex Left S1

6, 7, 10 BA 4 Right primary motor cortex Right M1

8, 9, 14 BA 4 Left primary motor cortex Left M1

11, 15, 16, 19 BA 6 Right premotor and supplementary motor cortex Right PM

13, 17, 18, 23 BA 6 Left premotor and supplementary motor cortex Left PM

28, 31, 33 BA 9, 46 Right dorsolateral prefrontal cortex Right dlPFC

30, 32, 35 BA 9, 46 Left dorsolateral prefrontal cortex Left dlPFC

34, 36, 37 BA 10 Dorsal rostromedial prefrontal cortex Dorsal rmPFC

39, 31, 32 BA 10 Ventral rostromedial prefrontal cortex Ventral rmPFC

The channel sets for ROIs were individually adjusted for each participant based on NIRS-SPM probabilistic mapping.

fNIRS, functional near-infrared spectroscopy; ROIs, regions of interest; NIRS-SPM, Statistical Parametric Mapping for NIRS; BA, Brodmann Areas; rmPFC, rostromedial prefrontal cortex;

dlPFC, dorsolateral prefrontal cortex; PM, premotor area; M1, primary motor cortex; S1, primary somatosensory cortex.
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and group-level t-statistic maps would help better confirm
task-related cortical activity.

Statistical Analysis
The size of the extracted features for hemodynamic responses
are as follows: four consecutive trials in each three (ROB, RES,
and NON) conditions, total 10 ROIs selected from 38 channels.
One-way repeated-measures analysis of variance (ANOVA) tests
were used to examine the effect of conditionon indices of
cortical activation (mean oxy-Hb changes and average effect
sizes of hemodynamic response) for each ROI. To examine the
brain-behavior relationship, we conducted Pearson’s correlation
analysis between differences in execution-related mean oxy-Hb
changes in rmPFC subregions and average SD values. Bonferroni
post-hoc tests were applied for multiple comparisons (α =

0.0167). SPSS statistical package version 19.0 (IBM, Co. Ltd,
New York, USA) was used for statistical analysis. P ≤ 0.05 were
considered statistically significant.

RESULTS

Behavioral Results
One-way repeated measures ANOVA revealed significant
differences in average SD values among conditions [F(2,34) =

3.364, p = 0.046, Figure 3]. Post-hoc testing using Bonferroni
correction revealed that kinematic variability was significantly
higher during ROB than during RES (p= 0.033).

fNIRS Results
Illustrations of grand-average ROI time-series of mean oxy-Hb
changes in the ventral rmPFC during ROB, RES, and NON are
presented in Figure 2C.

One-way repeated measures ANOVA revealed significant
differences in preparation-related mean oxy-Hb changes among
conditions in the left dlPFC [F(2,34) = 4.28, p = 0.022]
(Figure 4A). Bonferroni post-hoc testing revealed that oxy-
Hb responses in the left dlPFC were significantly higher
during ROB and RES than during NON (p = 0.039 and
p= 0.012, respectively).

One-way repeated measures ANOVA also revealed significant
differences in mean oxy-Hb changes among conditions in the
three ROIs (Figure 4B): ventral rmPFC [F(2,34) = 22.10, p <

0.001], dorsal rmPFC [F(2,34) = 11.26, p < 0.001], and right
PM [F(2,34) = 5.80, p = 0.007]. Oxy-Hb responses in the ventral
rmPFC region were stronger during ROB than during RES (p =
0.002) and NON (p < 0.001). Cortical activation in the ventral
rmPFC was significantly greater during RES than during NON (p
= 0.020), whereas activity in the dorsal rmPFC was significantly
greater during ROB than during NON (p = 0.001). Oxy-Hb
responses in the right PM were significantly higher during RES
than during NON (p= 0.005).

One-way repeated measures ANOVA revealed significant
differences in average effect sizes of hemodynamic responses in
the ventral rmPFC [ROB: 4.07 ± 1.11, RES: 0.28 ± 1.02, NON:
−2.26 ± 0.81; F(2,34) = 17.872, p < 0.001], dorsal rmPFC [ROB:
2.76 ± 0.68, RES: −1.18 ± 1.08, NON: −2.08 ± 0.87; F(2,34)
= 10.74, p < 0.001], and right PM [ROB: 0.83 ± 0.64, RES:

FIGURE 3 | Average changes in kinematic variability for three conditions.

Comparisons of average changes in kinematic variability for ROB, RES, and

NON. *p < 0.05. Data are expressed as the mean with standard error (SE).

1.97 ± 0.43, NON: −0.46 ± 0.54; F(2,34) = 6.942, p = 0.003].
Significantly greater effect sizes were observed in ROB than in
RES (ventral rmPFC: p = 0.019, dorsal rmPFC: p = 0.011) and
NON (ventral rmPFC: p < 0.001, dorsal rmPFC: p < 0.001)
in ventral and dorsal rmPFC regions. Further, in the ventral
rmPFC, a significantly greater effect size was observed in RES
than in NON (p= 0.040), and in the right PM, the effect size was
significantly greater during RES than during NON (p = 0.001).
The results are detailed in the Supplementary Tables S1,S2.

Group-level t-statistic maps are presented in Figure 5. Group
analysis of the comparison between ROB and NON revealed
significant activity in both the ventral and dorsal parts of the
rmPFC (Figure 5A). For the comparison between ROB and RES,
increased cortical activation was specifically identified in the
ventral rmPFC (Figure 5B).

Correlation Results
Correlation analyses of the relationship between differences in
fNIRS data and task performance revealed that execution-related
mean oxy-Hb changes in the dorsal and ventral rmPFC during
ROB were positively correlated with average SD values (dorsal
rmPFC: r = 0.473, p = 0.047; ventral rmPFC: r = 0.480,
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FIGURE 4 | Average changes in oxy-Hb concentration of ROIs for three conditions. Comparisons of (A) preparation-related, and (B) execution-related oxy-Hb

changes of ROIs for ROB, RES, and NON. oxy-Hb, oxy-hemoglobin; ROIs, regions of interest; rmPFC, rostromedial prefrontal cortex; dlPFC, dorsolateral prefrontal

cortex; PM, premotor area; M1, primary motor cortex; S1, primary somatosensory cortex. *p < 0.05, **p < 0.01, ***p < 0.001. Data are expressed as the mean with

standard error (SE).

p = 0.044). However, neither of them survived after Bonferroni
correction. Additionally, no significant association was observed
between differences in cortical activity and behavioral measures,
including VAS scores and the number of jerks in ROB.

DISCUSSION

The present study aimed to investigate the effects of a robot-
assisted motor task on the cortical activity involved in the
executive resource allocation using fNIRS in healthy participants.
We hypothesized that human-robot interactions in ROB would
activate rmPFC subregions to bias the allocation of processing
resources toward external IP. Statistical analyses of hemodynamic
changes and effect sizes of hemodynamic responses revealed

greater activation in both the ventral and dorsal rmPFC during
ROB than during NON. Furthermore, activity in the ventral
rmPFC was greater during ROB than during RES. These findings
aligned with the results of group-level NIRS-SPM t-statistic
maps. These findings are novel, as the rmPFC activity associated
with executive resource allocation during a robot-assisted motor
task has not been previously investigated.

In accordance with our hypotheses, the comparison between
ROB and NON revealed increased activation in the rmPFC,
including the ventral and dorsal parts. Although aiming for
the same movement goal, NON purely involves self-control
movements associated with internal IP, whereas ROB requires
user interaction with external robotic assistance, thus engaging
high degrees of external IP. Moreover, our analysis showed
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FIGURE 5 | Group-level t-statistic map. Execution-related cortical activations, as determined by NIRS-SPM, for the comparisons between (A) ROB vs. NON, and (B)

ROB vs. RES. Higher t-values represent relatively higher levels of cortical activation.
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no difference in sensorimotor cortical activation, including M1
and S1, between conditions, indicating that the contrast of
ROB vs. NON is likely to reflect the different degrees of the
allocation of processing resources toward external IP instead of
motor control demand or sensory-perceptual load. Therefore,
our findings resonate with previous evidence reporting similar
brain patterns with increased rmPFC activation and indistinct
sensorimotor activities during externally oriented tasks, relative
to internally-oriented ones (Gilbert et al., 2006, 2007; Henseler
et al., 2011). The engagement of the rmPFC in a high-order
system that monitors behavioral demands and governs the
allocation of processing resources toward external IP has been
demonstrated (Gilbert et al., 2006; Burgess et al., 2007a; Simons
et al., 2008; Henseler et al., 2011; Burgess and Wu, 2013). The
rostral PFC, including the rostromedial region, is anatomically
interconnected with supramodal cortices in the PFC, anterior
temporal cortex, and cingulate cortex (Morán et al., 1987; Arikuni
et al., 1994; Petrides and Pandya, 1999). These connections
enable the rostral PFC to evaluate and modulate the multimodal
integration of processed information from downstream sensory
systems. Furthermore, the rmPFC exhibits coactivation with
sensory association cortices, the orbitofrontal cortex, posterior
cingulate cortex, striatum, and thalamus during externally
engaged conditions (Henseler et al., 2011). These regions are
known to form functional coordination that prioritizes the
processing of external feedback (Mesulam et al., 2001; Kiehl
et al., 2005; Sridharan et al., 2007; Williams et al., 2007; Diekhof
et al., 2009). A prior fNIRS-based BCI study examined rmPFC
hemodynamic responses during the Stroop task that is well-
known to involve a high level of external IP (Schudlo and
Chau, 2015). The results showed that signals in the rmPFC
area may be used to accurately decode external or stimulus-
oriented mental states, hence corroborating the view of the
rmPFC’s role in prioritizing external IP. Our results, together
with prior findings, suggest that during human-robot interaction,
the rmPFC activity is involved in top-down executive control that
biases the allocation of processing resources toward external IP.

Notably, we found increased rmPFC activation in the
ventral subregion, but not in the dorsal subregion, during
ROB, compared to RES. Motor performances during
both ROB and RES are likely to require participants to
consider external influences by assistive and resistive torques,
respectively. Compared to a relatively constant resistance,
physical coordination with robotic assistance by assessing user
intention appears to be more computationally demanding for
somatosensory feedback processes, engaging higher degrees of
external IP. Although our results found higher task performance
with ROB than with RES, we found no association between
differences in rmPFC activity and behavioral measures or
subjective feedback of effort on task performance. The above
findings suggest that the increased ventral rmPFC activation
of ROB vs. RES is unlikely to represent task difficulty effect
across conditions. Our results are supported by those of
previous studies suggesting that the most anterior part of
PFC, corresponding to the ventral rmPFC in this study,
plays a critical role in biasing the allocation of processing
resources toward the external IP according to current behavioral

demands (Gilbert et al., 2006, 2007; Burgess et al., 2007b;
Henseler et al., 2011; Burgess and Wu, 2013). A posterior-to-
anterior organization in hierarchical control of cognition by
the PFC has been proposed (Koechlin and Summerfield, 2007;
Rahnev, 2017). Under this framework, progressively anterior
subdivisions of the PFC operate as higher-order structures in
the hierarchy, representing progressive information-processing
aspects of cognition and deploying top-down control over
more posteriorly located regions. Therefore, it is plausible to
suggest that during a motor task with an assistive exoskeleton
robot, the rmPFC, especially its ventral subregion as a core
part, is crucial to the executive process that prioritizes the
processing of somatosensory feedback induced by physical
human-robot interactions.

Additionally, our analysis of preparatory activity across
conditions found a modulated activation in the dlPFC of ROB
vs. NON, whereas no difference in rmPFC was observed.
Preparing for impending tasks engages internal or stimulus-
independent cognition, whereby the brain exerts top-down
control to proactively mobilize processing resources to ensure
successful performance without external stimuli (Braver, 2012).
This process has been linked to the neural pre-movement
activity in the dlPFC (Miller and Cohen, 2001; Badre and
Nee, 2018), consistent with our findings. In contrast, the
executive resource allocation of the rmPFC operates based on an
external or stimulus-oriented cognition (Burgess et al., 2007a),
in which stimulation from distal sensory modalities is required
(Dixon et al., 2014). The above findings indicate the functional
dissociation of the rmPFC-centered executive process that drives
the allocation of processing resources with the endogenous
goal-directed preparation located on other prefrontal cortices.
Therefore, our results further support the executive involvement
of the rmPFC activity in prioritizing external IP during human-
robot interactions.

Taken together, our results suggest the involvement of
rmPFC in top-down executive control during the robot-assisted
motor task. This high-level aspect of cognitive control may be
essential for optimal human-robot interactions. Indeed, assistive
exoskeleton robots deliver motion aid based on the user’s motion
intentions. Physical interaction between people and robots
generates novel and extra sensory feedback that is experienced
intuitively, which leads to high kinematic variability (Berger
et al., 2019). This process, as demonstrated in this study, may
lead to more processing of external information, requiring the
top-down executive control of the rmPFC to externally bias
the allocation of processing resources. Although the role of the
rmPFC has not been directly investigated in previous studies
of robot-assisted motor tasks, there is indirect evidence for
the involvement of this region in human-robot interactions.
Previous fNIRS research demonstrated that adaptation to robot-
assisted motor tasks promotes the user’s active engagement,
which leads to greater variability associated with sensorimotor
cortex activation (Berger et al., 2019). Based on recent fNIRS
evidence on learning novel skillful movements, such a brain-
behavior association may be governed by top-down modulation
from the rmPFC (Ota et al., 2020; Kobayashi et al., 2021).
Furthermore, previous neuroimaging research revealed that
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providing robotic assistance for voluntary limb movement may
involve the fronto-centro-parietal network (García-Cossio et al.,
2015; Youssofzadeh et al., 2016; Memar and Esfahani, 2018),
which has been regarded as the top-down executive control
network, of which the rmPFC area is a higher-order component
(Peng et al., 2018b). Therefore, the current study, combined
with earlier findings, suggests that top-down executive control
involvement, particularly those relying on the rmPFC, is crucial
to human-robot interactions during robot-assisted motor tasks.

Implications
To the best of our knowledge, this study is the first one that
investigates the role of rmPFC subregions in executive resource
allocation during a robot-assisted motor task. Our findings
contribute to a better understanding of an aspect of top-down
executive control that determines and prioritizes the mode of
information processing best suited to the current behavior.
This executive process appears to be vital for adapting human-
robot interactions, demanding further research into the role of
the rmPFC in different robot-assisted modalities (e.g., assistive
lower limb exoskeleton). As the use of assistive exoskeleton
robots in life and rehabilitation grows more popular, gaining
a deeper grasp of the neural mechanisms underlying human-
robot interactions may have the potential to improve robotic
technology for rehabilitation and ergonomics. Our results, as
well as the analysis method and statistical methodology outlined
here, provide a helpful baseline that future researchers can use to
further examine human-robot interactions in healthy and clinical
populations in more depth.

Furthermore, our results may strengthen the use of the fNIRS-
based measurement of rmPFC activity as a useful brain indicator
in rehabilitation. Due to its tolerance to motion artifacts and
motor disabilities (Erdogan et al., 2019), hemodynamic responses
of the rmPFC regions have been proposed as a potential
signal source for BCI applications (Hong and Khan, 2017) and
therapeutic interventions (Kohl et al., 2020; Ota et al., 2020). Top-
down resource allocation toward external IP has been described
as an external or stimulus-oriented state of cognition (Dixon
et al., 2014). Our findings imply that such a cognitive state,
which appears to be crucial for human-robot interactions, may
be identified by rmPFC activity. This demonstrates the potential
for rmPFC activity to aid in the functional outcome assessment of
pre- and post-interventions with robot-assisted training. Future
studies with longer task duration and follow-up assessment will
help in further delineation of the role of the rmPFC in the
performance of robot-assisted tasks.

The present study also contributes to further promoting
the use of rmPFC signals in BCI applications. It has
been demonstrated that the PFC regions contain sufficient
information to accurately detect brain processes, including
sensorimotor processes, cognitive functions, and mental states
(Min et al., 2017; Khan et al., 2021; Liu et al., 2021). Our study has
untangled one of the rmPFC’s roles, which is related to stimulus-
directed cognitive states. This feature of rmPFC activity may be
important for effective human-machine communication where
feedback from the computer to the user is also a key aspect. In
future studies, attempts are encouraged to determine ways to

combine inputs from the rmPFC and other regions to improve
the interface between humans and machines.

The present study also highlights the capability of fNIRS to
detect brain changes while participants performed robot-assisted
motor tasks. This motivates the application of fNIRS in future
studies on human-robot interactions and motion-related tasks in
naturalistic settings.

Limitations
This study has several limitations. First, the fNIRS analysis
had low spatial resolution. Although this study focused on
hemodynamic responses in large-scale cortical regions, it would
be desirable for future studies to employ a highly dense fNIRS
probe set to obtain more precise information about task-related
neural signals. Second, our experimental tasks involved upper
limb and body movements, which may have induced noise
disturbance in the fNIRS data. To deal with motion artifacts, the
participants’ head movements were strictly suppressed across the
three conditions using a chinrest. The extracerebral components
were filtered out from the fNIRS data using signals from short-
separation channels, and motion artifacts were corrected using
a technique based on moving standard deviation and spline
interpolation. Despite our best efforts, completely filtering noise
from neural signals remains a challenge, necessitating further
research with more suitable paradigms to overcome these motion
artifacts. Third, our research solely assessed task-related brain
activity through regional hemodynamic responses, which may
not have taken into account the intricate relationships between
cortical regions. The combination of functional connectivity
among brain areas and regional cortical activities can help
provide a complete understanding of the neural mechanisms
underpinning human-robot interactions (Youssofzadeh et al.,
2016). Future studies on the connectivity patterns of brain
networks during robot-assisted tasks are required to expand
on the current findings. Fourth, the setting parameters for
HAL-SJ were standardized across all participants without taking
individual kinematic characteristics into account. Future studies
should consider personalized tuning for robotic assistance, which
may help further investigate the relationship between brain
activity and motor behavior.

CONCLUSION

In conclusion, this fNIRS study assessed the cortical mechanisms
of executive resource allocation during a robot-assisted motor
task. Our study demonstrated that, as compared to manual
motor tasks, robot-assisted task performance can increase brain
activity in rmPFC subregions. This rmPFC activation may be
associated with the top-down executive control that supports
human-robot interactions by prioritizing the processing of
external information. Our study contributes to the previously
unexplored understanding of how top-down executive control
operates and supports human-robot interactions. As the usage of
assistive exoskeleton robots becomes more common in life and
rehabilitation, this study may serve as a useful baseline for future
researchers to investigate human-robot interactions in healthy
and clinical populations in greater depth. Further investigations
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with follow-up assessment are warranted to extend the findings
of our study.
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