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Blind face restoration (BFR) from severely degraded face images is important in face

image processing and has attracted increasing attention due to its wide applications.

However, due to the complex unknown degradations in real-world scenarios, existing

priors-based methods tend to restore faces with unstable quality. In this article, we

propose a multi-prior collaboration network (MPCNet) to seamlessly integrate the

advantages of generative priors and face-specific geometry priors. Specifically, we

pretrain a high-quality (HQ) face synthesis generative adversarial network (GAN) and a

parsing mask prediction network, and then embed them into a U-shaped deep neural

network (DNN) as decoder priors to guide face restoration, during which the generative

priors can provide adequate details and the parsing map priors provide geometry and

semantic information. Furthermore, we design adaptive priors feature fusion (APFF)

blocks to incorporate the prior features from pretrained face synthesis GAN and face

parsing network in an adaptive and progressive manner, making our MPCNet exhibits

good generalization in a real-world application. Experiments demonstrate the superiority

of our MPCNet in comparison to state-of-the-arts and also show its potential in handling

real-world low-quality (LQ) images from several practical applications.

Keywords: blind face restoration, generative adversarial network, facial priors transformation, multi-prior

collaboration, deep neural networks

1. INTRODUCTION

Face images are always one of the most popular types of images in our daily life, which record long-
lasting precious memories and provide crucial information for identity analysis. Unfortunately,
due to the limited conditions in the acquisition, storage and transmission devices, the degradations
of face images are still ubiquitous in most real-world applications. The degraded face images not
only impede human visual perception but also degrade face-related applications such as video
surveillance and face recognition. This challenge motivates the restoration of high-quality (HQ)
face images from the low-quality (LQ) face inputs which contain unknown degradations (e.g., blur,
noise, compression), known as blind face restoration (BFR) (Chen et al., 2021; Wang et al., 2021;
Yang et al., 2021). It has attracted increasing attention due to its wide applications.

Face images have face-specific geometry priors which include facial landmarks (Chen et al.,
2018), facial parsingmaps (Chen et al., 2018, 2021), and facial heatmaps (Yu et al., 2018). Therefore,
many recent studies (Shocher et al., 2018; Zhang et al., 2018a, 2020; Soh et al., 2020) exploit
extra face prior knowledge as inputs or supervision to recover accurate face shape and details.
Benefiting from the incorporation of facial priors in deep neural networks (DNNs), these methods
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exhibit plausible and acceptable results on bicubic degraded faces.
However, when applied to real-world scenarios, they are not
applicable due to more complicated degradation. Additionally,
the geometry priors estimated from LQ inputs contain very
limited texture information for restoring facial details.

Other methods (Li et al., 2018, 2020b) investigate reference
priors to generate realistic results. Reference priors can be
only one face image, multiple face images, or facial component
dictionaries, which can provide many identity-aware face
details to the network. Nevertheless, when the identity of LQ
is unavailable, the practical applications of referenced-based
methods are limited. Additionally, the limited diversity and
richness of facial component dictionaries also result in unrealistic
restoration results.

Recently, with the rapid development of GAN techniques
(Goodfellow et al., 2014), generative priors of pretrained face
GAN models, such as StyleGAN (Karras et al., 2019, 2020), are
exploited for real-world face restoration (Gu et al., 2020; Menon
et al., 2020; Pan et al., 2021). Since face synthesis GANs can
generate visually realistic faces with rich and diverse details,
it is reasonable to incorporate such generative priors into the
face restoration process. These methods first map the LQ input
image to an intermediate latent code, which then controls the
pretrained GAN at each convolution layer to provide generative
priors such as facial textures and colors. This, however, leads
to unstable quality of restored faces when dealing with the LQ
face image. Due to the low-dimension of latent codes, such a
decoupling control method is insufficient to guide the precise
restoration process.

Another category of approaches involves performing
degradation estimation (Michaeli and Irani, 2013; Bell-Kligler
et al., 2019) to provide degradation information for the
conditional restoration of LQ face images with unknown
degradations. Although this design incorporates human
knowledge about the degradation process and implies a certain
degree of interpretability, the degradation process in the real
world is too complex to be estimated, which fails to bring
degradation estimation into full play.

In this article, we investigate the problem of BFR and
aim at restoring HQ faces from LQ inputs with complicated
degradation. For achieving a better trade-off between realness
and fidelity, we propose a multi-prior collaboration network
(MPCNet) to seamlessly integrate the advantages of generative
priors and face-specific geometry priors. To be specific, we
first pretrain an HQ face synthesis GAN and a parsing mask
prediction network, and then embed them into a U-shaped DNN
as decoder priors to guide face restoration. On the one hand, the
encoder part of U-shaped DNN learns to map the LQ input to
an intermediate latent space for global face reproduction, which
then controls the generator of face synthesis GAN to provide the
desired generative priors for HQ face images restoration. On the
other hand, the decoder part of U-shaped DNN leverages the
encoded intermediate spatial features and diverse facial priors to
restore the HQ face in a progressive manner, during which the
generative priors can provide adequate details and the parsing
map priors provide geometry and semantic information. Instead
of direct concatenation, we proposed multi-scale adaptive priors

feature fusion (APFF) blocks to incorporate the prior features
from pretrained face synthesis GAN and face parsing network
in an adaptive and progressive manner. In each APFF block, we
integrate generative priors and parsing maps priors with decoded
facial features to generate the fusion feature maps for guiding
face restoration. In this way, when applying to complicated
degradation scenarios, the fusion feature maps can correctly
find where to incorporate guidance prior features in an adaptive
manner, making our MPCNet exhibits good generalization
in a real-world application. The main contributions of this
study include:

• We propose a MPCNet to seamlessly integrate the advantages
of generative priors and face-specific geometry priors. We
pretrain an HQ face synthesis GAN and a parsing mask
prediction network, and then embed them into a U-
shaped DNN as decoder priors to guide face restoration,
during which the generative priors can provide adequate
details and the parsing map priors provide geometry and
semantic information.

• We propose an APFF block to incorporate the prior features
from pretrained face synthesis GAN and face parsing network
in an adaptive and progressive manner, making our MPCNet
exhibits good generalization in a real-world application.

• Experiments demonstrate the superiority of our MPCNet
in comparison to state-of-the-arts, and show its
potential in handling real-world LQ images from several
practical applications.

2. RELATED STUDY

Facial geometry prior knowledge: Face images have face-
specific geometry prior information, which includes 3D facial
prior, facial landmarks, face depth map, facial parsing maps,
and facial heatmaps. To recover facial images with much
clearer facial structure, researchers begin to utilize facial prior
knowledge to design the effective face restoration network.
Song et al. (2017) proposed to utilize a pre-trained network
to extract facial landmarks to divide facial components and
feed the five components into different branches to recover
corresponding components. Jiang et al. (2018) developed a DNN
denoiser and multi-layer neighbor component embedding for
face restoration, which first recovered the global face images
and then compensated missing details for every component.
Wang et al. (2020) proposed the parsing map guided multi-
scale attention network to extract the parsing map from LQ and
then fed the concatenation of the parsing map and LQ into the
subnetworks to produce HQ results. Supposed that the depth
map could provide geometric information, Fan et al. (2020) built
a subnetwork to learn the depth map from LR and then imported
depth into the HQ network to facilitate the facial reconstruction.
Benefiting from the incorporation of facial priors in DNNs,
these methods exhibit plausible and acceptable results on bicubic
degraded faces. However, when applied to real-world scenarios,
they are not applicable due to more complicated degradation.
Additionally, the geometry priors estimated from LQ inputs
contain very limited texture information for restoring facial
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FIGURE 1 | Diagrams of the main ideas of four different paradigms applying for blind face restoration (BFR). In the figures, F (·), G(·), P (·), and R(·) denote the feature

extraction, generative adversarial network (GAN) prior production, Parsing map prior production, and the restoration network, respectively. (A) Framework of basic

CNN-based methods. (B) Framework of GAN prior embedded network. (C) Framework of parsing map guided network. (D) Framework of our multi-prior

collaboration network.

details. Since face synthesis GANs can generate visually realistic
faces with rich and diverse details, it is reasonable to incorporate
such generative priors into the face restoration process.

Facial generative prior knowledge: Recently, with the rapid
development of GAN techniques (Goodfellow et al., 2014),
generative priors of pretrained face generative adversarial
network (GAN) models, such as StyleGAN (Karras et al., 2019,
2020), are exploited for real-world face restoration (Gu et al.,
2020; Menon et al., 2020; Pan et al., 2021). Generative Priors of
pretrained GANs (Karras et al., 2017, 2019, 2020; Brock et al.,
2018) are previously exploited by GAN inversion (Abdal et al.,
2019; Gu et al., 2020; Zhu et al., 2020; Pan et al., 2021), whose
primary aim is to map the LQ input image to an intermediate
latent code, which then controls the pretrained GAN at each
convolution layer to provide generative priors such as facial
textures and colors. Yang et al. (2021) proposed to embed the
GAN prior learned for face generation into a DNN for face
restoration, then jointly fine-tuned the GAN prior network with
the DNN. Therefore, the latent code and noise input can be well
generated from the degraded face image at different network
layers. Wang et al. (2021) proposed to utilize the rich and
diverse generative facial priors that contained sufficient facial
textures and color information to restore the LQ face images.
However, extensive experiments have shown that, due to the low-
dimension of latent codes, such decoupling control method is
insufficient to guide the precise restoration process and leads
to unstable quality of restored faces when dealing with the LQ
face image. For achieving a better trade-off between realness
and fidelity, we rethink the characteristic of the BFR task and
turn to the direction of incorporating various types of facial
priors for recovering HQ faces. To that end, we propose a novel
multi-prior collaboration framework to seamlessly integrate the

advantages of generative priors and face-specific geometry priors,
which shows its potential in handling real-world LQ images from
several practical applications (see Figure 1). For preserving high
fidelity, we reform the GAN blocks in StyleGANv2 by removing
the noise inputs to avoid the generation of extra stochastic facial
details. Then, we design an APFF block to incorporate the prior
features from pretrained face synthesis GAN and face parsing
network in an adaptive and progressive manner. In general, our
main contribution is to explore the solution of the BFR task
from a different perspective and provide an effective method that
can achieve promising performance on both synthetic and real
degraded images.

3. METHODOLOGY

In this section, we first describe the degradation model and our
framework in detail, then introduce the adaptive prior features
fusion, and finally give the learning objectives used to train the
whole network.

3.1. Problem Formulation
To tackle severely degraded faces in real-world scenarios, the
training data is synthesized by a complicated degradation that
can be formulated as follows:

x = [(y⊛ kσ ) ↓r +nδ]JPEGq
(1)

where x is the LQ face, y is the HQ face image, kσ is a blur kernel,
⊛ denotes convolution operation, ↓r represents the standard r-
fold downsampler, nδ refers to the Gaussian noise with SD δ,
and the JPEGq denotes the JPEG compression operator with a
quality factor q. In our implementation, for each training pair, we
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FIGURE 2 | The detailed architecture of the proposed network. (a) Spatial feature encoder network. (b) Pretrained prior GAn. (c) Adaptive prior feature fusion

network. (d) Pretrained parsing mask prediction network.

randomly select the blur kernel k from the following four kernels:
Gaussian Blur (3 ≤ σ ≤ 15), Average Blur (3 ≤ σ ≤ 15),
Median Blur (3 ≤ σ ≤ 15), and Motion Blur (5 ≤ σ ≤ 25). The
scale factor r is randomly sampled from [4 : 16]. The addictive
white gaussian noise (AWGN) nδ is sampled channel-wise from
a normal distribution with (0 ≤ δ ≤ 0.1×255). The compression
level q is randomly sampled from [10 : 65], where higher means
stronger compression and lower image quality.

3.2. Overview of MPCNet
To begin with, BFR is defined as the task of reconstructing the
HQ face image y from an LQ input facial image x suffering from
unknown degradation. Figure 2 illustrates the overall framework
of the proposed MPCNet consisting of spatial features encoder
network, adaptive prior fusion network, pretrained face synthesis
GAN, and pretrained parsing mask prediction network.

3.2.1. U-Shape Backbone Network
The backbone of our MPCNet is composed of the spatial features
encoder network and adaptive prior fusion decoder network. It
starts with a degraded face image ILQ of size 512×512×3. When
the input is of a different size, we simply resize it to 512 × 512
with bicubic sampling. Then, ILQ goes through several down-
sample residual groups to generate an intermediate latent space

W which is shared by adaptive prior fusion decoder network
and pretrained face synthesis GAN (such as StyleGANv2; Karras
et al., 2020). To progressively fuse the decoded spatial features
and multiple priors, we present the APFF blocks to construct
the decoder part of the U-shape backbone network. The feature
F7
decode

from the last APFF block is passed on to a single ToRGB
convolution layer and predicts the final output IHQ. More details
about the APFF block will be given in the next section.

3.2.2. Pretrained Face Synthesis GAN
Due to the high capability of GANs in generatingHQ face images,
we leverage pretrained StyleGAN2 prior to providing diverse and
rich facial details for our BFR task. To utilize the generative
priors, previous methods typically map the input image to its
closest latent codesZ and then generate the corresponding output
directly. However, due to the low-dimension of latent codes, such
decoupling control method is insufficient to guide the precise
restoration process and leads to unpredictable failures. Instead of
generating the final HQ face image directly, we propose to exploit
the intermediate convolutional features of pretrained GAN as
priors and further combine them with other types of priors for
better fidelity.

Flatent , Fspatial = Unet(x) (2)
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FIGURE 3 | The detailed structures of a GAN block. The definition of “Mod” and “Demod” can be found in Karras et al. (2020).

Specifically, given the encoded intermediate spatial features
Fspatial of the input image (produced by the encoder part of the
U-shape backbone network, Equation 2), we first map it to the
latent codes Fspatial with global pooling operation and several
multi-layer perceptron layers (MLP). The latent codes Flatent then
pass through each convolution layer in the pretrained GAN and
generate GAN features for each resolution scale.

Flatent = MLP(Fspatial), FGAN = StyleGAN(Flatent), (3)

The structure of the GAN block is shown in Figure 3, which is
consistent with the architecture in StyleGANv2. Additionally, the
number of GAN blocks is equal to the number of APFF blocks in
the U-shape backbone network, which is related to the resolution
of the input face image. For the realness of the synthetic face, the
original StyleGANv2 generates stochastic detail by introducing
explicit noise inputs. However, the reconstructed HQ face image
is required to faithfully approximate the ground-truth face image.
For achieving a better trade-off between realness and fidelity, we
abandon the noise inputs for all GAN blocks (see Figure 4).

3.2.3. Pretrained Parsing Mask Prediction Network
To further improve the fidelity of the restored face image,
we pretrain a parsing mask prediction network to provide the
geometry and semantic information for covering the deficiencies
of GAN priors. As illustrated in Figure 2D, since learning the
mapping from LQ→parsing maps is much simpler than face
restoration, the parsing mask prediction network only employs
an encoder-decoder framework. It begins with 7 downsample
residual blocks, followed by 10 residual blocks, and 7 upsample
residual blocks. The last feature F7parse is passed on to a single

ToRGB convolution layer and predicts the final output Iparse.
Besides, we conduct extensive experiments to demonstrate the
robustness of the parsing mask prediction network on LQ face
images with unknown degradations.

3.3. Adaptive Feature Fusion
It is extremely complex to recover HQ faces from the LQ
counterparts in real-world scenarios, due to the complicated
degradation, diverse poses, and expressions. Therefore, it is
natural to consider to combining the different facial priors
and let them collaborate to improve the reconstruction quality.
Since each facial prior has its shortcomings especially for a
specific application, we propose a novel collaboration module
that combines multiple facial priors, in which the feature
translation, transformation, and fusion are considered for
improving the restoration performance and generalization ability
of our MPCNet. The APFF block is designed to integrate

generative priors F
j
GAN and parsing maps priors F

j
parse with

decoded facial features F
j

spatial
to generate the fusion feature

maps F
j+1
output for guiding face restoration. The rich and diverse

details provided by F
j
GAN can greatly alleviate the difficulty of

degradation estimation and image restoration. However, due to
the deficiency of the decoupling control method in StyleGANv2,

the style condition of F
j
GAN is unstable and inconsistent with

F
j

spatial
, which should be considered before feature fusion.

AdaIN. AdaIN (Huang and Belongie, 2017) is first proposed
to translate the content features to the desired style. Due to
its efficiency and compact representation (Karras et al., 2020),
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FIGURE 4 | The detailed structures of the adaptive prior feature fusion (APFF) block. The cascading residual channel attention blocks (RCABs) (Zhang et al., 2018c)

can make the feature extraction focus on more informative components of the LQ features.

AdaIN is adopted to adjust F
j
GAN to have a similar style

condition with the restored feature of degraded image. The
AdaIN operation can be formulated as:

AdaIN(F
j
GAN , F

j

spatial
) = σ (F

j

spatial
)
F
j
GAN − µ(F

j
GAN)

σ (F
j
GAN)

+ µ(F
j

spatial
),

F
j
g1 = fconv1[AdaIN(F

j
GAN , F

j

spatial
)],

F
j
g2 = fconv2[AdaIN(F

j
GAN , F

j

spatial
)],

(4)

where σ (·) denotes the mean operation and µ(·) denotes the

SD operation. With AdaIN operation, F
j
GAN can, thus, be

aligned with F
j

spatial
by style condition such as color, contrast,

and illumination. Intermediate generative features F
j
g1 and F

j
g2

are generated by fconv1(·) and fconv2(·) which denote 3 × 3
convolutions and are exploited to reduce the channel numbers
and refine features, respectively. Besides, the intermediate spatial

features F
j
s1 and F

j
s2 are also generated from F

j

spatial
by the

same process.
Spatial feature transform.Motivated by the observation that

GAN priors are incapable to capture the geometry information
of the overall face structure due to the decoupling control
method, we propose to exploit the parsing map prior to
providing the geometry and semantic information for covering
the shortage of GAN priors. Specifically, we introduce the

guidance features F
j

guide
to direct the fusion process of F

j
GAN

and F
j

spatial
. Additionally, the generation of F

j

guide
considers the

F
j
GAN , F

j

spatial
, and F

j
parse. For spatial-wise feature modulation, we

employ Spatial Feature Transform (SFT), named SFT(·), Wang
et al. (2018b) to generate the affine transformation parameters

with F
j
parse. At each resolution scale, the SFT(·) learns a mapping

function f (·) that provides a modulation parameter pair α,β

according to the parsing maps F
j
parse, and then utilities α,β to

provide spatially fine-grained control to the concatenation of

F
j
GAN and F

j

spatial
.

(α,β) = f (F
j
parse), (5)

The concatenation of F
j
GAN and F

j

spatial
is modified

by scaling and shifting feature maps according to the
transformation parameters:

F
j

guide
= SFT(Concat[F

j
g1, F

j
s1] | α,β) = α⊗Concat[F

j
g1, F

j
s1]+β ,

(6)
where Concat[; ] denotes the concatenation operation and

Concat[F
j
g1, F

j
s1] denotes the concatenated feature maps, which

have the same dimension with α and β , and⊗ indicates element-
wise multiplication.

On the one hand, the facial generative priors generally contain
HQ facial texture details. On the other hand, the facial parse
priors have more shape and semantic information and, thus, are
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FIGURE 5 | A visual example of facial parsing map information.

more reliable for the global facial region. Considering that F
j
GAN

and F
j
parse can mutually convey complementary information for

each other, we combine them for better reconstruction of the
HQ face image. We first calculate the errors between generative
features and spatial features to highlight the inconsistent facial
components that need correction. Then we exploit a gating
module softmax(·) to generate the semantic-guided map from
parse features. Finally, we combine the semantic-guided maps
and the feature of inconsistent facial components to refine the
initial spatial features in early layers for obtaining better results.
The output of each APFF block can be written as,

F
j+1
output = (F

j
g2 − F

j
s2)⊗ softmax(F

j

guide
)+ F

j
s2 (7)

As a result, this helps to make full use of the rich and diverse

texture information from F
j
GAN as well as shape and semantic

guidance from F
j
parse in an adaptive manner, thereby achieving

a good balance between realness and faithfulness. Besides,
we conduct APFF block at each resolution scale to facilitate
progressive fusion and finally generate the restored face. In this
way, when applying to complicated degradation scenarios, the
fusion feature maps can correctly find where to incorporate
guidance prior features in an adaptive manner, making our
MPCNet exhibits good generalization in a real-world application.

3.4. Learning Objective
For achieving a better trade-off between realness and fidelity,
following previous BFR methods (Chen et al., 2018; Wang et al.,
2018a,c; Li et al., 2020a,b), we apply 1) reconstruction loss that
constrains the outputs to faithfully approximate to the ground-
truth face image, 2) adversarial loss that generates the visually
realistic details for the photo-realistic face restoration, and 3)
gram matrix loss that helps in better synthesize texture details.

Reconstruction loss. We combine the pixel and feature space
mean square error (MSE) to constrain the network output ÎHQ
close to the ground truth IHQ. As shown in follows, the second

term is perceptual loss (Yu and Porikli, 2017; Wang et al., 2018b):

Lrec = λMSE ‖ IHQ − ÎHQ ‖1 +λperc

4
∑

i=1

‖ ϕi(IHQ)− ϕi(ÎHQ) ‖1,

(8)
where ϕi(·) represents the features from the i-th layer of the
pretrained VGGFace model (Cao et al., 2018). λMSE and λperc
denote the trade-off loss weights parameters. In this study, we set
i ∈ [1, 2, 3, 4].

Adversarial loss. Adversarial loss has been proved to be
an effective and critical method in improving visual quality.
In both generator and discriminator, we incorporate spectral
normalization (Miyato et al., 2018) on the weights of each
convolution layer to stabilize the learning. Furthermore, we adopt
the hinge version of adversarial loss as the objective function
(Brock et al., 2018; Zhang et al., 2019), defined as:

Ladv,D = E[max(0, 1− D(IHQ))]+ E[max(0, 1+ D(ÎHQ))],

Ladv,G = −E[D(ÎHQ)] (9)

In this study, Ladv,D is used to update the discriminator,
while Ladv,G is adopted to update the MPCNet for blind
face restoration.

Gram matrix loss. Gram matrix loss (Gatys et al., 2016)
has demonstrated that style transfer helps a lot in synthesizing
visually plausible textures. We use pretrained VGGFace (Cao
et al., 2018) features of layer relu2_1, relu3_1, relu4_1, and
relu5_1 to calculate gram matrix loss, which is formulated as:

Lstyle =
4

∑

i=1

‖ ϕi(IHQ)
Tϕi(IHQ)− ϕi(ÎHQ)

Tϕi(ÎHQ) ‖2
CiHiWi

, (10)

where ϕi(·) represents the features from the i-th layer of the
pretrained VGGFace model.
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FIGURE 6 | Structure diagrams of different network versions used in the ablation study. (A) Framework of w/o GAN prior. (B) Framework of w/o parsing map prior. (C)

Framework of w/o AdaIN. (D) Framework of w/o SFT. (E) Framework of w/o MPCNet.

4. EXPERIMENT RESULTS

4.1. Dataset and Experimental Settings
Training datasets. We first adopt the CelebA-Mask-HQ (Lee
et al., 2020) to pre-train the face parsing mask prediction
network, which contains 30,000 HQ face images with a size
of 1, 024 × 1, 024 pixels. As shown in Figure 5, each image of
CelebA-Mask-HQ has a segmentation mask of facial attributes.
To build the training set, we randomly choose 24,000 HQ images
and resize all images to 512 × 512 pixels as ground-truth.
Similar to Li et al. (2020a), we adopt the degradation model in
section Problem formulation with randomly sampled parameters
to synthesize the corresponding LQ images. Then we adopt

the FFHQ dataset (Karras et al., 2019) to train the GAN prior
network and the final MPCNet. FFHQ dataset contains 70,000
HQ face images with a size of 1, 024 × 1, 024 pixels. In the
same way as CelebA-Mask-HQ, we synthesize the LQ inputs with
Equation (1) during training.

Testing datasets. We construct one synthetic test dataset
and one real-world LQ test dataset to validate the ability of the
proposed method on handling the BFR. Additionally, all these
test datasets have no overlap with the training datasets. For the
synthetic test dataset, we first randomly choose 3,000 HQ images
from the CelebA-HQ dataset (Karras et al., 2017). Then the
generation way of testing pairs is the same as the training dataset,
namely CelebA-Test. For the real LQ test dataset, we collect 1,000
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LQ faces from CelebA (Liu et al., 2015) and 500 old photos
from the web. We coarsely crop square regions in each image
according to their face regions and resize them to 512×512 pixels
using bicubic upsampling. In the end, we put all these images
together and generate the real LQ test dataset containing 1,500
real LQ faces, namely Real-Test.

Implementation. We adopt Adam optimizer (Kingma and
Ba, 2014) with δ1 = 0.9, δ2 = 0.99, and ε = 10−8 to train our
MPCNet with a batch size of 8. During training, we augment the
training images by randomly horizontally flipping. The learning
rate is initialized as 2 ∗ 10−4 and then decreased to half when the
reconstruction loss is no longer dropping on the validation set.
Our proposed model is implemented on the Pytorch framework
using two NVIDIA RTX 2080Ti GPUs.

4.2. Evaluation Index
For synthetic test datasets with ground truth, two widely used
image quality assessment indexes, peak signal-to-noise ratio
(PSNR) (Hore and Ziou, 2010) and structural similarity (SSIM)
(Wang et al., 2004), are used as the criteria for evaluating the
performance of models, which are defined as follows:

MSE(x, y) =

√

√

√

√

1

n

n
∑

i=1

(xi − yi)2 (11)

where x is the target image; y is the HQ image which is generated
from the LQ image; xi and yi represent the values of i − th pixel
in x and y, respectively, and n denotes the pixel number in the
image. Then we calculate the PSNR as follows:

PSNR(x, y) = 10 · log10
MAX2

MSE(x, y)
(12)

where MAX denotes the maximum possible pixel value of the
image. It is set to 255 in our experiments since the pixels
of the images are represented using 8 bits per sample. PSNR
is used to evaluate the performance of the proposed method
in reconstructing HQ images. Instead of measuring the error
between the ground-truth HQ image and the reconstructed HQ
image, Wang et al. (2004) proposed an image quality assessment
metric called SSIM to compute the SSIM of two images, and
the SSIM value of the reconstructed HQ image y is computed
as follows:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ 2
x + σ 2

y + C2)
(13)

where µx, µy, σx, σy, and σxy represent the local means, SDs, and
cross-covariance for images x and y, respectively. C1 = (k1L)

2

and C2 = (k2L)
2 are variables to stabilize the division with a

weak denominator, where L is the dynamic range of the pixel
values that are set to 255 and k1 and k2 are set to 0.01 and 0.03
in our experiments.

Besides, since pixel space metrics are only based on
local distortion measurement and inconsistent with human
perception, the Learned Perceptual Image Patch Similarity
(LPIPS) score (Zhang et al., 2018b) is adopted to evaluate the

TABLE 1 | Summary of model characteristics presented in the ablation study.

Configuration GAN prior AdaIN Parsing map prior SFT

w/o GAN prior × × √ √

w/o Parsing map prior
√ √ × ×

w/o AdaIN
√ × √ √

w/o SFT
√ √ √ ×

MPCNet (ours)
√ √ √ √

perceptual realism of generated faces. For a real LQ test dataset
without ground truth, the widely-used non-reference perceptual
metrics: Fréchet Inception Distances (FID) (Heusel et al., 2017) is
used as the criteria for evaluating the performance of the models.
We choose 3,000 HQ images from the CelebA-HQ dataset as the
reference dataset to evaluate the results of the real LQ test dataset.

4.3. Ablation Study
We further conduct an ablation study to verify the superiority
of our multi-prior collaboration framework (see Figure 6). To
demonstrate the superiority of our prior-integration method, we
remove used modules separately and visualize some comparison
results of different variants. The characteristics of different
model variants used in the ablation study are summarized in
Table 1.

Pretrained GAN prior: w/o GAN prior denotes the basic
model that consists of the decoder part of U-shaped DNN
which leverages the encoded intermediate spatial features and
parsing map prior priors to restore the HQ face, during which
the generative priors are abandoned. This model is in essence
equivalent to a parsing map priors guided face restoration
network and is included here to demonstrate the importance of
generative priors. As the comparison between MPCNet and w/o
GAN prior shown in Figure 7 and Table 2, it is evident that the
GAN priors can provide diverse and rich facial details for our
BFR task.

Pretrained parsingmap prior:w/o Parsing map prior denotes
the model that consists of the decoder part of U-shaped DNN
which leverages the encoded intermediate spatial features and
generative priors to restore the HQ face, during which the parsing
map prior are abandoned. This model is in essence equivalent to a
generative priors guided face restoration network and is included
here to demonstrate the importance of parsingmap priors. As the
comparison between MPCNet and w/o Parsing map prior shown
in Figure 7 and Table 2, it is evident that the Parsing map priors
can provide the geometry and semantic information for covering
the shortage of GAN priors and further improve the fidelity of
restored face image.

AdaIN: w/o AdaIN denotes the model that consists of the
decoder part of U-shaped DNN which leverages the encoded
intermediate spatial features with types of facial priors to restore
the HQ face, during which the AdaIN is abandoned. This model
is included here to demonstrate the importance of AdaIN. As the
comparison betweenMPCNet and w/o AdaIN shown in Figure 7
and Table 2, it is evident that the AdaINmodule can translate the
content features to the desired style with effect and, thus, makes
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FIGURE 7 | Qualitative comparison of the effect of using different components to form the Blind Face Restoration (BFR) networks. Viewed best when zoomed in.

TABLE 2 | The quantitative performance of different variants on CelebA-Test.

Configuration FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

w/o GAN prior 120.14 0.5576 22.13 0.6165

w/o Parsing map prior 45.51 0.4133 21.54 0.6415

w/o AdaIN 29.49 0.3173 23.50 0.6629

w/o SFT 37.88 0.3838 22.64 0.6582

MPCNet (ours) 29.26 0.3097 23.82 0.6684

the illumination condition of restored face consistent with the
original input.

Spatial feature transform: w/o SFT denotes the model that
consists of the decoder part of U-shaped DNN which leverages
the encoded intermediate spatial features with types of facial
priors to restore theHQ face, during which the SFT is abandoned.
This model is included here to demonstrate the importance of
SFT. As the comparison between MPCNet and w/o SFT shown
in Figure 7 and Table 2, it is evident that the SFT module
can make full use of the parsing map priors to guide the face
restoration branch to pay more attention to the essential facial
parts reconstruction.

4.4. Comparison With the State-Of-The-Art
4.4.1. Comparison of Synthetic Dataset for BFR
To quantitatively compare MPCNet with other state-of-the-
arts methods: WaveletSRNet (Huang et al., 2017), Super-FAN
(Bulat and Tzimiropoulos, 2018), DFDNet (Li et al., 2020a),
HiFaceGAN (Yang et al., 2020), PSFRGAN (Chen et al., 2021),
and GPEN (Yang et al., 2021), we first perform experiments
on synthetic images. Following the comparison experiments

TABLE 3 | Quantitative comparison on CelebA-Test for blind face restoration

(BFR).

Methods FID ↓ LPIPS ↓ PSNR ↑ SSIM ↑

Input 158.72 0.6185 20.23 0.6823

WaveletSRNet 119.75 0.5351 22.87 0.6451

Super-FAN 100.23 0.5085 22.15 0.6377

DFDNet 43.74 0.3926 21.84 0.6439

HiFaceGAN 64.37 0.4795 21.05 0.5444

PSFRGAN 31.92 0.3226 23.17 0.6472

GPEN 31.41 0.3267 22.91 0.6428

MPCNet (ours) 29.26 0.3097 23.82 0.6684

setting in Yang et al. (2021), we directly compared with these
state-of-the-arts models trained by the original authors in the
experiments. Except for Super-FAN, we adopt their official codes
and finetune them on our face training set for fair comparisons.
Table 3 lists the perceptual metrics (FID and LPIPS) and pixel-
wise metrics (PSNR and SSIM) results on the CelebA-Test testset.
It can be seen that our MPCNet achieves comparable PSNR
and SSIM indices to other competing methods, but it achieves
significant performance gains over all the competing methods on
FID and LPIPS indices, which are better measures than PSNR for
the face image perceptual quality.

Figure 8 compares the BFR results on some degraded
face images by the competing methods. One can see that
the competing methods fail to produce reasonable face
reconstructions. They tend to generate over-smoothed face
images with distorted facial structures. Due to the powerful
generative facial prior, it is obvious that our MPCNet is more
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FIGURE 8 | Comparison of qualitative performance with state-of-the-art BFR methods from the literature.

TABLE 4 | Peak signal-to-noise ratio (PSNR) results achieved for

×4/ × 5/ × 6/ × 7/ × 8 face super-resolution (SR).

Methods
Scale

×4 ×5 ×6 ×7 ×8

Input 22.97 22.63 21.33 20.64 20.34

DFDNet 23.41 23.15 22.87 22.28 21.95

HiFaceGAN 23.12 22.85 22.68 22.19 21.17

PSFRGAN 24.52 24.14 23.92 23.44 23.24

GPEN 24.39 24.00 23.81 23.35 23.12

MPCNet (ours) 25.26 24.84 24.65 24.19 23.98

effective in restoring fine details while suppressing visual artifacts.
In comparison with the competing methods, the results by
MPCNet are visually photo-realistic and can correctly recover
finer and identity-aware details, especially in eyes, nose, and
mouth regions.

4.4.2. Experiments on Arbitrary Scales Face

Super-Resolution (SR)
We can see from Table 4 that our MPCNet achieves comparable
performance to GPEN on all scale factors, with average PSNR
improvements of 0.85. Compared to PSFRGAN, our MPCNet
achieves notable performance improvements (23.98 vs. 23.24) for
×4 SR and (24.19 vs. 23.44) for×7 SR. This clearly demonstrates

that the proposed our MPCNet can enable scale-arbitrary SR
without performance degradation on SR with fixed scale factors.
Figures 9, 10 illustrate the qualitative SR results on two non-
integral scale factors. As shown in these zoom-in regions, we
can see that our MPCNet produces better visual results than
other methods with fewer artifacts. For example, GPEN and
PSFRGAN cannot recover the eyes and mouth regions reliably
and suffer from obvious distorted artifacts. In contrast, our
MPCNet produces finer details.

4.4.3. Experiments on Different Types Blur Kernels

Degradations
We adopt 4 Gaussian blur kernels with different sizes and
4 motion blur kernels in four different directions to test
the BFR performance of the competing methods. It can be
observed from Table 5 that HiFaceGAN produces relatively low
performance on complex degradations. Since HiFaceGAN is
sensitive to degradation estimation errors, its performance for
complex degradations is limited. By incorporating the prior
features from pretrained face synthesis GAN and face parsing
network in an adaptive and progressive manner, our MPCNet
exhibits good generalization on complex degradations. Figure 11
further illustrates the visualization results produced by different
methods. Our MPCNet achieves much better visual quality while
other methods suffer obvious blurring artifacts.
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FIGURE 9 | Visual comparison for non-integer face super-resolution (SR) (i.e., ×6.5 SR, kernel width = 7).

FIGURE 10 | Visual comparison for non-integer face SR (i.e., ×7.15 SR, kernel width = 10).

4.4.4. Experiments on Different Levels Noises

Degradations
We set 6 noise levels to evaluate the restoration performance
of the competing methods. In Table 6, we present the PSNR
numbers for all noise levels. Since each APFF block can integrate
generative priors and parsing maps priors to generate the fusion
feature maps for guiding face restoration, when applying to
complicated degradation scenarios, the fusion feature maps can

correctly find where to incorporate guidance prior features in
an adaptive manner, making our MPCNet outperform all the
competitive algorithms for all noise levels.

Figures 12, 13 present the visual comparison outperforms
all the other techniques published in Table 6 and
produces the best perceptual quality images. The closer
inspections on the eyes, nose, and mouth regions
reveal that our network generates textures closest to the
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TABLE 5 | Peak signal-to-noise ratio results achieved on noise-free degradations with different blur kernels.

Method
Blur kernel

Input 20.34 20.81 21.02 21.49 21.17 21.45 21.23 21.16

DFDNet 20.83 21.54 21.79 22.18 21.98 22.64 22.47 22.74

HiFaceGAN 20.41 21.19 21.65 21.89 21.64 22.41 22.21 22.49

PSFRGAN 22.56 22.92 23.14 23.58 23.12 23.09 22.76 23.27

GPEN 22.15 22.44 22.85 23.29 23.10 23.02 22.88 23.15

MPCNet (ours) 23.04 23.36 23.59 23.97 23.57 23.43 23.25 23.48

The kernel widths are set to 10.

FIGURE 11 | Visual comparison achieved on noise-free degradations with different blur kernels. The blur kernels are illustrated with green boxes.

TABLE 6 | Peak signal-to-noise ratio results achieved on CelebA-Test degraded by different level noises.

Methods
Noise

0 5 10 15 20 25

Input 21.54 21.25 20.91 20.67 20.45 20.21

DFDNet 22.26 21.94 21.77 21.39 21.08 20.70

HiFaceGAN 21.93 21.59 21.25 20.98 20.74 20.33

PSFRGAN 23.66 23.50 23.38 23.06 22.79 22.42

GPEN 23.31 23.17 22.94 22.78 22.31 22.09

MPCNet (ours) 24.03 23.81 23.65 23.43 23.24 22.95
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FIGURE 12 | Visual comparison achieved on CelebA-Test with the noise level set at 5.

FIGURE 13 | Visual comparison achieved on CelebA-Test with the noise level set at 15.

ground-truth with fewer artifacts and more details for all
noise levels.

4.4.5. Comparison of Real World LQ Images
To test the generalization ability, we evaluate our model on
the real-world dataset. The quantitative results are shown
in Table 7. Our MPCNet achieves superior performance
and shows its remarkable generalization capability. Although

GPEN also obtains comparable perceptual quality, it still
fails in recovering the faithful face details as shown in
Figures 14, 15.

The qualitative comparisons are shown in Figures 14, 15.
The cropped LR face images from real-world images in
Figures 14, 15 are 24 × 24 pixels and 36 × 36 pixels, and
then we rescale the LR images to a fixed input size for
MPCNet of 512 × 512 pixels. Thus, the scale factors of
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the visual comparisons are 21.4× and 14.2×, respectively.
MPCNet seamlessly integrates the advantages of generative
priors and face-specific geometry priors for restoring real-
life photos with faithful facial details. Since the generative
priors can provide adequate details and the parsing map priors
provide geometry and semantic information, our method could
produce plausible and realistic faces on complicated real-world
degradation while other methods fail to recover faithful facial
details or produce artifacts. Not only can our method perform

TABLE 7 | Quantitative comparison on the real-test.

Methods NIQE ↓ FID ↓

Input 14.623 183.73

DFDNet 5.824 107.36

HiFaceGAN 6.141 124.12

PSFRGAN 5.783 94.51

GPEN 5.597 91.63

MPCNet (ours) 4.849 89.18

well in common facial components like mouth and nose, but
it can also perform better in hair and ears, as the parsing map
priors can take the whole face into consideration rather than
separate parts.

5. CONCLUSION

We have proposed a MPCNet to seamlessly integrate the
advantages of generative priors and face-specific geometry priors.
Specifically, we pretrained an HQ face synthesis GAN and a
parsing mask prediction network and then embedded them into
a U-shaped DNN as decoder priors to guide face restoration,
during which the generative priors can provide adequate details
and the parsing map priors provide geometry and semantic
information. By designing an adaptive priors feature fusion
(APFF) block to incorporate the prior features from pretrained
face synthesis GAN and face parsing network in an adaptive and
progressive manner, our MPCNet exhibited good generalization
in a real-world application. Experiments demonstrated the
superiority of our MPCNet in comparison to state-of-the-arts
and also showed its potential in handling real-world LQ images
from several practical applications.

FIGURE 14 | Visual comparisons of competing methods with top performance on real-world low-quality (LQ) images (×21.4 SR).
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FIGURE 15 | Visual comparisons of competing methods with top performance on real-world LQ images (×14.2 SR).
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