
ORIGINAL RESEARCH
published: 31 March 2022

doi: 10.3389/fnbot.2022.817168

Frontiers in Neurorobotics | www.frontiersin.org 1 March 2022 | Volume 16 | Article 817168

Edited by:

Yimin Zhou,

Shenzhen Institutes of Advanced

Technology (CAS), China

Reviewed by:

Zhijun Yang,

Middlesex University, United Kingdom

Jiahao Chen,

Institute of Automation (CAS), China

*Correspondence:

Lei Chen

chenl@nudt.edu.cn

Received: 17 November 2021

Accepted: 23 February 2022

Published: 31 March 2022

Citation:

Xie N, Hu Y and Chen L (2022) A

Distributed Multi-Agent Formation

Control Method Based on Deep Q

Learning.

Front. Neurorobot. 16:817168.

doi: 10.3389/fnbot.2022.817168

A Distributed Multi-Agent Formation
Control Method Based on Deep Q
Learning

Nianhao Xie 1,2, Yunpeng Hu 1,2 and Lei Chen 3*

1College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China, 2Hunan Key

Laboratory of Intelligent Planning and Simulation for Aerospace Missions, Changsha, China, 3National Innovation Institute

and Defense Technology, Beijing, China

Distributed control method plays an important role in the formation of a multi-agent

system (MAS), which is the prerequisite for an MAS to complete its missions. However,

the lack of considering the collision risk between agents makes many distributed

formation control methods lose practicability. In this article, a distributed formation control

method that takes collision avoidance into account is proposed. At first, the MAS

formation control problem can be divided into pair-wise unit formation problems where

each agent moves to the expected position and only needs to avoid one obstacle. Then, a

deep Q network (DQN) is applied to model the agent’s unit controller for this pair-wise unit

formation. The DQN controller is trained by using reshaped reward function and prioritized

experience replay. The agents in MAS formation share the same unit DQN controller

but get different commands due to various observations. Finally, through the min-max

fusion of value functions of the DQN controller, the agent can always respond to the most

dangerous avoidance. In this way, we get an easy-to-train multi-agent collision avoidance

formation control method. In the end, unit formation simulation and multi-agent formation

simulation results are presented to verify our method.

Keywords: multi-agent system, distributed control, formation control, deep Q learning, collision avoidance

1. INTRODUCTION

In recent years, with the development of manufacturing, microelectronics, and communication
technology, unmanned multi-agent systems (MASs), such as unmanned land vehicles, unmanned
underwater vehicles, and unmanned aerial vehicles have emerged. Taking the advantage of tireless,
fearless, and infallible characters over a human being, MASs begin to be applied in many
areas, e.g., express distribution, disaster search and rescue, ecological monitoring, entertainment
performances, and military confrontation. As a primary guarantee for MAS coordination and
cooperation during task execution, formation control has received more and more extensive
attention. Although there are many theoretical achievements, lots of formation control methods
for MAS still lack autonomy in practical applications, where manual remote control or trajectory
planning is needed to coordinate the agents. This is the main reason that MAS cannot cope with
many tasks that require high timelines.

Researchers usually turn the formation control problem into a consistency problem and model
the topology among agents using the undirect (Eren et al., 2003) or direct (Falconi et al., 2011)
graph. Based on the communication or observation topology, the stability and convergence of

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.817168
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.817168&domain=pdf&date_stamp=2022-03-31
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:chenl@nudt.edu.cn
https://doi.org/10.3389/fnbot.2022.817168
https://www.frontiersin.org/articles/10.3389/fnbot.2022.817168/full

Xie et al. A DQN Formation Control Method

the designed formation control protocol can be proved.
Nevertheless, this kind of method (Li et al., 2019a; Guo et al.,
2020) takes the agents as a mass point and neglects their
volume, causing these methods insecure for possible collision
between agents. In addition, the obstacles in the environment
are usually indescribable, which also raises challenges for these
methods. The potential function is widely used to describe
obstacles. Using leader-follower topology, Liang et al. (2020)
came up with an adaptive leader-follower formation control
method for unmanned aerial vehicle (UAV) swarms with motion
constraints and unknown disturbances, where the collision
avoidance between UAVs is achieved with the artificial potential
method. Merheb et al. (2016) modeled the environment as an
incompressible flow field and designed a potential function for
obstacles. Then panel method was applied to generate formation
trajectory, i.e., streamlines of flow. Wu et al. (2016) proposed
an obstacle envelope modeling method to model the obstacles.
Each obstacle can be regarded as a dipole where the positive pole
attracts agents and the negative pole distracts agents. However,
trajectory planning methods require complex pre-design and
calculation, making them only applicable in the mission planning
stage and becoming invalid in on-board formation control.
Behavior-based methods can also work to deal with obstacles. Xu
et al. (2014) made behavior rules for agents to bypass obstacles
and move along the walls. Lee and Chwa (2018) defined the
inner, middle, and outer boundaries to wrap the obstacles so that
agents can take effective collision avoidance behaviors in different
boundaries. Although many details need to be considered, the
behavior-based method cannot ensure stability and optimal
during formation (Kamel et al., 2020).

To reduce reliance on the experience of engineers to make
behavior rules, behavior learning methods begin to be applied
in the formation control. Jin (2019) achieved stable tracking of
followers to the leader with iteration learning method, where
the only angle of sight observation is needed. Zhao et al. (2020)
considered the relative distance constraints between agents and
planned collision avoidance trajectory by iteration learning. Sanz
et al. (2008) took the first step to apply the reinforcement
learning method in the formation control. The agent with a
Q learning controller can learn when to move forward and
backward to keep aligned with the other two agents. However,
when the state or/and action space become continuous, the
corresponding Q table will be too large to describe or to train.
The appearance of deep Q network (DQN) (Mnih et al., 2013)
and deep deterministic policy gradient (DDPG) (Lillicrap et al.,
2016) have solved this problem because continuous state and/or
action space can be modeled by a neural network with limited
weights. Sui et al. (2019) built long short-term memory (LSTM)
networks to learn the formation controller of a follower to track
the leader. The training is divided into two-stage. First, the
network is supervised to learn the trajectory from the optimal
reciprocal collision avoidance (ORCA) method (Van Den Berg
et al., 2011), which is a well-known formation control method
to deal with collision avoidance. Then, the agent explores better
control protocol using reinforcement learning. Wang (2019)
equipped the DDPG with double prioritized experience replay.
Without considering collision avoidance, the command of roll

angle for a UAV is generated by the DDPG controller and
executed by a traditional PID controller. Although trained in the
simulation environment, the learned roll angle command also
works on hardware-in-the-loop simulation. However, Sui et al.
(2019) andWang (2019) only focus on the situation of one leader
with one follower. Li et al. (2019b) trained multi-agent collision
avoidance controller under decomposition methodology. At first,
they predicted the value function from one-to-one collision
avoidance rules using the iterative policy evaluation method.
Then, the one-to-one value functions of multi-agent are fused
and corrected to a multi-agent collision avoidance policy.

In this article, based on the decomposition methodology,
we train a DQN for formation with leader-follower topology.
First, we extract the simplest environment from the multi-
agent formation control environment, i.e., one agent tracks its
follower and needs only to avoid one obstacle. Then, in this
simplest environment, the agent with DQN controller is trained
with reshaped reward function and prioritized experience replay.
Finally, through the min-max fusion of the DQN value functions,
the agent can avoid more than one obstacle during formation
control. The main contributions of this article are as follows:

• The multi-agent formation problem is decomposed to the
pair-wise control problem, called the unit formation problem,
which reduces the state dimension of DQN and thus, simplifies
the learning of control policy.
• The reward function of the DQN controller is reshaped, which

improves the training performance of DQN.
• By min-max fusion of DQN value function, the pair-wise

controller is upgraded to a multi-agent formation controller.
• The action field is proposed to visually compare the DQN

formation controller before and after reinforcement learning.

This article is organized as follows. In section 2, the multi-
agent formation control problem is modeled. In section 3,
after the proposed decomposition-fusion learning framework is
sketched out, we explained the details of the unit formation
controller, and a min-max fusion method to deal with multiple
obstacles in multi-agent formation. In section 4, simulations are
presented to validate ourmethod. Finally, we conclude this article
in section 5.

2. PROBLEM DESCRIPTION

Oh et al. (2015) gave the general description of the formation
control problem without considering collision avoidance, while,
when considering the collision avoidance, the formation control
problem can be modeled as follows. Supposed there are N
agents in the formation, and let the state of agent i be xi and
the kinematics model and observation model are fi and gi,
respectively. The multi-agent state set is X = [x1, x2, · · · , xN],
and the observation set is Y =

[

y1, y2, · · · , yN
]

, and the control
output set is U = [u1, u2, · · · , uN]. The target of multi-agent
formation controller at time t is calculating control output set
Ut according to states sequence Xt0 : t and observations Yt0 : t

from starting time t0 to current time t so that the agents can
avoid collision with each other and form the expected geometric

Frontiers in Neurorobotics | www.frontiersin.org 2 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

FIGURE 1 | (A) The leader-follower topology in the formation control. (B) The unit problem of formation control. (C) The relative kinematics model.

configuration. This problem can be described by optimization
equations as follows.

{

min
Ut0 : t

‖F (Xt)− F (X∗)‖

s.t. C(X) < 0
(1)

where the function F(·) maps the states of agents to geometric
constraints and the function C(·) is collision function. When a
collision happens, C(X) > 0. The optimization objective is to
make the geometric configuration F (X) converge to the expected
F (X∗). The states transformation and observation of agent i obey
the following equation.

{

ẋi = fi (xi, ui)
yi = gi (X)

(2)

3. FORMATION CONTROL METHOD

In this section, the decomposition-fusion framework to train the
formation controller is proposed. Then, the unit controller is
designed and learned by the improved deep Q learning method
to get a pair-wise policy. Finally, the min-max fusionmethod that
makes the pair-wise policy applicable for multi-agent formation
is elaborated.

3.1. The Decomposition-Fusion Framework
In a multi-agent formation, as the number of agents increases,
each agent needs to communicate and cooperate with more
agents, which require higher computation capacity. By designing
a suitable formation topology, the relationship among agents can
be simplified so that the communication and calculation burden
is relieved.

With leader-follower topology, the formation can be
automatically kept and globally controlled by the leader. In the
clustered MAS, considering that the follower in one cluster can
become the leader in other clusters, this kind of hierarchical
topology makes the control of a large-scale system possible. As
shown in Figure 1A, the follower calculates its expected relative
position by observing its leader and then moves toward the
destination. At the same time, the follower is not allowed to
collide with the other agents in the formation. From the agents’

point of view, an agent takes other agents in the formation
as moving or static obstacles. The agent aims to observe the
leader, move toward the relative destination, and meanwhile,
avoid collision with those obstacles. Thus, the formation control
problem can be treated as an obstacle avoidance problem from
this insight. A formation controller is expected to avoid multiple
obstacles. Instead of using a one-step learning framework that
directly takes multiple obstacles into account, we proposed the
two-step decomposition-fusion learning framework which can
give the agent the ability to deal with multiple obstacles.

As shown in Figure 2A, assuming that there are three
obstacles, a direct way is to learn a controller that takes the
observations of all obstacles as input. But this leads to two
troubles. One is that, as the number of obstacles increase the
input dimension, learning samples, and the parameters increase,
which increases the learning difficulty. The other one is that, if
the number of obstacles is not three, e.g., two or four, the learned
controller will be inapplicable.

In this article, a decomposition-fusion framework is proposed
to solve the above problems. Inspired by the pair-wise policy
(Kuchar and Yang, 2000) and attention mechanism (Mnih et al.,
2014), in the decomposition stage, we assume that the agent
only focuses on a certain obstacle, and was “blind” to the rest
obstacles. Such a “uint controller” has a fixed input dimension
and is relatively simple to learn. However, it is clear that the unit
controller cannot ensure collision avoidance to all obstacles at
once. As shown in Figure 2B1, when the agent pays attention
to obstacle 1, the agent may not be able to avoid obstacle 2.
Figures 2B2,B3 show similar things. Thus, a “fusion controller”
will be designed to make the agent learn how to allocate attention
and balance its pair-wise policy for different obstacles. In this
way, an approximately global optimal solution can be gained.

3.2. Decomposition Stage: Reword
Reshaped DQN for Unit Control
3.2.1. Modeling of Unit Control Problem
In the uint problem, with the assumption that agents in d-
dimension space have a second-order linear kinematics model,
only the relative movement of agent A, agent’s target position T,
and obstacle O need to be considered. As shown in Figure 1C,
A,T,O is the agent’s current position, expected relative position,

Frontiers in Neurorobotics | www.frontiersin.org 3 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

FIGURE 2 | Diagram of the proposed decomposition-fusion formation control framework. (A) A formation situation that the agent A is supposed to destinate target T

but may be blocked by multiple obstacles O1,O2, and O3. The circle of the obstacle represents its collision zone. If the trajectory of the agent does not intersect with

the collision zone, it means that the agent has no collision with the obstacle. (B) The decomposition of original formation by focusing obstacles one by one. The

“focused” obstacle is colored by red while the “ignored” obstacles are colored white. (C) The trajectory from the fused controller.

and obstacle center, respectively. The red circle is the threat
zone and the gray zone is the motion permitted zone. dm is
the predicted minimum distance from the agent to the obstacle
center if the agent keeps the current moving direction. We define
a relative coordinate system inwhich the origin of the coordinates
is fixed on the target position T and its axis is parallel to one
inertial coordinate. Denote the relative position from the agent to
the target as ρ and the relative position to the obstacle as ρO. The
agent’s velocity in the relative coordinates is ρ̇. Then, the state

of the agent i is xi =
[

ρ
⊤
i ρ̇

⊤
i

]⊤
. The kinematics model of the

agent is

{

ẋi = Axi + Bui
yi = Cxi

where A=

[

0 1
0 0

]

⊗ Id,B=

[

0
1

]

⊗ Id, C = I2n

(3)
where ⊗ is Kronecker product and ui ∈ R

d is control output
which has constraint ui ∈ U . The agent has velocity constraints
vi ∈ V . The safe distance between agents is dsafe which means the
formation would fail if any distance between two agents was less
than dsafe.We also limit the agent tomove inside a circle area with
radius D. If the agent moves close enough to the target position,
i.e., |ρ| 6 de, the unit problem is solved and de is called formation
error.

3.2.2. Buiding Markov Decision Process (MDP) for

Unit Problem
The MDP is commonly used to describe continuous decision
problems. An MDP can be defined by the tuple M =

〈S ,A,Tr ,R, γ 〉, where S is state space, A is action space, Tr is
state transition function, R is reward function, and γ is decay

coefficient. A time t, the agent chooses action at ∈ A using
policy π based on state observation st ∈ S . Then, the state
transits to st+1 at time t + 1, where the transition probability
is Pr (st+1|st , at) = Tr (st , at , st+1). Meanwhile, the agent gets
reward rt+1 = R (st , at , st+1). The goal of the continuous decision
is finding the best policy π∗ which maximizes the cumulative
expected reward

∑∞
t=0 γ trt .

The state value function and state-action value function of
MDP are briefly introduced for the convenience of explaining
reward shaping and DQN training. Before training the policy
of the unit formation MDP, the way of interaction between
the agent and the designed environment needs to be decided.
Then, the details of other elements of the unit formation MDP,
including state, action, transition function, and reward function,
are discussed.

State value function. The policy π :S × A → [0, 1] gives
the probability of choosing one action at the current state, and
obviously,

∑

a∈A π (s, a) = 1. The state value function of policy
π at state s can be denoted asVπ (s), which means nomatter what
policy the agent uses before the state s, if the agent always uses
policy π from the state s to the end of the decision process, then
the cumulative expected reward from state st to s∞ is Vπ (s).

Vπ (s) = Eπ

[

∞
∑

k=0

γ krt+k+1 | st = s

]

(4)

State-action value function. The state value after action a is
state-action value Qπ (s, a), which is the cumulative expected
reward from state st to s∞ is Vπ (s) when the agent transits to

Frontiers in Neurorobotics | www.frontiersin.org 4 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

FIGURE 3 | (A) The episode mechanism of unit formation problem when the obstacle O is out of the threat zone. (B) The episode mechanism of unit formation

problem when the obstacle O is in the threat zone.

new state s′ after acting action a and keeps using policy π from
the state s′ to the end of the decision process.

Qπ (s, a) = Eπ

[

∞
∑

k=0

γ krt+k+1 | st = s, at = a

]

(5)

Episode mechanism. The samples of reinforcement learning
are generated during the agent’s exploration in the environment.
Therefore, how the agent interacts with the environment needs
to be decided, which is called episode mechanism in this article.
Consider the environment in two-dimension space, in order to
simulate the collision avoidance during formation control, we
design the episode mechanism as illustrated in Figure 3. Let the
target position be the center of the initial zone and limited zone,
where the initial zone and limited zone are circular area with
radius d3 and D, respectively. At the beginning of every episode,
the agent is randomly initialized in the initial zone. A direct idea
is to place the obstacle randomly on the limited zone. However,
in most instances, the agent can simply move to the target along
a straight line, which makes the agent lack of experience to learn
how to avoid obstacle. Considering that an obstacle in the route
of the agent to its target will threaten the agent, the threat zone is
defined as an double-ended-wrench like area, where the width of
the double-ended wrench is d1. The initialization strategy of the
obstacle is as follows. In 50% of cases (as shown in Figure 3A), the
obstacle is initialized randomly in the limited zone except threat
zone, in the other 50% cases (as shown in Figure 3B), the obstacle
is initialize randomly in the threat zone. The initial velocity of
the agent is also random but the obstacle is assumed to be static
for simplification. At each control time step, the agent receives
command from the DQN controller and executes this action.
This process keeps going until the following events occur:

• the agent reaches its target position (finish)
• the agent collides with the obstacle (collision)
• the agent moves outside the limited zone (out of range)
• the agent moves more than nmax step (out of step)

Therefore, the four kinds of state, i.e., finish, collision, out of
range, and out of step are the terminal states of one episode.

MDP State. The unit formation control involves the agent,
the obstacle, and the target. Therefore, the MDP State st =
[ρ⊤(t), ρ̇⊤(t), ρ⊤O (t)]

⊤ = [xt , yt , vx,t , vy,t , xO,t , yO,t]
⊤, i.e., the

agent’s relative position to target x, y, relative velocity vx, vy, and
agent’s relative position to the obstacle xO, yO at step t, which
contains enough information to calculate control output. In
addition, the velocity constraint is vx, vy ∈ [−1, 1].

Transition function. The transition function of the MDP state
is based on the agent’s discrete kinematic Equation (3) but added
the obstacle observation.

xt+1
yt+1
vx,t+1
vy,t+1
xO,t+1
yO,t+1

=

1 0 dt 0 0 0
0 1 0 dt 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 dt 0 0 0
0 1 0 dt 0 0

xt
yt
vx,t
vy,t
xO,t
yO,t

+

0 0
0 0
1 0
0 1
0 0
0 0

[

ux
uy

]

(6)

where ux, uy is the formation control command and dt is the time
interval.

Action. TheMDP action is directly defined to be the formation
control command of the agent. Considering discrete action space,
the action space is

a = [ux, uy] ∈ {[0, 0], [−2, 0], [−1, 0], [1, 0], [2, 0], [0,−2],

[0,−1], [0, 1], [0, 2]}

Reward function. As mentioned in the episode mechanism, one
episode will be terminated under four situations, i.e. finish,
collision, out of the range, and out of the step. Correspondingly,
there are four kinds of terminal rewards for the unit formation
MDP. Let the original reward function be:

R(s) =

2, if finish

−2, if collision

−2, if out of range

0, otherwise

(7)

Frontiers in Neurorobotics | www.frontiersin.org 5 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

3.2.3. Reward Shaping
Although theDQN can be trained by the original reward function
Equation (7), the agent cannot get meaningful rewardmost of the
time because the original reward is very sparse. Especially at the
beginning of the training, it is hard for the agent to gain a way to
the target. Therefore, the original reward function Equation (7) is
not conducive to the convergence of training. In this article, we
reshape the original reward to make the DQN get the reward at
every step, which will improve the learning process.

For brevity, st , at , and st+1 are abbreviated as s, a, and
s′. Having original MDP M = 〈S ,A,T, γ ,R〉, the reward-
reshaped MDP can be denoted as M′ =

〈

S ,A,T, γ ,R′
〉

, where
R′(s, a, s′) :S ×A× S → R is reshaped reward

R′(s, a, s′) = R(s, a, s′)+ F(s, a, s′), (8)

and F(s, a, s′) :S ×A× S → R is an additional reward that need
to be designed to ensure that the optimal solution of the original
MDP is the same as the reward-shaped MDP. According to the
reward reshaping principle (Ng et al., 1999), if exits8(s) :S → R

which makes F(s, a, s′) = γ8(s′) − 8(s), then the additional
reward F(s, a, s′) is potential, which can ensure the invariance
of optimal solution. Denote the state value function of the two
equivalent MDP as Vπ

M ,Vπ
M′ respectively, then

Vπ
M′ = Vπ

M −8(s) (9)

If 8(s) = V∗M(s), then V∗M′ (s) ≡ 0. Equation (9) theoretically
indicates that the learning of V∗M′ (s) will be easier if we reshape
the reward function by 8(s) that predicts V∗M(s) (Ng et al., 1999).
The agent has a higher state value when it approaches the target
position, and the agent has a lower state value when the collision
threats exist and the agent approaches the obstacle. Let

8(s) =

{

−ρ if ρO > 2dsafe
−ρ + (ρO − 2dsafe) if ρO 6 2dsafe

(10)

Finally, the additional reward function is defined as

F(s, a, s′) =

−γρ(s′)+ ρ(s) if ρO > 2dsafe
−γρ(s′)+ ρ(s)+ γρO(s

′)
−ρO(s)+ 2(1− γ)dsafe if ρO 6 2dsafe

(11)

3.2.4. Q Learning for Optimal Policy
If the optimal state-action value functionQ is known, the optimal
policy is

π∗(s) = argmax
a

Q∗(s, a) (12)

The Q learning (Sutton and Barto, 1998) can iteratively make
the Q function approaches the optimal because the current state-
action value function can be presented using the next state-action
value function according to the Bellman equation, i.e.,

Qπ (s, a) =
∑

s′

Pass′

[

Rass′ + γEπ

[

∞
∑

k=0

γ krt+k+2|st+1 = s′
]

]

(13)

where Pass′ = Pr
(

st+1 = s′|st = s, at = a
)

Rass′ =

R
(

st = s, at = a, st+1 = s′
)

. Therefore, the optimal state-action
value function satisfies the equation

Q∗(s, a) = Es′

[

R(s, a, s′)+ γ max
a′

Q∗(s′, a′)

]

(14)

According to Equation (14), the Q function can be solved by
temporal difference and eventually converge to Q∗. In traditional
Q learning method, the Q function is defined by numerical table,
which is unsuitable when the state space becomes larger or even
infinite. Mnih et al. (2013) used a deep network to model the
Q table so that it is possible to define infinite states and actions
with finite weights of the network. They built two networks called
evaluation network Q and target network Q−, respectively. The
structure of the two networks is the same, but they have different
parameters. Denoting the parameter of evaluation network and
target network as w and w− respectively, the error of evaluation
network to target network is

J(w) = Es′

[

(

Rass′ + γ max
a′

Q−(s′, a′)− Q(s, a)

)2
]

(15)

the parameters of evaluation network can be updated by

w← w+ α∇J = w+ α

(

Rass′ + γ max
a′

Q(s′, a′)− − Q(s, a)

)

∇Q(s, a) (16)

where α is the learning rate. The parameters of target network
w− are updated to parameters of the evaluation network w
every Nreplace training step, making the parameters of evaluation
networks approach the optimal parameters w∗. In this way, the
iterative temporal difference method is accomplished in DQN
training.

The training processes of unit formation problems with and
without reward shaping are shown in Figures 4A,B, respectively.
The training samples come from the experience (s, a, r, s′) of
the agent, obtained by interacting with the environment. These
samples are temporarily stored in the experience pool with size
Npool. However, at every training step, onlyNbatch samples will be
trained during overpopulation of the output error between the
evaluation network and target network. Therefore, the priority
experience replay method (Schaul et al., 2016) is employed in this
article to increase the probability of samples with large errors.
The samples with a high error are more likely to be selected to
train the networks, which can speed up the learning process.

3.3. Fusion Stage: Multi-Agent Formation
Control by Min-Max Fusion of Unit
Formation Control Policy
The unit formation DQN controller only equips the agent
with the ability to avoid one certain obstacle during formation.
However, there will be more than one potential threat in
the multi-agent formation control. To make the agent knows
which obstacle needs to be preferentially treated with, the

Frontiers in Neurorobotics | www.frontiersin.org 6 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

FIGURE 4 | The unit formation deep Q network (DQN) controller learning process (A) without and (B) with reward shaping.

FIGURE 5 | Policy fusion for multi-agent formation control.

min-max fusion method proposed by Chryssanthacopoulos
and Kochenderfer (2011) is employed to fuse pair-wise unit
formation control policy.

To simplified the denotation, we omit the subscript i. The
min-max fusion process is shown in Figure 5. The agent views
other agent j in the formation as an obstacle. If the distance
between agent i and j is beyond the threshold which makes the
observation or communication impossible or the agent j is too far
to threaten agent i, there is no need for agent i to respond to agent
j. If not, having the state of agent i and j as input, the pair-wise
policy can output the optimal action aj and responding state-
action function Qj. From the definition of the state-action value
function in section 3.2.2, Qj predicts the cumulative expected
reward after executing action aj. A higher state-action value
means lower collision threats. Thus, the lowest state-action value
of all the optimal pair-wise policies most likely comes from the
biggest threat. The min-max fusion method makes the agent
respond first to the biggest threat. Therefore, the balanced global
policy from the pair-wise policy is

a = arg min
aj∈Aj

Q(sj, aj) (17)

and

aj = argmax
a′∈A

Q(sj, a
′) (18)

where Aj = {aj} is all the pair-wise policy of the agent i to the
other agents j, j = 1, 2, · · · ,N, j 6= i.

For every agent in the formation, it can get a global formation
control policy without extra training by using Equations (17) and
(18).

4. SIMULATIONS AND RESULTS

To verify our multi-agent formation algorithm step by step, we
first present two demos of unit formation control in section 4.1.
Then, in section 4.2, two more demos of multi-agent control
are given to validate our method of multi-agent formation with
collision avoidance.

4.1. Unit Formation Control Policy
4.1.1. Training
As shown in Figure 6, the evaluation network and target network
are both composed of three fully connected layers. There are
256, 256, and 128 neurons in the first, second, and third layers,
respectively. The weights are initialized using Gaussian random

Frontiers in Neurorobotics | www.frontiersin.org 7 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

FIGURE 6 | Structure of DQN.

N(0, 0.32) and the biases are initialized using uniform random
U(0, 0.1). Except for the last layer, the other layers’ output is
activated by tanh function.

The reward decay coefficient is set as 0.95 and the size of
the experience pool to store samples is set as 50,000. For every
Nreplace = 2, 000 training step, the parameters of the target
network will be replaced by those of the evaluation network.
At the beginning of training, the ǫ-greedy probability is 0.95
which allows the agent to explore the environment as far as
possible. As the training goes on, the ǫ linearly decreases by
0.01 every 100 episodes to limit the exploration range of the
agent until reaches the minimum value ǫmin = 0. The weights
are updated by Adam Optimizer with an initial learning rate
α = 10−3. Like the probability of ǫ-greedy exploration, the
learning rate also decreases every 100 episodes, not linearly
but exponentially, i.e., the learning rate becomes 0.99 times
the old learning rate (α ← 0.99α). At every training step,
Nbatch = 32 samples are selected by the priority experience replay
method. The training stops when the number of trained episodes
reaches 20,000.

We assume that the episode is finished if the distance between
the agent and its target position is less than de = 3, and
the agent is safe if the distance between the agent and the
obstacle is more than dsafe = 5. To generate samples, the
inner and outer radius of the obstacle zone are d1 = 10
and d2 = 25, respectively. The agent is limited to moving
within the circular zone (radius D = 100) around the target
position. If the episode goes more than nmax = 100 control
steps, or collision or crossing happens, the episode is forced
to stop.

All the parameters related to the training of DQN is listed in
Table 1.

To test the reward shaping in this article, we trained the
original DQN and reward shapingDQNfive times using the same
episode mechanism, parameters, and network structure, but
different network initial parameters, and different random seeds
to initialize the agent’s position, agent’s velocity, and obstacle’s
position. During the training process, the DQNwith and without
reward shaping is tested. Let R̄test(m) be the average reward of
Ntest = 300 test episodes after training DQN by m training
episodes. Denote the DQN trained by m training episodes as
mth DQN, the average reward of the mth DQN in one training

TABLE 1 | Parameter of deep Q network (DQN) and training.

Parameters Value Parameters Value

Reward decay

coefficient γ

0.95 update target

network every

Nreplacestep

2× 103

Initial ǫ-greedy

probability ǫ

0.95 Minimum ǫ-greedy

probability ǫmin

0

Initial learning rate α 103 Size of experience

poolNpool

5× 104

Total episode Ne 2× 104 Batch size Nbatch 32

Maximum step in

each episode nmax

100 Formation error de 3

Safe distance dsafe 5 Width of threat

zone d1

10

Radius of limited

zone D

100 Radius of initial

zone d3

50

Simulation interval

dT

0.1 Control interval dTc 1

process is

R̄test(m) =

Ntest
∑

k=1

nk
∑

j=j0,k

rk,j(m) (19)

where rk,j(m) is the reward of the jth step in the kth test episode
obtained by mth DQN. In addition, j0,k = max{1, nk − 10},
meaning that the average reward is the average of the last 10 steps
when the total steps of kth episode are more than 10. To make
the reward of DQN with and without reshaping comparable, the
average reward is normalized by the maximum average reward
during the whole training process.

R̄′test(m) =
R̄test(m)−minn{R̄test(n)}

maxn{R̄test(n)} −minn{R̄test(n)}
, n = 1, · · · ,Ne

(20)
Themean curve and SE of the normalized average reward with

and without reshaping are recorded in Figures 7A,B. As shown
in Figure 7A, the normalized average reward without reshaping
reaches the maximum at about 5,000 training episodes by 0.8 ±
0.2. In Figure 7B, the normalized average reward with reshaping
grows to the maximum value at about 5,000 training episodes
by about 0.95 and the SE is small. Therefore, the convergence
process with reward shaping is more stable.

Figures 7C,D present the terminal states of test episodes.
We call the episodes out of step, out of range, and collision as
unfinished episodes. Both terminal state curves show a rising
trend of the finished episodes. As shown in Figure 7C, without
reward shaping, most episodes terminate due to the state of out
of step, and collision before 5,000 episodes because the sparse
reward makes it hard for the agent to get a positive experience.
The finish rate end by about 75% and there still is a 10% collision
probability. In Figure 7D, benefiting from the reward shaping,
the failure episodes of the reward shaping controller are mainly
out of range, and the collision episodes only occur before 5,000

Frontiers in Neurorobotics | www.frontiersin.org 8 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

FIGURE 7 | The normalized average reward of DQN (A) without and (B) with reward shaping. The terminal state during train process (C) without and (D) with reward

reshaping. The translucent shadow their SE.

steps which indicate that the agent effectively learns an obstacle
avoidance strategy. The finish rate reaches about 90% with nearly
zero collision probability. The reward shaping improves the
convergence of terminal state curves. Therefore, we can conclude
that the reward shaping method in this article improves the
convergence of DQN.

4.1.2. Demo: Visualized Action Field
Sui et al. (2019) colored the action space according to the
probability that action is optimal to analyze the learned policy.
However, the action space only shows the policy in some
keyframes. To globally visualize the learned policy by DQN,
the action field is defined as follows. Supposed that the current
position and velocity of the agent is ρ and ρ̇, the optimal action
can be calculated by the DQN policy π . By fixing the velocity ρ̇

but traversing the position ρ of the agent, the function mapping
FA(ρ|π , ρ̇) represents the action field. In other words, the point
in the action field is the optimal action when the agent of velocity

ρ̇ locates in the same position. Figure 8 shows the action field of
ρ̇ = 0 with the target position at point [0, 0] and limited zone in
the square of [−40, 40]−−[−40, 40].

As noted, the green, red, purple, and blue colors represent
up, right, down, and left action, respectively, in which deeper
color indicates bigger acceleration. Since the parameters of DQN
are randomly initialized before training, the zero-velocity action
field at this time is chaotic, as shown in Figure 8A. After 20,000
episodes of training, as illustrated in Figure 8B, the action field
becomes regular. More precisely, the action field is composed of
four triangle zones, which make the agent always move toward
the expected position.

4.1.3. Demo: Unit Formation Control
In this subsection, two scenarios are presented to show the
performance of the unit formation control. They represent two
typical situations, i.e., the obstacle is or is not on the line between
the initial position of the agent and the target position. When

Frontiers in Neurorobotics | www.frontiersin.org 9 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

FIGURE 8 | Action field (A) before and (B) after training.

there is no obstacle in the direction to the target position, as
shown in Figures 9A,B, the agent adjusts its direction at about
the 15th and the 30th control step to aim at the target. If the
obstacle blocks the way, the agent moves toward the target until
the distance to the obstacle is close enough to alarm the agent. As
shown in Figures 10A,B, the agent turns left at about the 22nd
control step and turns right at about the 37th control step to avoid
the obstacle.

Due to discrete acceleration and fixed time step, the zero-
velocity constraint is not satisfied, when the agent arrives at the
target position. This makes the trajectory of the agent fluctuate
near the target position. It is noted that the agent does not need to
avoid other agents when it is close enough to the target position.
Therefore, to eliminate the continuously small fluctuation, in the
following demos, the simple proportional derivative (PD) control
method is employed when the agent is close enough to the target
(assuming that the distance to the target is less than 10 in this
article).

4.2. Multi-Agent Formation Control Policy
4.2.1. Demo: Avoid Multiple Obstacles
To show how the proposed multi-agent formation control
method avoids multiple obstacles, the scenario as shown in
Figure 11A is presented, where six static obstacles locate in point
[−20, 40], [0, 40], [20, 40], [−20, 20], [0, 20], and [20, 20] and the
agent is initialized in [0, 60] with velocity [0, 0]. The target is
[0, 0]. The blue dots represent the trajectory of the agent which
is remarked by blue circles every 10 control steps. The collision
zone of obstacles are represented by six colored circles.

In the beginning, the agent moves downward but turns right
at the 10th control step to avoid Obstacle 2. At control step
20, the agent corrects its direction to approach target position.
However, it must change direction at the 30th control step to
avoid Obstacle 5. Finally, the agent faces the target again at the
40th control step and becomes stable at the target position after
60 steps. Figure 11B records the deviation of the agent from the
target position. It is observed that the agent always approaches

the target in y-direction but adjusts its velocity in x-direction to
avoid the obstacles which are faster than any policy that changes
the vertical velocity.

Next, we illustrate how the agent uses the unit controller to
avoid multiple obstacles by fusion. By fusing the pair-wise state-
action value of the six obstacles using equation (17), the agent
can respond to the obstacle, that has a bigger threat, with a
higher priority and thus, avoids more than one obstacle in the
environment. To testify that the min-max fusion method indeed
guides the agent responding to themost likely threat, we compare
the min-max state-action value with two other kinds of most
likely threat, i.e., minimum distance threat and minimum left
time threat.

The minimum distance threat comes from the nearest
obstacle, as shown in Figure 12A. However, the nearest obstacle
may not have the biggest threat because the agent may move far
away from this obstacle. Thus, the direction of the motion needs
to be considered.

Supposed that the agent keeps moving at current speed in a
straight line, it will reach the position which is the nearest point
M (as shown in Figure 1C) to the obstacles in the straight line. Let
dm be the minimum distance to the obstacle in the straight line
and 1t be the left time for the agent moving from the current
position to pointM, we have

dm = ρO −
ρ̇O

(

ρO · ρ̇O

)

∣

∣ρ̇O

∣

∣

2
(21)

1t =
ρO · ρ̇O
∣

∣ρ̇O

∣

∣

2
(22)

For all the obstacles, whose minimum distances dm are less
than the safe distance (|dm| < dsafe), the biggest threat to the
agent comes from the obstacle, for which it has the minimum
left time 1t to the point M. This is the second most likely threat
criterion called minimum left time threat. According to equation

Frontiers in Neurorobotics | www.frontiersin.org 10 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

FIGURE 9 | The agent’s (A) trajectory, and (B) distance to obstacle and destination when the obstacle is not on the line between the agent’s initial and target position.

The red circle is the obstacle with the radius of dsafe and the blue dots are the trace of the agent.

FIGURE 10 | The agent’s (A) trajectory and (B) distance to obstacle and destination when the obstacle is on the line between the agent’s initial and target position.

The red circle is the obstacle with the radius of dsafe and the blue dots are the trace of the agent.

(22), the left time (equivalent to left steps) for all the obstacles
is shown in Figure 12B. In a similar way, according to equation
(18), the maximum state-action value Q for the obstacle is shown
in Figure 12C.

The aforementioned three kinds of threats are predicted and
compared in Figure 12D. It is observed that themost likely threat
indicated by minimum-maximum Q value is consistent with that
of minimum left time threat in most of the steps, which validates
our multi-agent formation control method.

4.2.2. Demo: Multi-Agent Line Formation
Line formation is one of the most common formations in MAS.
However, many formation control methodsmay be unreliable the

line formation because they do not consider collision avoidance
(Li et al., 2019a; Guo et al., 2020). The controller trained by
static obstacles cannot ensure that the agent successfully avoids
the moving obstacles. However, in some engineering scenarios,
taking the other agents in the formation as static is reasonable.
On the one hand, without filtering technique, the estimation of
other agents’ velocity may be unusable due to the observation
noise. On the other hand, in most cases, like ground robots and
quadrotors, the safe distance dsafe between agents is much larger
than the agent’s moving distance 1d within decision interval 1t.
When dsafe ≫ 1d, the dynamic obstacle can be approximated
as static because the internal logic of the controller is that if
command makes the agent go away from the obstacle, then it

Frontiers in Neurorobotics | www.frontiersin.org 11 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

FIGURE 11 | The agent’s (A) trajectory and (B) the distance to the destination during avoiding obstacles. The six colored circles are the collision zone of obstacles

and the blue dots are the trace of the agent.

FIGURE 12 | The (A) distance, (B) prediction of left steps, (C) Q value of the fused policy for obstacles. (D) Comparison of three kinds of threat prediction.

Frontiers in Neurorobotics | www.frontiersin.org 12 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

FIGURE 13 | (A) The agent’s trajectory. (B–D) The agent’s distance to destination and (E) the distance between agents.

is good; otherwise, it needs to be adjusted. In other words, the
agent has enough time to find what works by trial and error,
which is the advantage of the controller by learning. In the last
demo, we present a line formation control scenario for four
agents. Each agent is equipped with the DQN controller trained
in section 4.1.1. We designate agent 1 as the leader and agent
2, 3, and 4 as followers. The expected target of the four agents
are set as [0, 0], [0, 20], [0,−20], and [0,−40], respectively. In
addition, their initial positions are set as [0, 0], [0, 20], [0,−20],
and [0,−40] respectively, and their initial velocities are all zeros.

The trajectory of the agents is shown in Figure 13A. Agent 3
moves toward to its target position because there is no obstacle
in its way. To avoid agent 2, agent 4 turns right and then turns
back. Accordingly, agent 2 does not aim at its target position at
the beginning to avoid collision with agent 4. Finally, the four
agents form a linear formation. Figures 13B–D indicate that the
distance between any two agents is more than the safe distance
dsafe = 5, which validates the safety of our control method. As
shown in Figure 13E, agent 2 changes its vertical speed instead
of horizontal speed to avoid a collision. In the contrast, agent 4
adjusts its horizontal but not vertical speed.

5. CONCLUSION

Aiming at the problem of potential collision among agents in
multi-agent formation control, an intelligent decomposition and
fusion formation control method is proposed in this article. The
multi-agent formation control is decomposed to the pair-wise

unit formation control method where only one obstacle is
considered. Then, the DQN controller for unit formation is
trained following our episode mechanism design and reward
shaping. Finally, by min-max fusion of all the pair-wise state-
action values, the agent can first respond to the most likely
threat among multiple obstacles without extra training. The
demo of action field and unit formation control validates our unit
formation DQN controller. The simulation results of avoiding
obstacles and line formation show that our control method
based on deep reinforcement learning can realize multi-agent
formation with collision avoidance. In the future, obstacles with
high dynamics can be taken into account, and the reward
function can include optimal conditions like minimizing energy,
and the fusion method also can be trained by the reinforcement
learning method.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/supplementary material, further inquiries can be
directed to the corresponding author.

AUTHOR CONTRIBUTIONS

NX did research progress, simulation, and result in analysis and
wrote the original draft with YH. LC supervised the work and
revised this article. All authors contributed to the article and
approved the submitted version.

Frontiers in Neurorobotics | www.frontiersin.org 13 March 2022 | Volume 16 | Article 817168

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Xie et al. A DQN Formation Control Method

REFERENCES

Chryssanthacopoulos, J. P. and Kochenderfer, M. J. (2011). “Decomposition

methods for optimized collision avoidance with multiple threats,” in 2011

IEEE/AIAA 30th Digital Avionics Systems Conference (Seattle, WA), 1D2–1–

1D2–11.

Eren, T., Anderson, B. D. O., Morse, A. S., Whiteley, W., and Belhumeur, P. N.

(2003). Operations on rigid formations of autonomous agents. Commun. Inf.

Syst. 3, 223–258. doi: 10.4310/CIS.2003.V3.N4.A2

Falconi, R., Sabattini, L., Secchi, C., Fantuzzi, C., and Melchiorri, C. (2011). A

graph–based collision–free distributed formation control strategy. IFAC Proc.

Vol. 44, 6011–6016. doi: 10.3182/20110828-6-IT-1002.02450

Guo, S., Li, Z., Niu, Y., and Wu, L. (2020). Consensus disturbance rejection

control of directed multi-agent networks with extended state observer. Chin.

J. Aeronaut. 33, 1486–1493. doi: 10.1016/j.cja.2019.07.018

Jin, X. (2019). Nonrepetitive leader-follower formation tracking for multiagent

systems with LOS range and angle constraints using iterative learning control.

IEEE Trans. Cybern. 49, 1748–1758.

Kamel, M. A., Yu, X., and Zhang, Y. (2020). Formation control and coordination

of multiple unmanned ground vehicles in normal and faulty situations:

a review. Ann. Rev. Control 49, 128–144. doi: 10.1109/TCYB.2018.28

17610

Kuchar, J. K. and Yang, L. C. (2000). A review of conflict detection and

resolution modeling methods. IEEE Trans. Intell. Transp. Syst. 1, 179–189.

doi: 10.1016/j.arcontrol.2020.02.001

Lee, G., and Chwa, D. (2018). Decentralized behavior-based formation control

of multiple robots considering obstacle avoidance. Intell. Service Robot. 11,

127–138. doi: 10.1007/s11370-017-0240-y

Li, D., Ge, S. S., He, W., Ma, G., and Xie, L. (2019a). Multilayer

formation control of multi-agent systems. Automatica 109, 108558.

doi: 10.1016/j.automatica.2019.108558

Li, S., Egorov, M., and Kochenderfer, M. J. (2019b). “Optimizing collision

avoidance in dense airspace using deep reinforcement learning,” in 13th

USA/Europe Air Traffic Management Research and Development Seminar 2019,

Vol. 3 (Vienna).

Liang, Y., Dong, Q., and Zhao, Y. (2020). Adaptive leader–follower formation

control for swarms of unmanned aerial vehicles with motion constraints and

unknown disturbances. Chin. J. Aeronaut. 33, 2972–2988.

Lillicrap, T., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa,

Y., et al. (2016). “Continuous control with deep reinforcement

learning,” in International Conference on Learning Representations

(San Juan).

Merheb, A., Gazi, V., and Sezer-Uzol, N. (2016). Implementation studies of robot

swarm navigation using potential functions and panel methods. IEEE/ASME

Trans. Mechatron. 21, 2556–2567.

Mnih, V., Heess, N., and Graves, A. (2014). “Recurrent models of visual attention,”

in Proceedings of the 27th International Conference on Neural Information

Processing Systems.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,

D., et al. (2013). Playing atari with deep reinforcement learning. arXiv:

Learning.

Ng, A. Y., Harada, D., and Russell J., S. (1999). “Policy invariance under reward

transformations: theory and application to reward shaping,” in Proceedings of

the Sixteenth International Conference on Machine Learning ICML ‘99 (San

Francisco, CA: Morgan Kaufmann Publishers Inc.), 278–287.

Oh, K. K., Park, M. C., and Ahn, H. S. (2015). A survey of multi-agent formation

control. Automatica 53, 424–440. doi: 10.1016/j.automatica.2014.10.022

Sanz, Y., de Lope, J., andMartín H., J. A. (2008). “Applying reinforcement learning

to multi-robot team coordination,” in Hybrid Artificial Intelligence Systems

(Berlin: Springer), 625–632.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). “Prioritized experience

replay,” in 4th International Conference on Learning Representations, ICLR 2016

Conference Track Proceedings, eds Y. Bengio, and Y. LeCun (San Juan).

Sui, Z., Pu, Z., Yi, J., and Xiong, T. (2019). “Formation control with collision

avoidance through deep reinforcement learning,” in Proceedings of the

International Joint Conference on Neural Networks (Budapest), 1–8.

Sutton, R. S. and Barto, A. G. (1998). Temporal-Difference Learning. MIT Press. p.

133–160.

Van Den Berg, J., Guy, S. J., Lin, M., and Manocha, D. (2011). Reciprocal n-body

collision avoidance. in Springer Tracts in Advanced Robotics, vol. 70 (Berlin:

Springer), 3–19.

Wang, C. (2019). “A continuous actor-critic reinforcement learning approach to

flocking with fixed-wing UAVs,” in Asian Conference on Machine Learning, eds

W. S. L. Suzuki, and Taiji (Nagoya: Journal of Machine Learning Research),

64–79.

Wu, Z., Hu, G., Feng, L., Wu, J., and Liu, S. (2016). Collision avoidance for mobile

robots based on artificial potential field and obstacle envelope modelling.

Assembly Autom. 36, 318–332. doi: 10.1108/AA-01-2016-008

Xu, D., Zhang, X., Zhu, Z., Chen, C., and Yang, P. (2014). Behavior-based

formation control of swarm robots. Math. Problems Eng. 2014, 205759.

doi: 10.1155/2014/205759

Zhao, Z., Wang, J., Chen, Y., and Ju, S. (2020). Iterative learning-based formation

control for multiple quadrotor unmanned aerial vehicles. Int. J. Adv. Robot.

Syst. 17, 1–12. doi: 10.1177/1729881420911520

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Xie, Hu and Chen. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 14 March 2022 | Volume 16 | Article 817168

https://doi.org/10.4310/CIS.2003.V3.N4.A2
https://doi.org/10.3182/20110828-6-IT-1002.02450
https://doi.org/10.1016/j.cja.2019.07.018
https://doi.org/10.1109/TCYB.2018.2817610
https://doi.org/10.1016/j.arcontrol.2020.02.001
https://doi.org/10.1007/s11370-017-0240-y
https://doi.org/10.1016/j.automatica.2019.108558
https://doi.org/10.1016/j.automatica.2014.10.022
https://doi.org/10.1108/AA-01-2016-008
https://doi.org/10.1155/2014/205759
https://doi.org/10.1177/1729881420911520
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	A Distributed Multi-Agent Formation Control Method Based on Deep Q Learning
	1. Introduction
	2. Problem Description
	3. Formation Control Method
	3.1. The Decomposition-Fusion Framework
	3.2. Decomposition Stage: Reword Reshaped DQN for Unit Control
	3.2.1. Modeling of Unit Control Problem
	3.2.2. Buiding Markov Decision Process (MDP) for Unit Problem
	3.2.3. Reward Shaping
	3.2.4. Q Learning for Optimal Policy

	3.3. Fusion Stage: Multi-Agent Formation Control by Min-Max Fusion of Unit Formation Control Policy

	4. Simulations and Results
	4.1. Unit Formation Control Policy
	4.1.1. Training
	4.1.2. Demo: Visualized Action Field
	4.1.3. Demo: Unit Formation Control

	4.2. Multi-Agent Formation Control Policy
	4.2.1. Demo: Avoid Multiple Obstacles
	4.2.2. Demo: Multi-Agent Line Formation

	5. Conclusion
	Data Availability Statement
	Author Contributions
	References

