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Tactile sensing endows the robots to perceive certain physical properties of the object in

contact. Robots with tactile perception can classify textures by touching. Interestingly,

textures of fine micro-geometry beyond the nominal resolution of the tactile sensors

can also be identified through exploratory robotic movements like sliding. To study

the problem of fine texture classification, we design a robotic sliding experiment using

a finger-shaped multi-channel capacitive tactile sensor. A feature extraction process

is presented to encode the acquired tactile signals (in the form of time series) into

a low dimensional (≤7D) feature vector. The feature vector captures the frequency

signature of a fabric texture such that fabrics can be classified directly. The experiment

includes multiple combinations of sliding parameters, i.e., speed and pressure, to

investigate the correlation between sliding parameters and the generated feature space.

Results show that changing the contact pressure can greatly affect the significance of

the extracted feature vectors. Instead, variation of sliding speed shows no apparent

effects. In summary, this paper presents a study of texture classification on fabrics by

training a simple k-NN classifier, using only one modality and one type of exploratory

motion (sliding). The classification accuracy can reach up to 96%. The analysis of

the feature space also implies a potential parametric representation of textures for

tactile perception, which could be used for the adaption of motion to reach better

classification performance.

Keywords: active touching, robotic touch, tactile sensing, texture identification, haptic perception

1. INTRODUCTION

1.1. Tactile Sensing and Perception
Tactile sensing is fundamental for robots to understand the space surroundings by revealing
some contact features not directly accessible to visual and acoustic sensors, including pressure,
vibration, and temperature. Tactile sensors are specifically designed to convert the instant changes
of these physical properties into electrical signals. Unlike visual and acoustic sensing, tactile sensing
involves and probably only involves the direct mechanical interaction between the sensor and
the object in contact with. In the majority of the cases, external environmental conditions like
illumination, acoustic noise, humidity, and temperature do not affect the capability of tactile
sensing. Despite its robust performance in different scenarios, tactile sensing is a very limited
instrumental modality that only captures the regional stimulus around a sensor. Luckily, the
limitation can be alleviated by pairing the sensing with exploratory robotic motions to enlarge
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the contact area, requiring both spatial and temporal decoding
to interpret the signals. The process of decoding signals to
comprehend the space surroundings is the core of tactile
perception. Unfortunately, at the current stage, there is no such a
uniform and standard format of tactile sensor and tactile data and
hence tactile perception is tightly bonded to the specific sensing
technology being used (Luo et al., 2017).

With the advancement in interactive control for robotics,
tactile sensing is gaining attention in recent decades. Since
robotic tasks with physical contacts are very likely to introduce
visual occlusion, more studies using tactile sensing to perceive
object shape/textures (Kaboli and Cheng, 2018; Kerr et al., 2018;
Martinez-Hernandez et al., 2020; Fang et al., 2021) and executing
dexterous manipulation (Jiménez, 2017; Belousov et al., 2019) are
popping up. Results show that tactile sensing has great potential,
especially in handling soft materials like fabrics considering its
instant response to tiny variations of stimulus.

1.2. Fabric Classification via Active
Perception
A better understanding of the objects that the robot is interacting
with helps to adjust the control strategy and control parameters,
leading to more efficient and possibly safer motions. Among all
objects for interaction, fabrics are of particular interest to us as
they are not only one of the most common soft materials in
daily life but also intrinsically difficult to distinguish. Fabrics can
be dyed into different colors so that vision alone has difficulty
in identifying them. Textures of fabrics vary a lot and are
usually so fine and complex that sometimes even human beings
can barely distinguish (e.g., canvas, denim, and linen) with
non-destructive methods.

To classify fabrics, usually, active motions are necessary to
acquire a holistic tactile sample of the texture since tactile
sensors only capture regional stimuli. Manfredi et al. (2014)
found that the vibrations elicited during the interaction carry
information about the microgeometry of the fabric surface and
mechanical properties of the tactile sensor itself. In Fishel and
Loeb (2012); Khan et al. (2016); Kaboli and Cheng (2018); Kerr
et al. (2018) sliding motions are conducted in different manners
to collect vibration signals about the fabric textures. Particularly,
Fishel and Loeb (2012) show that changing exploratory actions
can affect the received tactile signals and lead to different
classification performances. However, how changing the motion
parameters can affect the performance of the perception and
fabric classification has not been thoroughly investigated.

1.3. Goals
Since tactile decoding and perception are tightly bonded with
the specific sensors being used, one of the very first objectives
is to construct a robust perception system that could extract
certain tactile features from the tactile signals. The tactile features
are desired to embed some peculiar information to the fabrics,
independent of the variation of sliding parameters during the
acquisition stage. The study Weber et al. (2013) on the tactile
perception of human beings indicates that certain invariant
tactile features can be retrieved by touching and sliding/rubbing.
Our research serves to verify the feasibility of a similar idea on a
robotic system.

In reality, it is ideal to have the capability of adapting the
robotic behavior to compensate for the limitation of the sensing
technology (e.g., bandwidth, resolution, geometric structures)
and the perception algorithm since the mechatronic system
itself is usually unmodifiable. Adaptation first requires an overall
understanding of correlations between motions and tactile
signals. Our study aims to give a general picture so that in the task
of fabric classification via sliding, performance can be improved
by simply adjusting the motion parameters.

We will also testify to the expansibility and scalability
of the algorithm. Expansibility suggests that the algorithm
applies to textures other than fabrics on the classification task,
while scalability means that the system can incorporate tactile
information from new fabrics in an iterative approach.

Beyond the classification task, another purpose of the research
is to search for a potential parametric representation of the
textures in the feature space that can be used further in a more
complex system for fabric handling and manipulation.

1.4. Outline
Inspired by how humans try to identify fabrics with their skin
solely, via sliding and rubbing fingers on the fabric surface, we
command a robotic arm equipped with a capacitive tactile sensor
on its end-effector to grip the fabric and slide. Different from
some existing attempts of texture identification in Fishel and
Loeb (2012); Khan et al. (2016); Kerr et al. (2018) that fix the
inspectee material on a motorized platform where the sensor is
stationary, our vibration signals are acquired during a dynamic
process where fabric stripes are free to stretch and bend.We allow
the 7-DOF robotic arm to carry out the exploratory motions in
a large area, similar to the experiments in Bauml and Tulbure
(2019) and Taunyazov et al. (2019), which resembles the daily
scenario where humans touch to feel the fabrics.

Unlike Fishel and Loeb (2012); Khan et al. (2016) innovating
on their features according to either physics or statistics,
our algorithm seeks emerging frequency features by using an
incremental principal component analysis (IPCA) method. It
requires very little data for bootstrap compared to more complex
neural network approaches and the explainability can be easily
represented by the ratio of variance.

Our methods are tested upon a specific capacitive tactile
sensor, but the algorithm per se is generic and applies to any
mono-modality multi-channel tactile sensor to extract frequency
features. With the extracted features, fabric textures can be
classified by training a simple k-NN classifier.

We show that the proposed method is capable of decoding
tactile signals and classifying the fabrics under different sliding
pressures and speed settings. Very few frequency features suffice
to represent the perceived fabric textures. An incremental
IPCA method is applied to allow for iterative update of the
feature extractor so that tactile information of new fabrics can
be fused to improve the classification performance. Results
imply that the distinguishability of fabrics not only depends on
their microgeometry textures but also the physical properties
including elasticity and friction coefficient that can only be
perceived during a dynamic interaction. In the cases of ambiguity
to classify certain fabrics, it is possible to increase the confidence
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and accuracy by adjusting the sliding speed and pressure to an
optimal setting specific to those fabrics.

2. RELATED WORKS

The problem of discriminating textured objects or materials with
the support of tactile sensing has been widely investigated in the
literature. Most of the previous works integrate tactile sensors
into robot end-effectors which are controlled to interact with the
objects of interest. Tactile data collected during the interaction are
then processed to extract features for texture classification using
machine learning techniques.

The type of features extracted from tactile data usually
depends on the sensing technology adopted. There are two
major trends of methods in the task of texture classification.
The first either employs a high-resolution vision-based sensor
(Li and Adelson, 2013; Luo et al., 2018; Yuan et al., 2018) or
crops the time-series data (Taunyazov et al., 2019) to construct
tactile images and directly encode the spatial textures by neural
networks (NNs). While the second type of method collects the
tactile signals using sensors sensitive to vibrations. Tactile signals
are first transformed into the frequency domain and then both
temporal and frequency features are extracted to identify textures
as in Fishel and Loeb (2012); Khan et al. (2016); Kerr et al. (2018);
Massalim et al. (2020).

2.1. Spatial Features as Images
Li and Adelson (2013) directly use a vision-based GelSight sensor
to classify 40 different materials. The high-resolution tactile
image generated by the sensor captures geometric information
on the texture of the specific material. In particular, the authors
proposed a novel operator, the Multi Local Binary Patterns,
taking both micro and macro structures of the texture into
account for feature extraction.

Instead of classifying the exact type of material, the work
proposed by Yuan et al. (2018) aims at recognizing 11 different
properties from 153 varied pieces of clothes using a convolutional
neural network (CNN) based architecture. Those properties
are both physical (softness, thickness, durability, etc.) and
semantic (e.g., washing method and wearing season). Moreover,
a Kinect RGB-D camera is also used to help explore the
clothes autonomously. The results showed great potential in the
application of domestic help for clothes management.

Alternatively, Taunyazov et al. (2019) proposed an interaction
strategy alternating static touches and sliding movements with
controlled force, exploring the possibility to extract spatial
features from a capacitive sensor using a CNN-LSTM (long-
short-termmemory) architecture. Experiments are performed on
23 materials using a capacitor-based skin covered on the iCub
forearm, reaching 98% classification accuracy. Capacitive tactile
sensors are usually more suitable for dexterous manipulations
compared to vision-based sensors due to their compact sizes
and less deformable contact surfaces. The possibility to apply
a vision-based tactile perception method eases the usage of
capacitive sensors.

Bauml and Tulbure (2019) presented another interesting
research in this category. The proposed method makes use of the

trendy transfer learning techniques to enable n-shot learning for
the task of texture classification. The capability of learning from
very few samples by taking advantage of a pre-trained dataset
can be very handy for deploying tactile sensing systems on new
robotic systems.

2.2. Temporal and Frequency Features
Fishel and Loeb (2012) conducted comprehensive research on
texture classification using BioTac. Unlike most of the other
works, their features are computed with specific physical
meanings as traction, roughness, and fineness. Several
combinations of sliding speeds and normal forces are also
tested to enable a Bayesian inference.

Khan et al. (2016) described a similar experiment with hand-
crafted statistical features to identify textures. The research
employs a custom finger-shaped capacitive tactile sensor,
which is mounted on the probe of a 5-axes machine
and controlled to slide on a platform covered with the
fabric. Both applied pressure and velocity are controlled
for the sliding motions. The statistical features, computed
both in frequency and time domains, are used to train a
support-vector-machine (SVM) classifier to discriminate 17
different fabrics.

Another similar work is followed by Kerr et al. (2018) where
PCA based feature extraction is performed on the tactile data.
Both pressing and slidingmotions are applied to acquire data and
several different classifiers are evaluated.

A recent work Massalim et al. (2020) tries to not only
identify textures but also detect slip and estimate the
speed of sliding, using an accelerometer installed on the
fingertips of the robotic gripper to record vibration. This work
combined multiple deep learning techniques to achieve a decent
classification accuracy.

2.3. Summary
Compared to some of the literature, our work differs mostly in
two aspects:

1. The design of the experiments simulate a realistic application
scenario where very few constraints are applied on the fabrics
and the robotic sliding.

2. The perception system is very lightweight computationally,
which can be implemented on a modern quad-core consumer
PC; it tries to extract some intrinsic frequency features
without the necessity to train on a large dataset (like other
deep learning techniques) and the quality of these features
are self-explanatory.

3. METHODS

This section details the signal decoding and perception
algorithms. We describe the pipeline of signal processing and
feature extraction that maps the original tactile signals in large
matrix form to low dimensional vectors and introduce a weighted
k-NN classifier to identify the fabrics in the feature space.

A tactile sensor usually consists of several taxels (the minimal
tactile sensing unit like pixels for cameras) that only perceive local
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stimuli and generate multi-channel signals over time. We follow
a feature extraction method based on incremental principal
component analysis (IPCA) to gradually extract the frequency
features during the process of sliding and touching different types
of fabrics. The feature extractor first transforms a tactile time
series into a multi-channel frequency spectrum in the format
of matrix and resamples the frequency spectrum to a fixed size.
After that, the frequency spectrum (as a matrix) is vectorized
(flattened). After collecting multiple tactile measurements and
transforming them all to resampled, vectorized frequency
spectra, we stack them together to form a large data matrix.
Then, we apply IPCA transformer to project the data matrix to
lower-dimensional vectors. With the condensed representation
of tactile measurements, it is possible to classify fabric textures
by training a k-nearest neighbors (k-NN) classifier.

3.1. Signal Processing
A tactile measurement, M-channel time series X, represented in
the matrix form

X =

















x1(0) x2(0) . . . xM(0)
...

... . . .
...

x1(t) x2(t) . . . xM(t)
...

... . . .
...

x1(N − 1) x2(N − 1) . . . xM(N − 1)

















∈ R
N×M (1)

is first normalized to

X̂ =









x1(0)−x̄1
σ1

x2(0)−x̄2
σ2

. . .
xM(0)−x̄M

σM
...

... ...
...

x1(N−1)−x̄1
σ1

x2(N−1)−x̄2
σ2

. . .
xM(N−1)−x̄M

σM









∈ R
N×M (2)

using the channel mean and SD X̄ = [x̄1 x̄2 . . . x̄M] ∈
R
M and σ = [σ1 σ2 . . . σM] ∈ R

M . Normalization
brings the sensor signals acquired with different Pressure settings
into the same scope such that comparative analyses are directly
available. The mean-deviated and scaled tactile measurement is
then transformed into the frequency domain by applying Fourier
transform channel-wise, taking only the magnitude to gain the
real frequency-spectra matrix Y defined by

Y =







y1(0) y2(0) . . . yM(0)

...
... . . .

...
y1(N−1) y2(N−1) . . . yM(N−1)






∈ R

N×M (3)

where each entry ya(b) is given by

ya(b) = ||

N−1
∑

n=0

xa(n)− x̄a

σa
e−i2πb n

N ||. (4)

Resampling is necessary here to unify the sizes of different spectra
as the scopes of the frequency spectra are dependent on the length
of the original time series, which can vary among measurements
since the experiments are conducted with several different sliding

speeds. The re-sampled frequency matrix Y ∈ R
Nr×M , where Nr

is a predefined resolution constant, is then vectorized (flattened)
into a frequency-spectra vector Ey ∈ R

NrM .
Multiple tactile measurements acquired in sliding motions, as

vectors of the same dimension now, can be stacked together to
form a new observation matrix

O = [ Ey1 Ey2 ... EyK] ∈ R
NrM×K (5)

containing all the frequency vectors, where K is the total number
of measurements. We then resort to principal component
analysis (PCA) on the observation matrix O for dimensionality
reduction and feature extraction.

3.2. Feature Extraction
Incremental principal component analysis as an unsupervised
method is well suitable for dimensionality reduction in our
problem. It preserves as much as possible information contained
in the original data matrices by minimizing a reconstruction loss.
We apply the IPCA introduced in Ross et al. (2008) to fit the
training dataset O.

Denoting the mean-deviated form of O as Ô. The goal is to
find a feature matrix Q ∈ R

D×K with D ≪ NrM such that the
total reconstruction error

||Ô− 8Q||F (6)

is minimized. Frobenius norm is chosen considering its fast and
easy computation, while other similarmatrix norms also function
the same for this optimization setup. Here, 8 ∈ R

NrM×D is a
projection matrix mapping a frequency-spectra vector Ey ∈ R

NrM

to a new feature vector Eq ∈ R
D.

Given n new measurements pre-processed and vectorized,
formatted as a matrix

A = [ EyK+1 EyK+2 . . . EyK+n] (7)

A brutal update for these n new data requires the computation
of singular-value-decomposition (SVD) for the mean-deviated
form of the augmented data matrix OK+n = [O A], which is
not ideal for online applications. In the presence of more tactile
measurements, the data matrix keeps expanding, and traditional
PCA will slow down drastically.

Incremental principal component analysis differs from
traditional PCA in handling new data. Instead of re-computing
the SVD for the entire augmented data matrix

ÔK+n = [Ô Â] (8)

where Â is the mean-deviated form of A, only the SVD of the
horizontal concatenation of the original and the additional data

matrix, and one additional vector
√

Kn
K+n (Ō − Ā) are needed.

To obtain the SVD for the augmented data matrix ÔK+n, first
we define

B = [Ā

√

Kn

K + n
(Ō− Ā)] (9)
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FIGURE 1 | (A,B) Illustration of CPM-Finger tactile sensor (Denei et al., 2017).

FIGURE 2 | The top and bottom view of the sensor circuit board. The side with the pressure sensors is in contact with the objects during experiments.
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and compute

B̃ = orth(B− UUTB) (10)

where orth performs orthogonalization and

R =

(

6 UTB

0 B̃(B− UUTB)

)

(11)

via QR decomposition [U B̃]R
QR
= [U6A]. Then, we apply

SVD to R as R
SVD
= Ũ6̃ṼT and finally the equivalent SVD of

ÔK+n = U ′6′V ′T is given by U ′ = [UB̃]Ũ and 6′ = 6̃; whereas
V ′ is not directly used in IPCA, it is not calculated explicitly.

Considering that tactile measurements are acquired
incrementally, the feature extractor can be trained upon
known data. During the procedure where more new tactile
measurements are presented the IPCA based feature extractor
can first map the new data matrices to feature vectors to perform
classification, and then partially fit the newly sampled data to
incorporate the information and improve the performance.
The application of the incremental method enables the feature
extractor to adapt to the growing database fast and efficiently.

FIGURE 3 | A sample of the multichannel tactile signals in (A) space domain

and (B) frequency domain.

3.3. Identification and Classification
In the lower dimensional feature space, a weighted k-NN
classifier (Dudani, 1976) can be fitted upon the training dataset.
The trained classifier predicts the label of a query point in the D-
dimensional feature space using distance-weighted voting by its
k nearest points.

Given a feature vector Eq′ representing a new tactile
measurement mapped in the feature space, to predict its label
with all the other points, we defineN as the set of k nearest points
to the query point Eq′ and compute

y′ = argmax
v

∑

(qi , Eyi)∈N

wiI(v = Eyi) (12)

where wi =
1

d(q′ ,qi)
and I is the indicator function

I(v = yi) =

{

1 if qi belongs to class i

0 otherwise

4. EXPERIMENTAL SETUP

4.1. CPM-Finger Capacitive Tactile Sensor
Our research employs a capacitive tactile sensor CPM-Finger
(outcome of the European Project CloPeMa - Clothes Perception
and Manipulation, shown in Figure 1) introduced in Denei
et al. (2017), developed for fabric detection and manipulation.
It collects the vibration during the interaction with the object.
Compared to other common types of tactile sensors including

FIGURE 4 | Fabric samples (A) BeigeCotton, (B) BrownCotton, (C) Canvas,

(D) Denim, (E) DenimFlex, (F) Linen, (G) WovenFabric, (H) Board2mm, and (I)

Board10mm. Labels of the fabrics are only for identification in the experiments

and are not related to the exact material or any trademark.
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piezoelectric/piezoresistive sensors, triboelectric sensors, and
optic sensors, the capacitor-based sensor has a wider dynamic
range and is more robust, suitable for scanning (or sliding
on) objects and its compact size allows easy integration into
most robotic systems (Nicholls and Lee, 1989; Al-Handarish
et al., 2020). The sensor contains 16 small capacitors (shown
in Figure 2), i.e., taxels (as pixels for the visual sensor) that
convert physical deformation of the elastomer to the variation
of capacitance. The contact surface is covered by Spandex as
a protective fabric. The sensor is based on the fact that, for a
parallel-plate capacitor, the capacitance can be described by

C = ǫ
A

d(P)
(13)

FIGURE 5 | Illustration of the experimental setup. The original rubber fingertip

of the gripper is replaced with a CPM-finger sensor. Five fabrics are fixed on an

aluminum rack at one time.

where ǫ is the permittivity of the dielectric middle layer, A is
the overlap area of two parallel plates, and d(P) is the distance
between the two plates as a function of the applied pressure P.
At the sampling rate of 32 Hz, the sensor signals in 1 s can
be arranged into a matrix X ∈ R

32×16 (shown in Figure 3

for an example). For each capacitor, there is a baseline value
output from the capacitance-to-digital converter (CDC) at zero
pressure. The value has been subtracted from the sensor reading
at the firmware level such that the output sensor signals share
the same value ranges and rest at 0 without pressure applied. For
that reason, the sensor signals do not convey an exact physical
meaning and we can comfortably omit the unit µF and carry the
values around for simplicity.

4.2. Robotic Sliding Experiments
The sliding experiments are implemented with a Franka
Emika Panda 7DOF robotic arm with a two-finger
gripper as the end-effector. One CPM-Finger tactile
sensor is installed on the gripper to replace the original
rubber fingertip.

In total, seven types of fabrics are used for the
experiments. We name them as BeigeCotton, BrownCotton,
Linen, Canvas, Denim, DenimFlex, and WovenFabric as
shown in Figure 4. They are cropped into 65 cm × 10
cm stripes with both ends clipped to an aluminum rack.
Fabrics are tensioned roughly to guarantee a vertical
positioning (shown in Figure 5), but not over-stretched
so that they can still be extended and twisted during the
robotic sliding motion. Precise measurement of the fabric
tension is beyond the scope of our experiments due to the
following considerations:

1. It is not always possible to measure the exact tension of the
fabrics in real applications given the complex forms of the
fabrics;

2. Non-uniform tension among the fabrics can serve as a
testimony of robustness of our methods;

3. Due to the friction between the protective fabric Spandex and
the inspectee fabric, stretching and twisting happen during
sliding in a hard-to-predict way, preset tension has a little
indication to the results, especially for higher sliding pressure
settings.

TABLE 1 | Combinations of sliding parameters are chosen from this table.

Sliding Parameters

Speed (mm/s) Pressure

10 120

20 150

50 180

100 210

120 250

150 N/A
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FIGURE 6 | 3D feature space of the tactile signals acquired sliding trials. (A–F) correspond to feature spaces of 2 to 7 fabrics in the process of iterative feature

extraction.

The robot gripper is controlled to grip the fabric stripe with
constant pressure and slide vertically at a constant speed to collect
one set (3 samples a set) of tactile signals for each parameter

setting (sliding up and down in the same velocity are considered
as two speeds). The grip pressure is maintained via proportional–
integral–derivative (PID) control on the closing distance between
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FIGURE 7 | Number of (incremental principal component analysis, IPCA)

features vs. Classification accuracy of a k-NN classifier, with k = 10 using half

of the dataset as a test set. The black line follows the ratio of variance

explained by the principal components.

the fingertips. We capture the average value of the 16 sensor
readings as an indicator of the grip pressure (Pressure).

The control command is computed and sent to the
robot host controller through a Linux OS patched with a
realtime kernel.

4.3. Fabric Slide Dataset
The data acquisition proceeds as follows:

1. The robot closes the gripper till the desired Pressure is reached,
and holds the Pressure.

2. The robot moves the gripper vertically with a constant
speed downward and then upward for a distance of 50 cm,
respectively, at the same velocity. The tactile signals as time
series are captured during the process and stored in the format
of a matrix.

3. Each pair of sliding parameter settings is repeated 3 times.
Then, the robot releases the gripper, moves horizontally away
from the current tested fabric stripes, and shifts to the next
fabric, till all fabrics are tested with the current sliding speed
and holding pressure.

4. The robot repeats the whole sliding experiments from steps 1
to 3 with different pairs of control parameters, i.e., speeds and
Pressure, as listed in Table 1, on all fabrics.

Two types of denim fabrics, i.e., Denim and DenimFlex in our
nomenclature, skip through the sliding with Pressure 250, and
WovenFabric passes through both Pressure 210 and 250, as in
these cases, the torques required to conduct the sliding motions
exceed the maximum payload of the robot due to severe folding
and twisting of the inspectee fabrics caused by frictional force.
With all the other available Pressure settings, sliding motions
in all 6 speeds are executed. In total, 966 samples are collected
as matrices in the shapes of N × M where N is dependent on
the duration of the sliding motion and M is the number of

signal channels, i.e., the number of taxels, which is 16 for our
CPM-finger sensor.

5. ANALYSES AND RESULTS

To simulate the scenario where new fabric classes are presented,
we follow an iterative process to update the feature extractor and
test the classifier:

1. We first randomly select two fabrics, e.g., Canvas and
DenimFlex as prior knowledge, i.e., initial training classes, to
fit the IPCA feature extractor.

2. The measurements from the two training classes are
transformed into the feature space by the feature extractor just
trained on them.

3. Tactile measurements of all the other (unfitted) fabric classes
serve as the test dataset. They are transformed into feature
vectors to testify to the classifier.

4. Randomly pick one unfitted fabric class as a newly presented
class to update the IPCA feature extractor with a partial fitting
method. Add the class to the training classes.

5. Project the data of training classes into the feature space.
6. Repeat from 3.

The feature space and the projected data points of our randomly
selected training classes, Canvas and DenimFlex, in the 3D space
(shown in Figure 6A). Two fabric classes separate apparently,
very likely due to their intrinsic difference in textures, elasticity,
and friction, which can also be perceived and discerned with
human touch with ease.

Then, a new fabric BeigeCotton is presented as a testing class.
The tactile measurements of the first test class are transformed
to 3D feature vectors by the IPCA feature extractor trained
solely on the first two training classes, to join the feature
space where 3 fabrics are presented now (see Figure 6B).
The first test fabric BeigeCotton intertwines with Canvas in
the feature space as they are both in plain knit. The minor
resemblance in textures puts them in a similar region in the
feature space. After observing the visualization of our new 3-
class feature space, we reuse the original tactile measurements
of BeigeCotton to partially fit our incremental IPCA feature
extractor. In the presence of the next new fabric, the feature
extractor has already been updated to include the fabric
class BeigeCotton.

Similarly, Figures 6C–F show feature spaces associated with
the incremental process of incorporating more testing fabrics to
the IPCA feature extractor. The visualization of the feature space
gives a hint that BrownCotton and BeigeCotton can be hard to
distinguish under some circumstances; Canvas lies in the large
common region of other Cotton but it responds to different
pressure settings in its own way that deviates from BeigeCotton
and BrownCotton. Linen demonstrates some essentially different
features that stand out from other fabrics. The elasticity is much
greater thanCotton andCanvas. While the textures on the surface
are not as smooth and even as other fabrics, it could be the reason
that Linen scatters irregularly in the feature space. The embrace
of Denim and DenimFlex in the feature space is consistent with
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FIGURE 8 | Confusion matrix of 7-fabric classification using a k-NN classifier with 3 IPCA features.

the similarity of the two types of Denim in textures and elasticity,
which again can be verified by human touch.

With all the tactile measurements projected into the feature
space, we split the feature vectors of all classes in halves as one
training dataset and one testing dataset to fit and test a k-NN
classifier taking k = 10. First, we show how the number of
featuresD extracted by the IPCAmethod affects the classification
performance on the testing set (shown in Figure 7). Trends of
classification accuracy are congruent with the change in the
ratio of variance explained by D principal components. When
D ≥ 7 the classifier reaches its limit in our experiments, where
classification performance ceases to improve.

To be consistent with all the 3D visualization, we use a
feature extractor of D = 3 principal components (PCs). We
first show the confusion matrix (shown in Figure 8) using half
of the samples as a training dataset and the other half as a testing
dataset, to have a rough picture of the classification performance.
Entries with higher confusion rates are well matched to the
fabrics classes that are tangled in the feature space in Figure 6F.

All the above results combined feature vectors sampled with
all different sliding parameters specified inTable 1. To check how
the fabric classes separate for each Pressure setting, we first show
the feature spaces corresponding to only one Pressure (while
speeds are still mixed) at a time. With the same feature extractor
trained on D = 3 PCs, the classifier shows a performance
fluctuation under different Pressure settings (see Figure 9A).
The sweet spots fall at Pressure 180 and Pressure 210 where
the classifier shows significantly better performance. The results
coincide with the better segregation of fabric clusters as in
Figures 10C,D. We also show the 95% confidence ellipsoids
to help visualize the change of clustering along with the
pressure change.

Since only 4 fabrics can be sampled under Pressure 250,
the results shown in Figure 10E is only for reference without
being directly comparable to other pressure settings. Hence, it
is plausible to infer that higher holding pressure contributes to
better classification of fabrics in the sliding motion. Moreover,
the slightly better yet negligible improvement in classification
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FIGURE 9 | (A) Sliding pressure (as the average value of the 16 taxel signals,

unitless) vs. Classification accuracy (B) Sliding speed vs. Classification

accuracy.

in the range of pressures from Pressure 180 to 210 indicates a
potential saturation of grip pressure, which refers to a sufficiently
(maybe fully) stretched or even over-stretched condition of the
fabric stripes, where fabrics textures are severely distorted or even
flattened out. Whether a fabric stripe is stretched enough for
identification and classification might as well be closely related
to the resolution and sensitivity of the tactile sensor itself. As can
be seen in Figure 10A, data points of different classes remain at
close distances from each other, which implies that under low
pressures the extracted features carry insufficient information
of the fabric classes. Increasing pressure to 150 significantly
improves the discriminability (see Figure 10B) where only two
types of cotton remain tangled. The two cotton stripes are very
likely to differ subtly in the weaving method, making them tricky
to distinguish. While for other fabrics, the slightly increased
pressure already ensures sufficient interaction between the sensor
and the textural surface to expose differences in the frequency
domain.

To better illustrate the effect of grip pressure, we show in
Figure 11 data points sampled under different pressures with

marks ×, ●, ✚, and F sequentially, in the ascending order.
Data points are more scattered under larger pressures, which
confirm our conclusion in the last paragraph that larger holding
pressures help to extract more information from the fabrics.
However, another notable phenomenon is that features are also
less consistent (more scattered) under larger pressures. This is
very likely caused by the very strong interaction between the
sensor and the fabric stripes, where the sliding motion is not as
smooth as it is under lower pressure settings due to augmented
frictional forces. In the experiments, due to gravity, anisotropic
“fingerprint” of the sensor and fabric folding and shifting, the
sensor stutters during the sliding motion.

Finally, we show the effect of different sliding speeds
on classification in Figure 9B. Classifications are conducted
with a one-speed setting (only the magnitudes of speeds are
considered). Sliding speeds are seemingly irrelevant to the
features extracted under our experimental setup. Increasing or
decreasing the sliding speed alone shows no major impact on the
classification performance.

Given the results shown above, mostly the visualization of
the feature space with clusters and the analysis of classifier
performance concerning the parameters of sliding motions, we
make a statistically sound inference that a low dimensional (circa
≤ 7D) vector is sufficient to feature the tactile measurement
of textures sampled from our CPM-Finger tactile sensor. The
feature vector is essentially a condensed form of the frequency
spectrum which not only represents the frequency signature of a
fabric texture but also embeds some characteristics of the tactile
sensor itself. Even at a relatively low sampling frequency of 32 Hz,
we can still reach a considerable classification accuracy of 96% for
7 fabrics by using a 7D feature extractor.

The fact that the same processing pipeline has significantly
different performance on fabric classification when varying
sliding motion parameters, supports our assertion (see Section
1) that, tactile sensing as a contact perceptive technique,
is conceptually very different from the visual and auditory
perceptions. Tactile sensors capture the information in the
interaction with the environment, during which the interactive
modes (i.e., the relative motion between tactile sensors and
the objects in contact) and parameters are also reshaping the
environment, that reversely affect the tactile measurement itself.
Whereas for visual and auditory perceptions, movements of the
sensory system are not mandatory to acquire signals and have no
direct impact on the observable most of the time.

For a specific sensing technology, varying the parameters
of the exploratory motions not only serves to enlarge the
perceptive field and gain more information but also helps
to seek the best interactive conditions of the tactile sensors
regarding the object. The essence of tactile sensing is a
capture of the generated deformation during the mechanical
interaction between the sensor and the object surface.
Changing the motion parameters for better classification
performance can be viewed as a robotic adaptation to
maximize the efficacy of the sensors and the perception
system, given that specs of the sensors (e.g., sampling rate,
resolution) and the physical properties of the object are
likely unalterable.
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FIGURE 10 | Feature spaces (A–E) correspond to sliding pressure settings of 120, 150, 180, 210, and 250 of only fabrics. (F) is the feature space of all fabrics and

polylactic acid (PLA) boards with all different speed and pressure settings. The 95% confidence ellipsoids are shown to illustrate the intra-class dispersion.

6. DISCUSSION

In this study, we focus on the classification task of only
fabrics. However, it is natural to question whether the same

methods apply to the classification of general materials. Some
preliminary results of the experiments on a 3D printed
polylactic acid (PLA) board with two types of Boards (with
2 and 10 mm grilles, respectively, shown in Figures 4H,I)
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FIGURE 11 | Samples of Denim and DenimFlex in the feature space. Markers

of ×, ●, ✚ and F correspond to sliding pressures 120, 150, 180, and 210,

respectively.

show that using the feature extractor proposed in Section 3.2,
trained on all fabric samples, the tactile measurements of
the PLA board can be transformed into the same feature
space (shown in Figure 10F). It accordingly seems that our
proposed methods may also be promising in classifying non-
fabric materials. The first step to extend our research will be
simply adding more materials in the forms that are suitable
for the same sliding motions. In that case, we can reach a
more comprehensive understanding of whether for capacitive
tactile sensors, the frequency spectrum alone suffices to feature
a general texture.

Readers may also argue that the k-NN classifier might not
be the best performer in material classification in our problem.
A comparison between different methods including artificial
neural network classifiers, decision tree classifiers, naive Bayesian

classifiers, etc., can bring a better idea of the classification
accuracy. The fact that is presented in this study, beyond the
results of classification itself, most importantly, is that even a

single modality tactile sensor at a low sampling frequency is
already capable of classifying fabric materials by using a simple
sliding motion, to a reasonable good accuracy (90–96%) with no
more than 7D feature vectors. Tactile measurements represented
by points in the low dimensional frequency feature space are
segregated by their fabric classes naturally. These clusters can
possibly be depicted by parameters of probabilistic models,
e.g., Gaussian mixture, to form a more compact representation
of tactile knowledge base. This implies the great potential of
tactile sensing in other tasks relating to object identification
and classification.
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