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The present work aims to accelerate sports development in China and promote
technological innovation in the artificial intelligence (Al) field. After analyzing the application
and development of Al, it is introduced into sports and applied to table tennis
competitions and training. The principle of the trajectory prediction of the table
tennis ball (TTB) based on Al is briefly introduced. It is found that the difficulty
of predicting TTB trajectories lies in rotation measurement. Accordingly, the rotation
and trajectory of TTB are predicted using some Al algorithms. Specifically, a TTB
detection algorithm is designed based on the Feature Fusion Network (FFN). For
feature exaction, the cross-layer connection network is used to strengthen the learning
ability of convolutional neural networks (CNNs) and streamline network parameters to
improve the network detection response. The experimental results demonstrate that the
trained CNN can reach a detection accuracy of over 98%, with a detection response
within 5.3 ms, meeting the requirements of the robot vision system of the table tennis
robot. By comparison, the traditional Color Segmentation Algorithm has advantages
in detection response, with unsatisfactory detection accuracy, especially against TTB’s
color changes. Thus, the algorithm reported here can immediately hit the ball with high
accuracy. The research content provides a reference for applying Al to TTB trajectory
and rotation prediction and has significant value in popularizing table tennis.

Keywords: artificial intelligence, machine learning, track recognition of table tennis, human motion recognition,
support vector machines algorithm

INTRODUCTION

Modern technologies like artificial intelligence (AI) have become the forefront of research with
continuous science and technological advancement. Al is also known as machine intelligence and
computer intelligence. As the name implies, this technology aims to intellectualize machines or
computers like humans (Hu, 2020).

Artificial intelligence has seen two significant elements: summarization and logical deduction,
regarded as the connectionism approach and the symbolism approach, respectively (Riguzzi et al.,
2019; Park and Hainaut, 2020). Human beings process audio-visual signals based on cortical
neural networks without thinking. This learning method is called the connectionism approach.
Accordingly, connectionism scholars do not investigate the deep-seated learning process in their
research but obtain the final result through machine learning algorithms learning a large number
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of data and methods autonomously. Human’s mathematical
derivation and proving theorem are based on solid subjective
consciousness and axiomatic system, requiring conscious
thinking and symbolic calculus. This learning method is
called the symbolism approach (Lin et al., 2020). Symbolism
scholars tend to design formulas to solve problems based on
this definition. They investigate the deep-seated calculation
process and obtain the final result through the complete
process of machine learning (Al-Mukhtar and Al-Yaseen, 2020;
Gomez-Gonzalez et al,, 2020). The connectionism approach
and symbolism approach are most common in the current Al
field. Other algorithms are based on the extension of the two
methods in all directions. A table tennis robot (TTR) is an
advanced intelligent robot (IR) with comprehensive solid quality,
consisting of vision, decision-making, and control systems.
These robots can respond to external stimuli, thereby realizing
man-machine confrontation in various scenes. TTR can assist
professional player training well (Likitha, 2021) and is significant
in popularizing table tennis sports. Additionally, IR is also of
great significance (Carreras et al., 2020).

The innovation of this paper lies in the following aspects.
First, the IR is used in table tennis training, and the table
tennis ball (TTB) trajectory is predicted and calculated based
on a deep learning algorithm. Secondly, a machine learning
algorithm is proposed to identify motion states and the rotation
and orbit of TTB. In short, Al technology is applied to table
tennis training and competition to predict and determine the
TTB trajectory accurately.

RELEVANT THEORIES AND METHODS
The Application of Al in the Field of Sports

With the continuous development of AI technology, IRs
have been multi-functionalized and highly intellectualized. In
particular, IRs have been extensively applied in many sports,
including table tennis, badminton, basketball, and football.
Among those sports IRs, TTR has some unique and delicate
features worthy of in-depth exploration. For example, the TTB
is very light and moves extremely fast, up to 5-20 m/s. Therefore,
the TTR must be sensitive, accurate, and robust to lend itself well
to train or play with professional players (Steiner et al., 2020).
Thus, target identification and trajectory prediction of the table
tennis ball (T'TB) are incredibly complicated, becoming the key
points and difficulties in the current research field (Zhang et al.,
2020). The TTR-based TTB recognition depends on a vision
system to analyze the hitting actions of the table tennis player
and predict the real-time position and motion state of TTB. Thus,
the TTR’s vision system must have the ability to predict trajectory
and plan actions for the target to ensure detection accuracy and
real-time motion recognition (Zhao et al,, 2021).

This paper studies the TTR from three aspects (Forghani,
2020): vision, decision-making, and control systems. Among
them, the vision system distinguishes TTR from other sports
IRs. The three procedures are interdependent and work
collaboratively, each with different target detection and trajectory
prediction tasks. First, the vision system of the TTR is an
upgraded version of general machine learning vision systems and

the eye to detect and track the real-time position and dynamic
states of TTB. The vision system has a solid ability to track
high-speed moving objects (Li, 2021; Zhang, 2021). Second,
the decision-making system is the instruction-distributor of
the three systems. After receiving the information transmitted
by the vision system, the decision-making system needs to
respond accordingly to predict the TTB trajectory (Gomis-Fons
et al., 2021). Moreover, the vision system is also responsible
for selecting the optimal hitting plan by screening TTB-hitting
actions. Third, the control system or execution system is
accountable for executing the instructions issued by the decision-
making system (Oliveira et al., 2021; Payedimarri et al., 2021).
Strength, speed, and accuracy are essential for TTB to be served
or returned; thus, the trajectory prediction and timing must
be precise.

Summing up, the research of TTR involves many fields, such
as visual inspection (VI), intelligent decision-making, DL, and
servo control. The present work mainly examines the software
system of TTR to identify the motion state and trajectory of the
TTB accurately.

Related Research on Table Tennis Robots
The research of table tennis robots originated in the 1980s.
The first table tennis robot developed can only serve and does
not have the function of confrontation with human beings.
Therefore, the table tennis robot could only serve as a companion
for athletes to send different trackballs. In the future, with the
progress of research and technology, a table tennis robot that can
catch the ball will be developed gradually.

The robot table tennis game rules were first formulated by the
University of Portsmouth in the United Kingdom in 1983. The
rules stipulated that the table tennis table was 2 meters long and
0.5 m wide, slightly smaller than the usual table tennis table. The
robot developed by Gerhard Schweitzer of a Robotics Institute in
Zurich, Switzerland, won the championship of the competition in
1988 and the Hong-Kong Robot Ping Pong Competition in 1992.

In 1987, the Alcatel-Lucent Bell Labs of AT&T Inc. in the
United States intensively studied the mechanical system, vision
system, and control system of the table tennis robot. They
adopted a PUMA 260 manipulator with six-Degree-of-Freedom
(DOF) in a robot, which is more flexible when hitting the ball. It
is a real table tennis robot because it can use the vision system
to judge the position of table tennis. It has successfully realized a
man-machine match for nearly 20 rounds.

The Toshiba Corporation of Japan has developed a seven-
DOF manipulator that can hit a table tennis ball against the wall
by itself. Picasso, a robot developed by the Rochester Institute of
Technology in the United States, uses a five-DOF manipulator.
However, the visual system cannot quickly capture the trajectory
of the TTB to meet the requirements of the man-machine rally
because the robot uses a series manipulator. The University of
Adelaide in Australia designed a six-DOF series manipulator by
imitating PUMA. Although it is more flexible than the previous
TTR, it can move in a relatively small range.

In Japan, Fumio Miyazaki of Osaka University has developed
a four-DOF table tennis robot based on binocular vision. Sensors
are installed on the opponent’s racket and elbow to detect
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the rotation direction of the ball, which enables the robot to
receive the ball from different angles. A bipedal humanoid robot
developed by TOSY Robotics JSC in Vietnam participated in the
Tokyo International Robot Exhibition in 2007. It can play table
tennis against a human being with flexible and accurate actions,
which has become the focus of public attention.

Most of the existing manipulator systems adopt a series
structure characterized by significant moments of inertia
and relatively strong design load. The manipulator is often
designed to adapt to the corresponding industrial production
environment. Although it is convenient for research to use this
industrial manipulator as the hitting execution system of table
tennis robots, its shortcomings are also evident. The real-time
playing of table tennis against humans requires a high response
speed from the robot. The robot needs to recognize and predict
the trajectory of the TTB in a short time and then order the
manipulator to hit the ball quickly. Series manipulators cannot
meet this requirement. Scholars employ the parallel robot as the
actuator of the table tennis robot system because of its flexible
dynamic performance. The parallel manipulator reduces the
moment of inertia of the manipulator and improves its flexibility.

In the robot system, the operation of the inverse solution of
the hitting point is cuambersome, bringing a significant challenge
to the operation speed of the whole system. After obtaining
the three-dimensional coordinate information of the table tennis
ball, the vision system predicts the coordinates of the hitting
point. The table tennis system needs to carry out the inverse
solution according to this coordinate and calculate the rotation
angle of each joint point. The manipulator has countless postures
to strike a certain point. The inverse solution process aims to find
the most reasonable hitting method with a particular scheme.
The actuator of the seven-DOF manipulator needs to calculate
the rotation angles of the seven joints, respectively, requiring
a tremendous amount of calculation. Therefore, many scholars
choose a relatively simple mobile guide rail to avoid this problem.
This actuator has a larger hitting space than the industrial
manipulator, simplifying the calculation and the cumbersome
trajectory planning process.

RESEARCH MODEL AND FRAMEWORK

Al-Based TTB Trajectory Prediction

A table tennis ball has the characteristics of high speed,
small volume, light weight, and fast rotation, resulting in high
requirements for the real-time capability and accuracy of the
vision system. Traditional target detection for TTB mainly adopts
color segmentation, contour search, or multi-sensor methods.
They can quickly respond to detection with simple calculations.
However, the surrounding environment quickly affects the
detection accuracy, such as illumination and background, leading
to low detection accuracy. For example, the color segmentation
algorithm sets the detection threshold according to the TTB
color. Trajectory prediction tasks are mainly completed through
physical modeling. The TTB rotation model features high-order
non-linearity. Traditionally, the linear approximation algorithm
is often used for modeling, with a relatively large deviation

accumulating with the iteration, resulting in low prediction
accuracy and less extendibility.

Under the current Al era, fusing Al, and robotics is the
general trend to extend the development space and research
value of robots while bringing more research possibilities to the
TTR. In particular, the DL methods can exert their advantages
against the existing problems in traditional ways. Yet, DL-based
detection networks involve vast amounts of calculation and
training data, thus complicating the issues. Therefore, aiming at
the shortcomings of conventional TTB detection and trajectory
prediction methods, this study integrates a DL method with
strong generalization ability and anti-interference ability with
the vision system to study the TTB rotation and predict its
trajectory explicitly.

As a cutting-edge technology in the Al field, intelligent TTR
is a scorching research topic worldwide (Nataraj et al., 2021;
Sun, 2021). The ultimate task of an intelligent TTR is to play
table tennis with people and even assist in professional training.
According to the above analysis, the vision, decision-making, and
control systems are subsystems of the intelligent TTR. Given
that TTB is small and fly fast, the vision system shoulders the
primary task of recognizing the TTB’s dynamic state quickly and
accurately. In some high-level competitions worldwide, many
top table tennis players play at speeds up to over 20 m/s, and
the rate of 5 m/s in general. The length of an ordinary table
is 2.74m, so it takes <0.5s for a TTB to fly across the table
(Pezzo and Beckstead, 2020). Thus, a TTR must detect and
analyze the TTB dynamic state within 0.5s, including TTB
identification, trajectory prediction, and action planning. A TTR
should have high-speed processing and calculation capability.
Image recognition and trajectory prediction become the primary
tasks of the vision system. In short, the main research goal and
difficulty of the vision system of TTR are to capture and analyze
TTB accurately and in time.

In addition to real-time trajectory prediction and target
recognition, the vision system needs to provide a timely
and reasonable response for the subsequent decision-
making and control systems. According to international
research, most visual systems can be divided into monocular
visual systems and binocular visual systems based on the
camera number (Geffen et al., 2020; Muto et al, 2021).
According to the installation position, visual systems can
be divided into ontological and external systems. As their
names suggest, ontological systems install the camera
inside the robot, which moves with the robot (Tomasevic
et al., 2019). The outward vision system fixes the camera
outside the robot so that the camera can only be calibrated
without moving.

Most TTRs employ the binocular vision system because
it can determine the target’s spatial position. Compared with
the binocular system, the monocular vision system has lower
costs and lower calibration difficulty. Still, it needs to project a
target to determine the target’s spatial position (Tkatek et al.,
2020; Jammeli et al., 2021). To some extent, it increases the
difficulty of the algorithm and increases the requirements for
the environment. Therefore, monocular vision systems are not
as common as binocular vision systems.
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Humanoid robots usually put the camera of their vision
system inside. In contrast, other robots with robotic arms put the
visual systems outside because it is difficult to use the ontology
vision system; after all, the vision system will change with the
robot’s movement, and the camera needs to be recalibrated.
Such a dynamic process makes algorithm implementation more
difficult. Therefore, robots with good market influence usually
choose an external vision system.

The primary function of robot servo planning is to identify the
TTB and predict its trajectory by positioning the dynamic TTB
according to the characteristics of a TTB using the camera.

Here, the position-based visual servo control system is
selected for TBR, as shown in Figure 1.

In Figure 1, the visual servo control system adjusts the
internal and external parameters of the camera. The targets
spatial pose is calculated according to the camera image. Another
camera can photograph the TTB’s edge, calculate the edge pose
of the TTB through feature extraction and other operations, and
compare it with the expected posture. The pose deviation of the
TTB edge is calculated through two differentiations. Then, the
pose deviation of each side of the TTB is transformed into the
base coordinate system.

Correlation Between TTB Rotation and

Trajectory Based on Neural Network

In a competition, TTB is often rotating. Thus, the critical point
of trajectory prediction of the TTB lies in choosing prediction
methods. Here, the rotating state of TTB is divided into two
categories for detection. The first category is identifying the TTB
by marking TTB. Once labeled, the system can directly calculate
the rotation of TTB by calculating the movement relative to the
center of TTB (Salvatore et al., 2021). In the second category,
the TTB trajectory will be collected and analyzed, and then the
dynamic state of TTB is reversed according to the trajectory.
However, the research in this field is only based on the TTB
rotation to judge its trajectory. Such technology is impossible
to accurately judge the exact amplitude, direction, pose, and
rotation speed (Lin et al., 2021).

The trajectory of the table tennis ball in the air is expressed
by three kinematic parameters: spatial coordinates, velocity, and
acceleration. In the whole process of ball movement, these
parameters will change from time to time according to the
different movement times of the ball (Glassman et al., 2021).
Then, a trained deep neural network (DNN) is selected here.
Nine TTB parameters are input into DNN to output the TTB
landing point. In actual competitions, the player’s prediction
based on TTB trajectory is also the primary determinant of the
ball’s landing point. Accordingly, the DNN aims to calculate the
landing point data.

The TTB trajectory analysis is mainly carried out through
SIMI Motion in this experiment. This software system can
analyze various sports and movements based on three-
dimensional (3D) video, typical in sports technology analysis and
teaching. SIMI Motion uses multiple cameras to synchronize the
target motion, the multi-dimensional 3D frame for calibration,
and manually marks the joint points. Meanwhile, SIMI Motion

can obtain the moving object’s two-dimensional (2D) and 3D
data to calculate the coordinate, speed, acceleration, and angle
between the marked points. This experiment uses SIMI Motion
to synchronize two cameras to obtain the TTB trajectory data.
First, the calibration is completed by photographing the multi-
dimensional 3D frame of two cameras and manually marking the
white dots on the 3D structure. Then, the synchronization light
is used to synchronize the time of the two videos. Afterward,
the SIMI Motion is used to manually mark and determine the
spatial position of the TTB in each frame, thereby obtaining the
3D data of the TTB trajectory to calculate the TTB rotation speed,
a vector with size and direction. Precisely, the high-speed camera
captures the initial rotation track of the TTB transmitted by the
TTR’s serving module and calculates the number of image frames
required for the LOGO to rotate one circle to determine the
rotation speed of the TTB. The TTB’s initial state (when TTR
fires TTB) is recorded as the frame n; in the video, and the
TTB state after one-circle rotation is denoted as the frame n;.
The frame rate of the high-speed camera is 3,000 frames/s; thus,
the TTB rotation speed is % R/S. Subsequently, the rotation
direction data is obtained through the TTR’s service module. The
TTR’ service module serves the rotating ball through two pulleys
and controls the size and direction of rotation by controlling
the speed and direction of the upper and lower pulleys. This
experiment tests the rotation type of service from the service
modules. There are nine rotation types of service: topspin,
backspin, left-sidespin, right-sidespin, left-side topspin, right-
side topspin, left-side backspin, right-side backspin, and without
spin, as detailed in Table 1.

As listed in Table 1, the TTR can only implement nine types
of service due to the limitations of the service module. The
horizontal angle of the pulley determines the TTB rotation
direction. Because the outlet of the service module is horizontal,
the fired TTB’s initial velocity is in the horizontal direction.
Then, the TTB speed can be obtained through SIMI Motion
analysis. Additionally, the initial position of the ball outlet is
known. Then, nine accurate initial values can be obtained,
including the initial position x with direction coordinate (x);
initial position y with direction coordinate (y); initial position
z with direction coordinate (z); initial position x with direction
velocity (v,); initial position y with direction velocity (v} ), initial
position z with direction velocity (v;); initial position x with
direction rotation size (wy); initial position y with direction
rotation size wy; initial position z with direction rotation size
;. The origin of the coordinate system is set at the table
tennis table’s midpoint, where the service module is located. The
abscissa extends along with the table horizontally, the vertical
coordinate extends longitudinally, and the vertical coordinate
is perpendicular to the table. A total of 171 effective balls are
served by the service module, covering nine types of service, and
nine initial and landing point values of all balls are obtained.
The falling point data are the coordinates on the table, so
the ordinate is 0. Through the experimental data collection,
to get the accurate initial position coordinates, the accurate
initial velocity (including speed and direction), and the accurate
rotation velocity, the nine initial data are input into the DNN
to output the precise landing point coordinates. Finally, the

Frontiers in Neurorobotics | www.frontiersin.org

May 2022 | Volume 16 | Article 820028


https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Liu and Ding Table Tennis Track Capture

Expected end pose

Location-based

controller
Racket pose planning
( N
P
— Servo !
9. 1
=} ampliication Feature extraction and 3D
3 information acquisition
a Servo
g amplification
o
o
oo
[e)
W .
Joint
posttion Image Acquisition
| J
4
Robot body Video camera

\/

FIGURE 1 | Visual servo control system based on position.
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TABLE 1 | Description of the table tennis robot (TTR)’s serve.

Type of service

Speed of upper and lower pulleys

Horizontal angle of the pulley

Topspin The upper pulley is fast and the lower pulley is slow 90°
Backspin The upper pulley is slow and the lower pulley is fast 90°
Without spin The speed of the upper and lower pulleys are the same 90°
Left-Sidespin The upper pulley is fast and the lower pulley is slow 0°
Right-Sidespin The upper pulley is slow and the lower pulley is fast 0°
Left-Side topspin The upper pulley is fast and the lower pulley is slow —45°
Left-Side backspin The upper pulley is slow and the lower pulley is fast 45°
Right-Side topspin The upper pulley is fast and the lower pulley is slow. 45°
Right-Side backspin The upper pulley is slow and the lower pulley is fast. —45°

DNN algorithm explores the correlation between the input and
output information.

In this experiment, Matlab pattern recognition is adapted
for the trajectory prediction of TTB with different velocities
and rotations.

The neuron nodes in the input layer have nine dimensions
marked as “a.” Neural nodes in the output layer have two
numerical dimensions marked as “b.” These are the abscissa
and ordinate of TTB. The number of nodes in the hidden layer
is determined after confirming the input and output neurons
according to Equation (1).

F =+/0.43ab + 0.12b% + 2.54a + 0.77b + 0.35 + 0.51 (1)

The values of ab are substituted into Equation (1) to solve the
number of hidden nodes as 6.

Then, the Non-linear Neural Network algorithms, such
as Levenberg-Marquard (LM), Budgeted Rooted (BR),
Backpropagation Neural Network, and Scaled Convergence
Gradient (SCG) are used to fit the data using the Matlbe neural
network toolkit, as displayed in Figure 2.

TTB Test Experiment Based on DL

The experiment begins after the preliminary preparations
(Hildebrand et al., 2021; Zhang et al., 2021). The DNN used in the
experiment is designed by Matlab toolkit, specified as follows.

Step 1. Collect data and import the input and output data into
the database.

Step 2. Conduct simple data processing, including
normalization, adjustment, and reconstruction. The
regularization equation is:

M= m — Mmin @)

Mmax — Mmin

The input data is disturbed before input to improve the
generalization ability of neural networks and avoid the relative
concentration of data in the same service spin mode.

Step 3. Construct the initial structures of input, output, hidden
layer nodes, and the transfer function of the neural network.

Step 4. Set training time, target, error, and other parameters.
Start training. Add weight correction parameters.
Step 5. Input the data to be tested after training.

Figure 3 illustrates the experimental process.

TTB Detection Based on Feature Fusion

Network

FFN

The deeper a neural work is, the more times it scales down
the original input image; thus, when locating small targets,
some DNNs might get awkward performance, such as very low
detection accuracy. In other words, every time the convolution
kernel extracts image features, the feature map will shrink down
by some ratio while the rich semantic information continues to
be strengthened. Such operation is conducive to object detection
and classification tasks, but the objects location information
will be gradually discarded. Therefore, fusing the underlying
feature information in the convolution downsampling process is
necessary to enhance the network’ ability to detect and locate
small targets.

Earlier, neural networks need to input fixed-size images.
Such operations as folding and flipping are often used in
detecting photos with changed sizes, leading to information loss,
which limits the accuracy of network recognition. In particular,
feature pyramid networks (FPNs) can combine humble features
lost in the original downsampling process. FPN will not
increase model calculation substantially. On the contrary, it
downsamples the semantically-rich upper feature layer in the
top-down hierarchical network structure and then stacks and
fuses the sampling results with the feature map of the same size,
significantly improving the model’s performance in small objects
detection. Each layers’ output can detect the type and position of
objects. Figure 4 displays the structure of FPN.

Two horizontally linked processes go through the FPN
structure: bottom-up and top-down approaches. The bottom-
up process is the forward propagation process when the feature
map gradually shrinks with convolution kernel calculation. In
contrast, the top-down process upsamples the feature map, and
the horizontal link uses a 1*1 convolution kernel to fuse the
feature map of the same size generated by bottom-up and top-
down processes. In this way, the position details at the network
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bottom can train the network with accurate location information
while simultaneously learning the target features, especially for
small object detections. This paper improves FPN by adding a
bottom-up connection, as shown in Figure 5.

A convolutional neural network (CNN) usually uses a single
random feature layer (sometimes the last) to detect and locate

targets. Each feature layer has its unique function for the target
detection task. In Figure5, the feature layer is followed by
the adaptive pooling layer in area C. Then, the feature layers
in B are merged into a feature layer of the same size. Then,
the final feature layer of target detection is obtained by max-
pooling feature fusion. Such a design can combine the feature
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FIGURE 5 | Feature fusion network (FFN)’s structure.
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information of each feature map to significantly improve the
position detection ability of the network to small targets.

Target Detection Network

Convolutional neural network is a supervised learning DNN,
including convolution and pooling layers to extract input image
features, an activation function to increase the non-linear ability
of the network, and a fully connected layer to realize target
detection and classification. At the same time, CNN can share

weights, simplify network parameters, and avoid overfitting.
Figure 6 shows the structure of CNN.

The convolution layer is the most critical structure of CNN.
It comprises convolution kernels of various sizes and depths.
The network depth mainly refers to the number of convolution
layers. During network initialization, the size and depth of the
convolution layer will be set. Afterward, during network training,
the network parameters repeatedly learn the data features, and
backpropagation is used to optimize these parameters. The image
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RGB value is constantly multiplied by the network weights to
extract the image features during network transmission. The
convolution layer can extract features and reduce the image
dimensions. CNN employs valid padding (set to zero) to output
images with the same dimensions as the original image. Different
sliding steps can be set to reduce the image dimension. The
smaller the sliding step size is, the fewer characteristic images
are obtained. Generally, the richer the features to be extracted,
the smaller the sliding step. Equation (3) indicates the output
dimension of the convolution layer.

W, = (W, —F+2P)/S+1

In Equation (3), W; and H; represent the height and width of the
input image. F is the size of the convolution kernel. P denotes the
value of padding. S indicates the step size when the convolution
kernel performs convolution operation. H, and are the length
and width of the output dimension.

Following the convolution layer is generally the pooling
layer whose scanning process is the same as that of
the convolution layer. The pooling layer can reduce the
resolution of the feature map, thereby simplifying the network
parameters. Generally speaking, the pooling layer involves
two operations: max pooling based on operation and mean
pooling based on average. Max pooling is most commonly
used and realized by taking a receiving domain’s maximum

Hy = (H; — F +2P) (3)  value. Mean pooling adds all selected pixel values and then
D, =K averages them.
Feature extraction
Input(416*416)
Y
Resblock body(208%208) )
— Feature fusion
Y
Resblock body(104*104) > Concat+conv *
unsampling Downsampling
Y
Resblock body(52*52) > Concat+conv > Concat+conv
unsampling Downsampling
Y
Resblock body(26*26) > Concat+conv > Concat+conv
unsampling
Y
]
Resblock body(13*13)
Y
Concat+conv
Y
Yolo Head
FIGURE 7 | Network structure diagram.
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A normalization operation often follows the pooling layer to
avoid the impact of nodes with large data values on classification.
The purpose of normalization is to contain the input within an
acceptable range [0, 1]. In CNN, the data normalization can be
conducted before or after the fully connected layer or elsewhere,
depending on the network structure.

Finally, the classification task is realized by the fully connected
layer, which is mainly composed of convolution kernels of
different sizes. The softmax layer can classify the fully connected
layer’s output. Additionally, a fully connected layer needs to
optimize a substantial number of parameters, accounting for
almost 80% of the network parameters. Some scholars have used
the global average pooling to replace the fully connected layer,
enhancing the network detection ability.

The first research on CNN can be traced back to the twentieth
century. Common CNN structures include convolution, pooling,
activation, and fully connected layers. Previous feature extraction
networks mainly reduce the data dimension through a series
of convolution downsampling and extract or sort out valuable
features for subsequent use. In downsampling, the model
captures and learns the object features. These semantically rich

information of the object in the original image, thus bringing
great difficulties to the detection of small entities.

In the forward propagation of the network, Mean Square Error
(MSE) is generally used to measure network loss. Suppose ¢
classes and N training samples for a classification problem. Then,
Equation (4) holds.

[
EN =

- y? (4)

N
2.
n=1 k:

1 k=1

N | =

In Equation (4), #;! represents the dimension k of the sample
n. y; means the k-th output of the network. The production
of the multi-classification task often differs according to the
different activation functions. Generally, only the output node
corresponding to the input is positive, and the bits or nodes
of other classes are 0 or negative. In the backpropagation of
a sample, the error of the sample n is calculated according to
Equation (5).

c

feature layers can enable the model to judge the image types. Still, E" = 1 Z (] — y}’:)z _ 1 [t —y" ||§ (5)
the increase of the network depth also trades off the position 2 =1 2
Base layer
Base layer / \
Partl Part2
Y

Res(x)block
With
bottleneck

FIGURE 8 | Cross-layer link structure.
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In the traditional fully connected neural network, it is necessary
to calculate the partial derivative of the loss function about each
weight of the network according to the rule of backpropagation.
Here, I represents the current layer. Equation (6) describes the
output of the current layer:

xl :f(ul), Ml — Wlxlfl + bl (6)

There are various output activation functions, such as Sigmoid or
Tanh. Sigmoid compresses the output to [0, 1], so the final output
average ~0. Therefore, if the mean of training data is normalized
to 0 with variance 1, the convergence can be accelerated.

The backpropagation of CNN can be called the sensitivity
basis of each neuron, meaning that the error changes as much
as the basis changes. Equation (7) expresses the sensitivity basis.

Wheng—z = 1, there is Equation (7); in other words, the sensitivity
and error of the basis are equal to the derivative (%) of all
inputs of a node. This reciprocal transformation allows errors
in the upper layer to propagate back to the lower layer. The
backpropagation process can be described as Equation (8).

T
8t = (WHh s of (u) ®)
In Equation (8), O is to multiply each corresponding element in
the matrix. Equation (9) expresses the sensitivity of neurons.

st =f'whoy" — " )
Delta rule is generally used in weight updating. The input
delta is used for amplification and contraction for each neuron
input. Then, the input and the sensitivity of the [-th layer are

9E  9F du cross-multiplied to represent the derivative of the error to the
9% uob (7)  weight matrix of the I-th layer network. The final weight update
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FIGURE 9 | Hitting flow of the table tennis robot (TTR) system.
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FIGURE 10 | Physical system of the 7-DOF table tennis robot.
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FIGURE 11 | MSE of fitting training based on LM algorithm.
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needs to be multiplied by a negative learning rate, as shown in
Equation (10):

_ T
qwr =<0 (10)
AWE=—ngym

In Equation (10), 7 is the specific learning rate corresponding to
each weight. The operation of the convolution layer is generally
referred to as downsampling. During downsampling, the image
size is continuously reduced to make the abstract features of
classification tasks more evident. Compared with downsampling,
upsampling can enlarge the image resolution, and the resolution-
enlarged image can exceed the original image in quality.

Interpolation is usually used for upsampling the input
image, that is, inserting some new elements into the original
image. The implementation methods are mainly divided into
three categories.

(1) The nearest neighbor interpolation, also known as zero-
order interpolation, uses the gray value of the image for
interpolation. For a pixel in the original image, the gray value
of the nearest input pixel value is inserted into the transformed
image. The advantage of this method is that the calculation is
simple and easy to implement, but the accuracy is low. It will
cause contour or texture blurring.

(2) Deconvolution transforms the input low-dimensional
features into high-dimensional features. However, deconvolution
mainly restores the size of the image without completely restoring
the original quality. For example, under a step size of 1, to convert
a 2*2 feature image into its original 4*4 quality, zero padding will
be performed on elements with padding = 2. Then a convolution
kernel of 3*3 will be used for convolution operation. Finally, a
4*4 image is generated. Zero padding will be performed around

each element when the step size is >1; then, the same operation
with a step size of 1 will be served.

(3) Reverse pooling is mainly divided into max pooling and
average pooling. The former needs to record the maximum value
position in the feature map, and the other positions are filled
with 0. The average pooling generally uses adjacent elements
for padding.

The CNN-based target detection algorithms are mainly
divided into candidate box-based two-stage and regression-
based one-stage networks. In the two-stage network, candidate
frame extraction and target detection are divided into two parts.
Specifically, the targets candidate box needs to be extracted,
based upon which the target detection is carried out. One-
stage network cancels the target candidate box extraction of the
two-stage network and features a single-step prediction. The
one-stage network outputs a five-dimensional prediction result,
including the object category, the center point position of the
object, and the size of the prediction box, with a faster detection
speed than a two-stage network.

Then, this study combines CNN with cross-layer link
structures in the feature extraction network to solve the existing
problems in the above methods. It constructs an FFN, as
demonstrated in Figure 7.

The complex and extensive parameters result in the slow
detection speed of neural networks. Therefore, reasonably
lightening the network structure and streamlining network
parameters is the key to improving the network detection
speed. Accordingly, the present work combines the CNN
and cross-layer link network in the feature extraction design.
The input feature map is divided into two parts. One part
is extracted through the residual network. The other part
is directly concatenated and stacked with the output of
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FIGURE 12 | Training state of neural network based on LM algorithm.
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the residual network after feature integration through a 1*1
convolution kernel. In this way, a large concatenation residual
network is constructed. Due to information loss during feature
extraction by convolution kernel with a deepening network
structure, such concatenation residual network can recover
the lost information during network learning and strengthen
feature extraction. The concatenated feature map will pass
through a transition layer to prevent the network from
learning repeated gradient information during backpropagation,
optimizes the network gradient propagation, and reduces the
convergence time of the network. Figure 8 details the cross-layer
link network.

The convolution kernel is set as follows. Resblock_body
is composed of 1*1 and 3*3 convolution kernels. The
1*1 convolution kernel reduces the network parameters by
compressing (reducing) the dimensionality of the feature map,
and the convolution kernel of 3*3 is used for feature extraction.
Such a design can effectively streamline network parameters

and increase its nonlinear ability. In forward propagation,
each Resblock stacks the input of this layer with the twice-
convolutioned output. If the input is x, x + Resblock(x)
is the output. Such a structure constructs a basic residual
block. Resblock_body is the core part of building the whole
network. Ordinary residual networks simply stack Res block.
By comparison, the cross-layer link networks introduce an
enormous residual edge Part 1 in the stacking process of fast
residual. Part 2 continuously extracts the features of the input
image, while Part 1 directly connects the input to the output of
Part 2 with a small amount of processing.

Common activation functions include sigmoid, ReLU, tanh,
leakyReLU, and Mish; Sigmoid can easily lead to gradient
dispersion. When the ReLU is negative, the network neurons
stop learning, and Mish will increase computation significantly.
By contrast, leakyReLU is much more robust against these
shortcomings. Therefore, this section adopts the leakyReLU
as the activation function to simple calculation, preventing
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gradient explosion and dispersion. Equation (11) indicates
the leakyReLU:

used here is designed in the 64-bit operating system. Therefore,
the programs of the two parts should be designed into
two modules separately. On the contrary, the two modules

f(x) = max(ax, x) (11)  need to be connected to realize signal transmission in

practice. The abstract layer encapsulates the Transmission

Design of the Physical Robot System Control Protocol/Internet Protocol (TCP/IP) family and only
The seven-DOF KUKA manipulator system adopts a  provides several interfaces to the application layer. It only

communication module of a 32-bit system. The vision system

needs to call these interfaces to realize real-time information
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communication when in use. Figure 9 displays the TTR system
designed here.

Figure 10 illustrates the physical design of the 7-DOF robot
established here.

RESULTS AND DISCUSSION

Results of the Performance of DL-Based
TTR

Figure 11 reveals the results of MSE of fitting training based on
the LM algorithm.

The three curves in Figure 11 represent the verification
performance after different data sets are input into the model.
The training time is 20, and the MSE of the test data set reaches
the minimum (0.057) when trained 14 times. Overall, the error of
the test set is smaller than the training set and the verification set.

Figure 12 displays the training state of the neural network
based on the LM algorithm.

As shown in Figure 12, there are two indexes to judge the
training state of neural networks, namely, the training gradient
of the LM algorithm and Mu value. Obviously, with the increase
of training times, the overall training gradient of neural networks
tends to decline. After 20 times of training, the gradient comes to
0.001598. The second index is the Mu value, a parameter in the
training model algorithm. According to the Mu value, the overall
trend first increases with the training times and then declines.
After 20 times of training, the Mu value is 0.001.

Figure 13 shows the fitting results of the LM algorithm.

In Figure 13, R represents the correlation coefficient (CC)
between the expected and fitting results, and the value R ranges
as 0 < R < 1. Generally speaking, the closer the R-value is

to 1, the closer the fitting result is to the expected result. The
R values of the experimental training and test training results
are 0.957 and 0.931, respectively, which shows that the ball
landing point’s initial velocity, rotation, and coordinates have a
significant correlation.

BR algorithm and SCG algorithm are used for comparison to
verify the superiority of the LM algorithm. Figure 14 displays the
comparison results.

Figure 14 illustrates that the fitting results of the LM
algorithm are 0.95, while the fitting results of the BR algorithm
and SCG algorithm are only 0.89 and 0.86. According to the test
results, the R-value of the LM algorithm reaches 0.93, while the
R values of the BR algorithm and SCG algorithm are only 0.84
and 0.85. Thus, no matter the training results or tests, the fitting
condition of the LM algorithm is better than the BR algorithm
and SCG algorithm. From the overall fitting situation, the fitting
results of the three methods all exceeded 0.84. Therefore, even
if different fitting algorithms are chosen, the CC between the
expected and fitting results is very high, further showing that
initial velocity, rotation, and coordinates of ball landing point
have a solid correlation.

Experimental Results of TTB Detection
Based on FFN

Subsequently, the experiment first uses Mosaic for data
enhancement. Four images are spliced into one picture during
network training and sent to network training. However, the
detection effect of TTB is reduced rather than being improved
as expected. The reason is probably that the size of TTB is
scaled down after splicing, thus becoming more difficult for the
network to obtain the TTB location and the decline of positioning
accuracy. The TTB in each image is expanded three times without
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FIGURE 16 | Network loss comparison.
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changing the image resolution and diversified training samples
inspired by Mosaic enhancement and combined with the target
features and subject requirements of TTB. Figure 15 illustrates
the accuracy comparison after data enhancement.

This section builds a TTB-oriented target detection network
using the Pytorch framework and Cuda to accelerate training.
The dynamic calculation chart adopted by Pytorch can be
changed and adjusted in real-time according to the actual
calculation. At the same time, Pytorch also provides a toolkit
for building a DL network with a clear and concise structure.
It is a practical and efficient learning framework. In more
than 8,000 data sets, this paper selects 7,000 images as the
training set and the other 1,000 images as the test set. Then,
Figure 16 compares the network losses of the training and
test sets.

After training, the network detection accuracy can reach
over 98%, and the detection response can be down to 5.3 ms,
thus meeting the requirements of the table tennis vision
system. First, the experiment compares some of the latest
one-stage target detection networks, YOLOv3, YOLOv3-tiny,
and YOLOV4, using the same laboratory equipment and the
same training data set and test set. Figure 17 unveils the
experimental results.

Figure 17 suggests that although the latest one-stage Yolo
series models have achieved high accuracy in the TTB-oriented
target detection task, the detection response is insufficient.
Their network depth is more profound, and the amount of

calculation and parameters are also more considerable, so
they are not suitable for the research task of this study. The
traditional color segmentation algorithm has advantages in
detection response and can detect the target quickly, but the
detection accuracy is not ideal. In particular, when the color of
TTB changes, the detection ability will decline again. Therefore,
the proposed TTB-oriented target detection network meets
the table tennis real-time hitting and has very high accuracy.

Experimental Results of the 7-DOF Table

Tennis Robot System

Based on the physical system, this study has carried out the
hitting experiments of different rotating balls, including the ball
without spin, topspin, backspin, left-sidespin, and right-sidespin.
The ball speed is slow (4 m/s) and fast (6 m/s). Table 2 provides
the experimental results to analyze the feasibility and accuracy of
this method in the physical system of TTR.

In Table2, A represents the comparative experiment, 0
represents the ball without spin, 1 denotes topspin, 2 signifies left-
sidespin, 3 represents backspin, and 4 represents right-sidespin.
In the case of a fast ball (6 m/s), the success rate of hitting the
ball without spin can reach 68.5%. It can still ensure a specific
success rate in receiving slow table tennis with spin. The results
prove that the rotating ball discrimination method based on
human experience reported here can take into account the spin
characteristics of table tennis and guarantee the hitting attitude
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TABLE 2 | Hitting test results.

Low speed Fast speed
Type 0 1 2 3 4 0 1 2 3 4
Number of trails 200 50 50 50 50 200 50 50 50 50
A success times 97 - - - - 69 - - - -
A success rate/% 48.5 - - - - 34.5 - - - -
B success times 158 36 34 37 29 137 24 21 24 20
B success rate/% 79 72 68 74 58 68.5 48 42 48 40

choice of the manipulator. However, the success rate of hitting
the fast ball significantly decreases. Considering that the physical
system of the seven-DOF KUKA mechanical arm used here has
a slow control speed, the control system can only control the
robotic arm to hit the ball through the slow mode. Consequently,
the mechanical arm can only make effective hitting action after
fast balls fly away from the table. Therefore, it is essential to
improve the success rate of all kinds of balls in the rapid mode
of a mechanical arm.

CONCLUSION

This study mainly calculates and predicts the rotation, trajectory,
and velocity of TTB using several Al algorithms. Experiments
have proved a close correlation among speed, spin, and
landing point of TTB, which provides a solid foundation
for the reverse rotation of the TTB trajectory. Specifically,
the experiment compares the kernel function difference of
several Machine Learning algorithms on the model prediction
performance. Finally, the optimal fitting method and kernel
function is determined. Additionally, the algorithm based on
Kinect depth camera plans the player’s hitting action and
predicts the rotation and trajectory of TTB by identifying and
classifying the dynamic state of TTB. The results demonstrate
that Kinect and SVM algorithms can achieve satisfying
recognition results and high recognition accuracy in TTB-
oriented target recognition, trajectory prediction, and rotation
prediction. The network structure reported here has an excellent
performance in predicting TTB motion state and player
motion recognition.
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Still, there are some challenges and problems in the process.
First, most experiments are still in the laboratory environment.
Follow-up research will focus on live games and use camera
videos to enhance the recognition accuracy of TTB rotation.
Second, there are many interference factors in real competition
applications. Solving the interference of external factors is a
crucial problem to be solved in future research. Third, the
experiment uses insufficient samples and a single experimental
environment. Thus, it is necessary to add more examples from
other environments to calculate the rotation more accurately and
improve the recognition accuracy of TTB.
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