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Planar motion constraint occurs in visual odometry (VO) and SLAM for Automated

Guided Vehicles (AGVs) or mobile robots in general. Conventionally, two-point solvers

can be nested to RANdom SAmple Consensus to reject outliers in real data, but

the performance descends when the ratio of outliers goes high. This study proposes

a globally-optimal Branch-and-Bound (BnB) solver for relative pose estimation under

general planar motion, which aims to figure out the globally-optimal solution even under

a quite noisy environment. Through reasonable modification of the motion equation,

we decouple the relative pose into relative rotation and translation so that a simplified

bounding strategy can be applied. It enhances the efficiency of the BnB technique.

Experimental results support the global optimality and demonstrate that the proposed

method performs more robustly than existing approaches. In addition, the proposed

algorithm outperforms state-of-art methods in global optimality under the varying level

of outliers.

Keywords: Branch-and-Bound (BnB), Automated Guided Vehicle (AGV), relative pose estimation, inlier set

maximization, rotation and translation estimation

1. INTRODUCTION

Last decades witness the rapid development of frame to frame relative pose estimation in the
field of computer vision, especially in visual odometry (VO), SLAM (Mur-Artal et al., 2015;
Mur-Artal and Tardós, 2017), structure-from-motion (Schonberger and Frahm, 2016), 3D action
understanding (Chen et al., 2014, 2015), trajectory online adaption (Luo et al., 2020, 2021) and
gesture recognition (Qi and Aliverti, 2019; Qi et al., 2021). Relative pose estimation solvers recover
correct relative 3D rotation and translation of the camera based on feature matching of consecutive
image pairs to support the mentioned above applications, which promotes the mutual development
of pose estimation, AGVs, and mobile robotic technology. Therefore, improving the accuracy and
robustness of these solvers is of high interest to researchers. In this study, we focus on tackling
the problem under planar motion constraint, e.g., the on-road vehicle is equipped with a forward
looking camera. Such kinematic constraint is quite common and practical for Automated Guided
Vehicles (AGVs) and robots designed for many real applications.
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In visual geometry, all degree-of-freedom (DoF) relative pose
problems between consecutive frames can be dealt with from 2D-
2D point correspondences. Basically, eight points are sufficient
to recover relative pose in 5-DoF (Hartley and Zisserman, 2003)
with epipolar geometry. This is because epipolar geometry can
construct a cross-relationship between the matched 2D points
from different frames by introducing the 3×3 essential matrix
which is derived from relative rotation and translation matrices.
Nister’s 5-point method (Nistér, 2004) improves the efficiency of
computation of relative pose in a minimal way. Exploiting other
constraints such as homography, the number of necessary points
can be reduced (Ding et al., 2020). If we employ other sensors
such as IMUs or stereo cameras to obtain auxiliary information,
the minimal number of necessary points will descend to a lower
level (Liu et al., 2016). Extremely, the Ackermann steering model
constrains the car to move around a planar circle, therefore, one
point correspondence is sufficient to recover the planar motion
(Scaramuzza et al., 2009). The assumption that the camera moves
around a planar circle limits the practical application of the
Ackermann steering model. To solve this problem, we study
the case that the camera moves under general planar motion.
In our model, planar motion constraint simply descends the
DoF of the problem to three, contributing to efficient modeling
and computation.

Common solutions to the relative pose estimation problem
are conducted based on accurate point correspondences
(Nistér, 2004). However, real feature matchings are easily
influenced by image noise and mismatches, which may lead
to incorrect solutions. The common techniques to manage
outliers rejection are RANdom SAmple Consensus (RANSAC)
and its improvements (Fischler and Bolles, 1981; Raguram et al.,
2013; Barath and Matas, 2018; Barath et al., 2019). Specifically,
RANSAC is formulated to find consensus maximization (inlier
maximization). The inlier is defined as a point correspondence
satisfying the true relative pose in noisy input. That means the
bigger the inlier subset is, the closer to the optimal solution
the estimation will be. By setting a judging criterion, RANSAC
tries to reserve the biggest subset of such point correspondences
through iterations. Besides, many of its improvements (Raguram
et al., 2013; Barath and Matas, 2018; Barath et al., 2019)
are proposed to enhance the performance. Unfortunately,
the number of iterations in RANSAC depends on levels of
outliers while outliers are usually unknown. Therefore, in real
applications, the number of iterations is usually fixed in advance
by estimating the level of outliers, and if the parameter is over-
or under-estimated, it may lead to redundant time-consuming
or inadequate sampling iterations. More importantly, due to
the heuristic nature, RANSAC and its improvements cannot
provide a certifiably optimal solution for the object (i.e., inlier
maximization) and may provide incorrect solutions or failures in
some cases (Chin and Suter, 2017).

In this study, we propose a novel Branch-and-Bound (BnB)
method to obtain globally-optimal inlier maximization for
relative pose estimation under planar motion. To verify the
feasibility and validity of the proposed method, we set several
experiments on synthetic and real data. Different types of noise
and varying levels of outliers are taken into consideration.

Besides, performances on two real datasets KITTI (Geiger et al.,
2012) and Malaga (Blanco-Claraco et al., 2014) show the strong
robustness of the proposed approach. Themain contributions are
as follows:

• We propose a globally-optimal BnB algorithm for the relative
pose problem under planar motion constraint, where the
algorithm is suitable for mobile robots or AGVs.
• Owing to the special modification of motion equations,

the relative pose can be decoupled into planar rotation
and translation, enhancing the efficiency of the BnB
technique greatly.
• Our experimental results show that the proposed method

keeps better robustness under both image noise and outliers.

The rest of this study is organized as follows. Related study is
reviewed in Section 2. Brief notations and the main algorithm are
given in Section 3. In Section 4, comprehensive experiments on
synthetic and real data are conducted to evaluate the performance
of our BnB approach. Finally, we conclude our study in Section 5.

2. RELATED WORK

Epipolar geometry is utilized to deal with the 5-DoF relative
pose problem in multi-view geometry. It introduces the essential
matrix to describe the relationship between different views
and projected points. Basically, 8 points are sufficient to deal
with the 5-DoF relative pose problem (Hartley and Zisserman,
2003). Considering the characteristics of the essential matrix,
Nistér (2004) extends the study and proves that 5 points are
enough to recover the essential matrix. Kneip et al. (2012)
propose a novel epipolar constraint and estimates 3-DoF relative
rotation independently of translation. Moreover, for globally-
optimal inlier maximization, Yang et al. (2014) give a general
BnB framework for essential matrix estimation, whose search
space consists of a 5D direct product space of a solid 2D disk
and a solid 3D ball. Similarly, Bazin et al. (2014) estimate 3-
DoF relative rotation and focal length by the BnB technique
without considering translation. Bazin et al. (2012) offer a
BnB framework by rotation search, which performs well in 3D
rotation estimation without considering translation. In general
planar scenes, the DoF descends to 2 and many minimal solvers
emerge (Chou and Wang, 2015; Hong et al., 2016; Choi and
Kim, 2018). Choi and Kim (2018) propose two solvers to the
equations of epipolar constraint by dealing with intersections
of an ellipse and a circle or intersections of a line and a circle.
Chou and Wang (2015) propose a method especially for the
relative pose problem under large viewpoint changes under
planar constraints. Besides, Scaramuzza et al. (2009) propose
1-DoF restrictive model by Ackermann steering model, which
constrains the vehicle under nonholonomic movement so that
instantaneous circular motion can be applied to the camera.
While point-based methods combined with RANSAC provide a
fast and feasible approach to relative pose, the global optimality
cannot be fully guaranteed. Exploiting the BnB technique, our
proposed method under similar planar constraints offers better
robustness in outlier rejection. Similarly, using the restrictive
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Ackermann steering model, Gao et al. (2020) propose a globally-
optimal solution under planar motion by the BnB technique
which is the most relevant study to ours. In the study of
Gao et al. (2020), the camera faces downward to fix depth so
that homography can also be applied. Through parameterizing
planar rotation and translation into trigonometric functions,
the researcher computes the bound in each branch efficiently.
In contrast, our study cancels this restrictive steering model
and extends the scene of homography to general planar scenes,
further improving the flexibility and practicality. Even in the
general planar case, a refined trigonometric representation for
bound computing is provided as well without any extra burden
on computation.

Recently, some solvers (Raposo and Barreto, 2016; Barath
and Hajder, 2018; Guan et al., 2020; Hajder and Barath, 2020)
exploit affine correspondences to estimate relative pose. An affine
correspondence consists of a pair of feature correspondence and
a local affine transformation mapping the region of the first
feature point to the surrounding region of the second one. The
methods in Raposo and Barreto (2016), Barath andHajder (2018)
adopt affine correspondences rather than point correspondences
to recover the essential matrix, which outperforms five points
algorithm for 5-DoF relative pose estimation. Furthermore,
Guan et al. (2020) exploit extra local affine transformation
and joins it with epipolar constraint, leading to only one
point correspondence needed for relative pose estimation under
planar motion.

In addition to restricting the DoF of camera motions, the
minimal feature matchings of the relative pose problem will
descend as well when utilizing the additional sensors. Stereo
sensors capture 2 images once and the disparity map can be
computed to recover the depth information, which benefits to
settling scale problem of relative translation. Besides, RGB-D
sensors provide depth information directly. In terms of high
DoF of camera motions, the methods in Xu et al. (2006)
and Vakhitov et al. (2018) apply such sensors to improve
the computation efficiency. Similarly, IMUs can be utilized
to capture simultaneous angular velocity and acceleration. In
actual applications, it offers accurate relative rotation with high
frequency. Once the rotation is known, the general 5-DoF
problem descends to 2. The method in Kneip et al. (2011)
exploits 3D relative rotation information from inertial data in
order to support further full pose estimation. Martyushev and
Li (2020) propose minimal solvers to the problem of relative
pose estimation with known relative rotation angle detected
by a gyroscope. Fraundorfer et al. (2010) estimate relative
pose with known 2 orientation angles. Sweeney et al. (2014)
propose minimal solutions for determining the relative pose of
generalized cameras given the axis of rotation which can be
provided by IMU measurement.

3. RELATIVE POSE ESTIMATION UNDER
PLANAR MOTION CONSTRAINT

This section first illustrates epipolar geometry under planar
motion constraint and then describes the proposed BnB method

to search optimal parameters for the maximization of energy
function in detail.

3.1. Epipolar Geometry Under Planar
Motion Constraint
Epipolar geometry holds the ability to outline the inherent
geometric relationship between two views, becoming the
common tool to deal with relative pose problems. Algebraically,
the 3× 3 essential (or fundamental) matrix composed of relative
rotation and translation is introduced to express the relationship
with projected points. Given that a 3D point is projected on
two normalized image planes, relative equations can be obtained
exploiting epipolar geometry.

xT2 Ex1 = 0 (1)

where x2 = [u2, v2, 1]T and x1 = [u1, v1, 1]T are normalized
homogeneous coordinates of feature points in two views. E =
[t]×R, in which t and R represent relative translation and
rotation, respectively.

Intuitively, Figure 1 depicts a general scene under planar
motion. We set the forward direction of the camera as Z-axis
and the right direction as X-axis, so Y-axis points to the ground.
Since the motion of the camera is constrained in planar scenes,
the rotation matrix R = Ry under the view of Location 1 to 2 can
be written as:

R = Ry =





cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ



 , (2)

FIGURE 1 | Planar motion from Location 1 to 2 in top-view. The relative pose

can be described by θ and φ, where θ represents the yaw of the vehicle and φ

represents the direction of translation. ρ denotes distance between two

locations.
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the translation matrix t can be written as:

t = −R





ρ sinφ

0
ρ cosφ



 , (3)

then combining Equation 1 and E = [t]×R, we can gain the
equation:

u1v2 cosφ−v2 sinφ−u2v1 cos (θ − φ)−v1 sin (θ − φ) = 0. (4)

3.2. Proposed BnB Method
Let us observe the form of Equation 4. Drawing support from the
auxiliary angle formula, we can rewrite the equation as:

A1 sin (θ1 + φ1)+ A2 sin (θ2 + φ2) = 0, (5)

where θ1 = θ − φ, φ1 = arctan(u2), θ2 = φ, φ2 = − arctan(u1),

A1 = v1

√

(1+ u22), A2 = v2

√

1+ u21. It is noted that such

formulation of A1 and A2 is based on the assumption that v1
and v2 are non-negative. For negative v1 and v2, we just need to

additionally discussA1 = −v1

√

(1+ u22) andA2 = −v2

√

1+ u21,

of which the procedure is almost the same with the former.
Without loss of generality, we simply assume that v1 and v2 are
non-negative.

Next, given M feature correspondences from consecutive
images in the normalized coordinate system, we build the energy
function g(θ1, θ2) as:

g(θ1, θ2) =
M

∑

i=1

I(
∣

∣Ai
1 sin(θ1 + φi

1)+ Ai
2 sin(θ2 + φi

2)
∣

∣ < ε), (6)

where I(·) is an indicator function (which returns 1 if the
condition is correct and 0, otherwise); ε denotes the tolerance
considering unavoidable noise; superscript i denotes parameters
from ith feature correspondence.

Our goal is to maximize function g by searching for the
optimal θ1, θ2. However, the objective is non-smooth and non-
concave, which means obtaining its optimal solution is not easy.

To obtain the optimal solution, we design a BnB algorithm,
a globally-optimal solver based on search and iteration. By
selecting branches of sub-problems with a higher priority which
is estimated by well-designed bound strategies, BnB searches
for globally optimal solutions efficiently. Algorithm 1 describes
our BnB method to obtain globally-optimal relative pose under
planar motion. Generally, we suppose θ1 ∈ B1, θ2 ∈ B2, and
B1, B2 range from −π to π , respectively. For the branch step, we
directly divide B1 and B2 into 2 equal parts uniformly. For the
bound step, we first rewrite our objective function as:

f (θ1, θ2) = max
θ1 ,θ2

g (θ1, θ2) , (7)

The lower bound and upper bounds are considered separately. It
is evident that randomly selected θ1 and θ2 from B1 and B2 can
comprise a lower bound L(B1,B2). Our objective function is to

Algorithm 1: BnB for relative pose estimation from
consecutive frames.
Input: Feature correspondences from a pair of consecutive

frames F = {xi1, x
i
2}

M
i=1, convergence threshold of

BnB τ , tolerance ε.
Output: Globally-optimal solution (θ̂1, θ̂2).

1 q← Initialize priority queue to save possible branches;
2 B1, B2 ← Two angle intervals initialized as -π to π for θ1
and θ2, respectively;

3 (θ̂1, θ̂2)← Current best solution of (θ1, θ2), initialized as
midpoints of B1 and B2;

4 Insert B1, B2 into q with priority U(B1,B2);
5 while q is not empty do
6 B1, B2 ← Dequeue top from q;
7 Compute U(B1, B2);

8 if U(B1, B2)− g(θ̂1, θ̂2) ≤ τ then

9 Terminate
10 end

11 (θ ′1, θ ′2)←Midpoints from B1, B2;

12 if g(θ ′1, θ ′2) ≥ g(θ̂1, θ̂2) then
13 (θ̂1, θ̂2)← (θ ′1, θ ′2)
14 end

15 Uniformly subdivide B1,B2 into two intervals of same
length respectively and get 4 sub-intervals with each
segmentation B11,B12,B21,B22;

16 for i from {1, 2} and j from {1, 2} do
17 if U(B1i, B2j) ≥ g(θ̂1, θ̂2) then
18 Insert B1i, B2j into q with priority U(B1i, B2j).
19 end

20 end

21 end

maximize g. For an upper bound U(B1,B2), given θ1 ∈ B1 and
θ2 ∈ B2, we hope that

U (B1,B2) ≥ f (θ1, θ2) = max
θ1 ,θ2

g (θ1, θ2) . (8)

To express more clearly, we denote

ρi (θ1, θ2) = Ai
1 sin

(

θ1 + φi
2

)

+ Ai
2 sin

(

θ2 + φi
2

)

, (9)

that equals U (B1,B2) ≥ max
∑M

i=1 I (|ρi (θ1, θ2)| < ε). The
minimum and maximum of ρi can be expressed as:

ρ l
i ≤ ρi (θ1, θ2) ≤ ρu

i , (10)

then it is not hard to relax the indicator function

I(
∣

∣ρi(θ1, θ2)
∣

∣ < ε) = 1 (11)

⇔I(−ε < ρi(θ1, θ2) < ε) = 1 (12)

⇒I(ρ l
i < ε and − ε < ρu

i ) = 1. (13)
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Thus, the upper bound can be obtained as:

U(B1,B2) =
M

∑

i=1

I(ρ l
i < ε and − ε < ρu

i ) (14)

≥ max
θ1 ,θ2

M
∑

i=1

I(
∣

∣ρi(θ1, θ2)
∣

∣ < ε) (15)

= f (θ1, θ2). (16)

Note that the right side of the Equation 14 has no relation with
θ1 and θ2, so the max operator can be aborted. Therefore, the
remaining is to compute ρ l

i and ρu
i . Similarly, given θ1 ∈ B1 and

θ2 ∈ B2, we just need to compute two minimum and maximum
trigonometric functions separately.

ρu
i = max ρi = maxAi

1 sin(θ1 + φi
1)+maxAi

2 sin(θ2 + φi
2)

ρ l
i = min ρi = minAi

1 sin(θ1 + φi
1)+minAi

2 sin(θ2 + φi
2).
(17)

According to different range of B1,B2, and φi
1 and φi

2, the
minimum andmaximum can be achieved by category discussion.
Gao et al. (2020) also parameterize relative rotation and
translation by trigonometric functions, but we have different
derivations, and please refer to Gao et al. (2020) for details.

It is worth noting that when B1 and B2 collapse to a single
point, respectively, the upper bound and lower bound tend to be
the same, ensuring the convergence of the proposed BnBmethod.

4. EXPERIMENTS

In this section, we conduct experiments on synthetic and real
data to evaluate the effectiveness and robustness of the proposed
BnB method. To reject outliers, algorithms under comparison
are combined with RANSAC. The parameters of RANSAC
keep constant in the same experiment. All our experiments are
executed on the Intel Core i7-9750H CPU. Our proposed BnB
method is compiled and executed with C++ on Windows, The
compared methods are written on Matlab R2020a, which may
hold a slight difference from the original articles. Noting the

randomness that existed in RANSAC, the estimated poses will not
be fully consistent but quite close.

4.1. Experiments on Synthetic Data
We evaluate the effectiveness and robustness of our BnB
method with synthetic data, respectively. The variances of the
experiments are image noise and non-planar noise. Additionally,
to evaluate the robustness and global optimality, we take an
experiment under different ratios of outliers into consideration.
Four different algorithms [1AC (Hartley and Zisserman, 2003),
2pt (Nistér, 2004), 5pt (Choi and Kim, 2018), 8pt (Guan
et al., 2020)] using affine or point (feature) correspondences are
computed for comparison.

To generate 3D points in space, we create 50 different virtual
planes randomly and sample points distributed in the range
of −5–5 m (X and Y-axis) and 10–30 m (Z-axis) on each
plane. About 50 points are sampled in total. It is mentioned
that (Barath and Kukelova, 2019) are introduced to estimate
homography with four spatially close points from the same
plane, after which local affine correspondence can be calculated
to meet the requirement of extra affine information in 1AC.
To simulate different views, we create 2 virtual cameras for
which the focal length is 700 and the resolution is 1,000×400.
Considering the scale problem in translation, we fix the distance
between cameras by 2 m. With the assumption that the ground
truth of relative pose is given by (θgt ,φgt), we randomly choose

them from [− 1
3π ,

1
3π] to simulate the motion of autonomous

vehicles. The candidates are fixed as (5, 5) degrees for simplicity.
Thus, the rotation error and translation error between estimated
parameters and precise ones can be defined as:

εR =
∣

∣θ − θgt
∣

∣ , εt =
∣

∣φ − φgt

∣

∣ . (18)

We replace the epipolar constraint Equation 4 with an inequality

|u1v2 cosφ − v2 sinφ − u2v1 cos (θ − φ)− v1 sin (θ − φ)| < ε,
(19)

The inequality is exploited as a criterion for judging whether a
pair of feature matching belongs to the set of the inliers. In all

FIGURE 2 | Evaluations of five algorithms on different image noise. The non-planar noise is not added. The left image shows rotation error with different image noise

and the right one represents translation error with different image noise. 1AC, 2pt, 5pt, and 8pt are the studies of Hartley and Zisserman (2003); Nistér (2004); Choi

and Kim (2018); Guan et al. (2020), respectively, and BnB is our study.
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synthetic experiments, ε is fixed to 10−3. Besides, the number of
iterations of the RANSAC scheme is decided by:

k =
log(1− p)

log(1− wn)
, (20)

where k denotes the number of iterations, p the confidence, w
the ratio of inliers, and n denotes the minimal cardinality of
inlier set. In all synthetic experiments, we keep p as 0.9999 and
except for the experiment under different outliers, w is taken
as 0.8 since the image noise and non-planar noise are relatively
small. Besides, all synthetic experiments are duplicated 200 times
to reduce randomness.

For experiments with the image noise as the variance, we set
image noise with different Gaussian distributions N(0, σ 2) with
the SD σ ranging from 0 to 1. Under each σ , the median rotation
and translation of 200 repetitions are utilized for evaluation.
Figure 2 shows the performance under different image noises.
Under small image noise, BnB, 1AC, and 8pt methods show

competitive performances. Once the noise increases, the 8pt
method falls behind while BnB and 1AC methods are stronger.

Additionally, we add non-planar noise in rotation and
translation to simulate more realistic road conditions. Following
(Choi and Kim, 2018), the non-planar noise consists of X-
axis rotation, Z-axis rotation, and the direction of YZ-plane
translation. Similarly, the uniform noise is varied from 0 to 2
degrees. Besides, we fix the image noise with an SD of 0.5 pixels.
Figure 3 shows the performances of the proposed BnB method
with respect to non-planar noise. 8pt and 5pt methods perform
well for the reason that they estimate 5-DoF relative pose. Besides,
three other algorithms designed for planar cases show similar
performance since they are poor to deal with non-planar noise
well. Besides, the 1AC method shows similar performance on
rotation comparedwith the proposed BnBmethod, while the BnB
method outperforms it in translation estimation.

Apart from the image noise and non-planar noise, there
exist many mismatches during feature matching, e.g., ASIFT and
VLFeat. Since our BnB method aims to obtain a globally-optimal

FIGURE 3 | Evaluations of five algorithms on different non-planar noise. The image noise is set as σ = 0.5. The left image shows rotation error with different

non-planar noise and the right one represents translation error with different non-planar noise. 1AC, 2pt, 5pt, and 8pt are the studies of Hartley and Zisserman (2003);

Nistér (2004); Choi and Kim (2018); Guan et al. (2020), respectively, and BnB is our study. Better viewed in color.

FIGURE 4 | The boxplot of inlier_max of five algorithms with respect to different ratios of outliers. The horizontal axis represents the ratio of manually added outliers

and the vertical axis represents the performance of the inlier maximization of five algorithms. 1AC, 2pt, 5pt, and 8pt are the studies of Hartley and Zisserman (2003);

Nistér (2004); Choi and Kim (2018); Guan et al. (2020), respectively, and BnB is our study.
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inlier maximization solution of the relative pose, we consider a
common metric inlier_max (Chin and Suter, 2017) to evaluate
the ability of inlier maximization. Specifically, inlier_max is
defined as the maximal cardinality of the subset of inliers which
satisfies Equation 19 and represents the global optimality of

these methods. Given a noisy set of feature correspondences
with mismatches, a globally-optimal solver should complete
high-quality outliers rejection and keep a maximized subset of
inliers. In detail, we fix the image noise with SD σ = 0.5 without
considering non-planar noise. The sum of feature matchings

TABLE 1 | Comparison of three methods on 11 sequences of KITTI odometry dataset.

Seq. εR εt inlier_max

BnB 1AC 2pt BnB 1AC 2pt BnB 1AC 2pt

00 0.0337 0.0139 0.1956 0.6900 0.8346 3.7567 41.5535 39.3507 39.5037

01 0.0123 0.0053 0.1880 0.0853 0.2596 2.7532 46.0509 44.4045 45.0336

02 0.0076 0.0100 0.1510 0.2973 0.5691 2.2629 43.2060 40.9652 41.3803

03 0.0237 0.0244 0.1433 0.6412 1.3076 1.2426 43.4563 41.2638 41.5613

04 0.1231 0.0272 0.1270 0.6663 1.0309 1.7233 46.8889 45.0222 45.9269

05 0.0053 0.0023 0.1514 0.0182 0.1297 3.4481 43.5569 41.6315 41.7725

06 0.0427 0.0148 0.1611 0.4229 0.6721 2.5658 44.3818 42.2473 42.7400

07 0.0011 0.0033 0.1285 0.0290 0.3313 4.2962 43.9855 42.1764 42.3755

08 0.0100 0.0018 0.1374 0.0608 0.0098 3.0336 43.5953 41.5486 41.7359

09 0.0152 0.0133 0.1366 0.0722 0.5864 2.5314 43.3050 40.8648 41.4925

10 0.0076 0.0051 0.1391 0.3161 0.5296 3.0361 43.0917 40.8967 41.2442

Seq represents the sequence number of the adopted data set. εR, εt, and inlier_max symbolize the rotation error, translation error, and average maximum matching point numbers. The

bold values indicate the lowest error.

FIGURE 5 | Visualization of night scenes using proposed BnB method on noisy matchings with sequences of KITTI odometry dataset. The green lines represent

correct correspondences and the red lines denote mismatches. In each pair of scenes, the scene below moves from above. Better viewed in color.
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FIGURE 6 | Rotation and translation error of three algorithms. They are exhibited with respect to path length. 1AC, 2pt are the studies of Choi and Kim (2018); Guan

et al. (2020), respectively, and BnB is our study. Better viewed in color.

is fixed to 200, and we add the different ratios of outliers in
sampled feature matchings ranging from 0 to 90%. The median
value of inlier_max in 200 repetitions is adopted for evaluation.
Figure 4 shows the performance of the proposed BnB method
under different ratios of outliers. It shows that when satisfying
the criterion for judging whether a feature correspondence stands
for correct relative motion, the proposed BnB method keeps the
best inlier maximization under the different ratios of outliers
compared with other solvers joined with RANSAC. As the
ratio of outliers equals 70%, the proposed BnB method keeps
the cardinality of inliers subset over 50 while other methods
reserve inliers fewer than 50. This shows our proposed method
manages to search for a globally-optimal solution even under
heavy outliers and noise.

4.2. Experiments on Real Data
We evaluate the effectiveness and robustness of our BnB
method mainly on the KITTI odometry dataset (Geiger et al.,
2012) and Malaga dataset (Blanco-Claraco et al., 2014) for
supplementation. KITTI odometry dataset contains 11 sequences
with groundtruth of pose matrices from 00-10. We manage
comprehensive evaluation through the full use of 11 sequences
because the sequences cover different planar scenes. Since θ and
φ are sufficient to describe the relative rotation and translation
of the camera in consecutive frames without considering scale
problems, we still compare εR and εt. Besides, inlier_max is also
used to evaluate the global optimality under mismatches in real
datasets. For the Malaga dataset, we exploit inlier_max in that it
does not provide groundtruth of camera poses.

The proposed BnB method is compared with 2 different
algorithms [1AC (Choi and Kim, 2018), 2pt (Guan et al.,
2020)] which are especially proposed for planar scenes. ASIFT
(Morel and Yu, 2009) in VLFeat (Vedaldi and Fulkerson,
2010) is exploited to extract 50 affine correspondences between
consecutive frames and the threshold of the matching scheme
is set to 2 pixels. Besides, the tolerance ε of epipolar constraint
is set to 10−3 since real data undergoes higher non-planar
noise and mismatches. The number of iterations in RANSAC is
fixed to 100 through experiments. For evaluating rotation and
translation error, we take the median value on each sequence
to avoid the influence of failures by RANSAC. The mean value
of inlier_max is adopted to show the global optimality. Table 1

TABLE 2 | Five pairs of consecutive frames selected from the Malaga dataset

randomly.

Scene inlier_max method BnB 1AC 2pt

Straight path 22 14 15

Through road 23 16 18

Roundabout 18 12 11

Roundabout with traffic 21 16 17

Loop closure 27 19 19

We rename each scene, respectively, for simplicity. 1AC, and 2pt are the studies of Choi

and Kim (2018); Guan et al. (2020), respectively, and BnB is our study. The bold values

indicate the highest inlier maximization.

presents comparative results between the BnB method and 1AC
(Choi and Kim, 2018), 2pt (Guan et al., 2020) methods on
11 KITTI odometry datasets. It shows that our BnB method
provides a significant improvement in translation estimation in
10 of 11 KITTI sequences compared with 1AC and 2pt methods,
where the smallest translation error is 0.0182 and the biggest
one is 0.69. The biggest translation error of the 1AC and 2pt
methods are 1.3076 and 4.2964, respectively, which are much
worse than the proposed BnBmethod. Besides, the proposed BnB
method obtains the highest inlier_max through all sequences
and shows strong global optimality from the perspective of
inlier maximization. Figure 5 exhibits some figures where the
BnB method takes heavily noisy feature correspondences as
input and achieves inlier maximization. The green lines denote
inliers and red lines denote outliers caused by mismatches
or big noise. As shown in Figure 5, green lines maintain a
fairly consistent direction and the red lines intersect with each
other, which meets the characteristics of proper correspondences
and mismatches intuitively. In Figure 5, BnB reserves an inlier
subset from extremely noisy matchings, and the green lines
show high consistency, representing the relative motion between
consecutive frames.

To give a comprehensive depiction of the performance of
solvers above, we exhibit the relationship between the rotational
and translation error defined in KITTI VO and SLAMEvaluation
and the path length in Figure 6. For highlighting the capabilities
of algorithms themselves, we estimate the distance ρ between
consecutive frames from the groundtruth and do not manage any
follow-up optimizations. The tolerance ε of epipolar constraint
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FIGURE 7 | Inliers and outliers in five scenes of the Malaga dataset. The green lines represent correct correspondences and the red lines denote mismatches. In each

pair of scenes, the scene below moves from above. Better viewed in color.

is decreased to 10−4 to show the performance more clearly. As
shown in Figure 6, the BnB method shows higher performance
in rotation error at the beginning and as the path gets longer up
to 800 m, the rotation error tends to be consistent in BnB and
1AC methods. On the other hand, the translation error of the
proposed BnBmethod is about 0.04 meter per meter less than the
1AC method, which shows an enhancement in translation error
through the whole path length.

Besides, we randomly pick five scenes from theMalaga dataset
in five different sequences to help evaluate the global optimality

of the proposed method under noisy cases and inlier_max is
exploited to evaluate the performance of three different methods.
The tolerance ε of epipolar constraint is set to 10−3 and the
number of RANSAC schemes is fixed to 1,000 to decrease the
randomness. Table 2 shows the performance of three methods
under different scenes. The feature correspondences are obtained
from ASIFT and the matching threshold is 0.5 to add some
mismatches. A total of 200 noisy feature matchings per example
are randomly picked. As shown in Table 2, the five examples
contain similar numbers of inliers, and the proposed method
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achieves the best inlier maximization in all scenes. It means
that the proposed method keeps global optimality even under
noisy cases. Figure 7 shows the five scenes of the Malaga dataset
precessed by the proposed BnB method intuitively.

In the end, due to the globally-optimal searching strategy
of the proposed BnB method, the BnB method is more time-
consuming than other non-minimal or minimal solvers. For 50
point correspondences from each pair of consecutive images and
under the tolerance ε of epipolar constraint 10−4, BnB consumes
18.3203 s. While ε decreases to 10−3, consumed time decreases
to 4.1867 s, and it also losses some precision.

5. CONCLUSION

Recent studies on relative pose estimation are targeted at more
robust and faster methods, which will improve the performance
of AGVs and robots. To enhance the robustness, we propose a
novel globally-optimal BnB method for relative pose estimation
of a camera under planar motion. Based on this reasonable
assumption of planar motion for cameras fixed on self-driving
cars or on-ground robots, our BnB method takes feature
correspondences in the normalized camera coordinate system
as input and obtains the globally-optimal solution for relative
pose between consecutive frames effectively. Results of synthetic
experiments show that our proposed BnB method has a highly
effective performance of inlier maximization even on the high
level of outliers. Additional experiments on the KITTI dataset

andMalaga dataset both further confirm our BnBmethod ismore
robust than existing approaches. However, due to the globally-
optimal searching strategy of the proposed BnB method, the
proposed method is more time-consuming. For future study, we
expect to find a tighter bound to speed up the convergence.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found at: http://www.cvlibs.net/datasets/kitti/.

AUTHOR CONTRIBUTIONS

YL is responsible for ensuring that the descriptions are accurate
and agreed by all authors and provided the original idea. The
conceptualization and methodology were developed by ZL and
HL. GC and AK: supervision and validation. RZ is responsible for
software and visualization. All authors contributed to the article
and approved the submitted version.

FUNDING

This study was financially supported by State Key Laboratory of
Vehicle NVH and Safety Technology 2020 Open Fund Grant,
Project NVHSKL-202009, the GermanResearch Foundation
(DFG), and the Technical University of Munich (TUM) in the
framework of the Open Access Publishing Program.

REFERENCES

Barath, D., and Hajder, L. (2018). Efficient recovery of essential matrix from
two affine correspondences. IEEE Trans. Image Process. 27, 5328–5337.
doi: 10.1109/TIP.2018.2849866

Barath, D., and Kukelova, Z. (2019). “Homography from two orientation-
and scale-covariant features,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV) (Seoul).
Barath, D., and Matas, J. (2018). “Graph-cut ransac,” in Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition (Salt Lake City, UT),
6733–6741.

Barath, D., Matas, J., and Noskova, J. (2019). “Magsac: marginalizing sample
consensus,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (Long Beach, CA), 10197–10205.
Bazin, J.-C., Seo, Y., Hartley, R., and Pollefeys, M. (2014). “Globally optimal

inlier set maximization with unknown rotation and focal length,” in European

Conference on Computer Vision (Zürich: Springer), 803–817.
Bazin, J.-C., Seo, Y., and Pollefeys, M. (2012). “Globally optimal consensus set

maximization through rotation search,” in Asian Conference on Computer

Vision (Daejeon: Springer), 539–551.
Blanco-Claraco, J.-L., Moreno-Dueñas, F.-Á., and González-Jiménez, J. (2014).

The málaga urban dataset: high-rate stereo and lidar in a realistic urban
scenario. Int. J. Robot. Res. 33, 207–214. doi: 10.1177/0278364913507326

Chen, G., Clarke, D., Giuliani, M., Gaschler, A., and Knoll, A. (2015). Combining
unsupervised learning and discrimination for 3d action recognition. Signal
Process. 110, 67–81. doi: 10.1016/j.sigpro.2014.08.024

Chen, G., Giuliani, M., Clarke, D., Gaschler, A., and Knoll, A. (2014). “Action
recognition using ensemble weighted multi-instance learning,” in 2014 IEEE

International Conference on Robotics and Automation (ICRA) (Hong Kong),
4520–4525.

Chin, T.-J., and Suter, D. (2017). “The maximum consensus problem: recent
algorithmic advances,” in Synthesis Lectures on Computer Vision vol. 7. (San
Rafael, CA: Morgan & Claypool Publishers), 1–194.

Choi, S., and Kim, J.-H. (2018). Fast and reliable minimal relative pose
estimation under planar motion. Image Vis. Comput. 69, 103–112.
doi: 10.1016/j.imavis.2017.08.007

Chou, C. C., and Wang, C.-C. (2015). “2-point ransac for scene image matching
under large viewpoint changes,” in 2015 IEEE International Conference on

Robotics and Automation (ICRA) (Seattle, WA: IEEE), 3646–3651.
Ding, Y., Yang, J., Ponce, J., and Kong, H. (2020). Homography-based minimal-

case relative pose estimation with known gravity direction. IEEE Trans. Pattern

Anal. Mach. Intell. 44, 196–210. doi: 10.1109/TPAMI.2020.3005373
Fischler, M. A., and Bolles, R. C. (1981). Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.
Commun. ACM 24, 381–395.

Fraundorfer, F., Tanskanen, P., and Pollefeys, M. (2010). “A minimal case solution
to the calibrated relative pose problem for the case of two known orientation
angles,” in European Conference on Computer Vision (Heraklion: Springer),
269–282.

Gao, L., Su, J., Cui, J., Zeng, X., Peng, X., and Kneip, L. (2020). “Efficient globally-
optimal correspondence-less visual odometry for planar ground vehicles,” in
2020 IEEE International Conference on Robotics and Automation (ICRA) (Paris:
IEEE), 2696–2702.

Geiger, A., Lenz, P., and Urtasun, R. (2012). “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in 2012 IEEE Conference on

Computer Vision and Pattern Recognition (Providence, RI: IEEE), 3354–3361.
Guan, B., Zhao, J., Li, Z., Sun, F., and Fraundorfer, F. (2020). “Minimal solutions

for relative pose with a single affine correspondence,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (Seattle,
WA), 1929–1938.

Frontiers in Neurorobotics | www.frontiersin.org 10 March 2022 | Volume 16 | Article 820703

http://www.cvlibs.net/datasets/kitti/
https://doi.org/10.1109/TIP.2018.2849866
https://doi.org/10.1177/0278364913507326
https://doi.org/10.1016/j.sigpro.2014.08.024
https://doi.org/10.1016/j.imavis.2017.08.007
https://doi.org/10.1109/TPAMI.2020.3005373
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liu et al. Globally-Optimal Inlier Maximization

Hajder, L., and Barath, D. (2020). “Relative planar motion for vehicle-mounted
cameras from a single affine correspondence,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA) (Paris: IEEE), 8651–8657.
Hartley, R., and Zisserman, A. (2003).Multiple View Geometry in Computer Vision.

Cambridge: Cambridge University Press.
Hong, S., Lee, J. S., and Kuc, T.-Y. (2016). Improved algorithm to estimate the

rotation angle between two images by using the two-point correspondence
pairs. Electron. Lett. 52, 355–357. doi: 10.1049/EL.2015.2500

Kneip, L., Chli, M., and Siegwart, R. Y. (2011). “Robust real-time visual odometry
with a single camera and an imu,” in Proceedings of the British Machine Vision

Conference 2011 (Dundee: British Machine Vision Association).
Kneip, L., Siegwart, R., and Pollefeys, M. (2012). “Finding the exact rotation

between two images independently of the translation,” in European Conference

on Computer Vision (Florence: Springer), 696–709.
Liu, Y., Xiong, R., Wang, Y., Huang, H., Xie, X., Liu, X., et al. (2016). Stereo

visual-inertial odometry with multiple kalman filters ensemble. IEEE Trans.

Ind. Electron. 63, 6205–6216. doi: 10.1109/TIE.2016.2573765
Luo, J., Huang, D., Li, Y., and Yang, C. (2021). Trajectory online adaption based

on human motion prediction for teleoperation. IEEE Trans. Autom. Sci. Eng.

doi: 10.1109/TASE.2021.3111678
Luo, J., Lin, Z., Li, Y., and Yang, C. (2020). A teleoperation framework for

mobile robots based on shared control. IEEE Robot. Autom. Lett. 5, 377–384.
doi: 10.1109/LRA.2019.2959442

Martyushev, E., and Li, B. (2020). Efficient relative pose estimation for cameras and
generalized cameras in case of known relative rotation angle. J. Math. Imag. Vis.

62, 1076–1086. doi: 10.1007/s10851-020-00958-5
Morel, J.-M., and Yu, G. (2009). Asift: a new framework for fully affine invariant

image comparison. SIAM J. Imag. Sci. 2, 438–469. doi: 10.1137/080732730
Mur-Artal, R., Montiel, J. M. M., and Tardós, J. D. (2015). Orb-slam: a versatile

and accurate monocular slam system. IEEE Trans. Robot. 31, 1147–1163.
doi: 10.1109/TRO.2015.2463671

Mur-Artal, R., and Tardós, J. D. (2017). Orb-slam2: an open-source slam system
for monocular, stereo, and rgb-d cameras. IEEE Trans. Robot. 33, 1255–1262.
doi: 10.1109/TRO.2017.2705103

Nistér, D. (2004). An efficient solution to the five-point relative pose problem. IEEE
Trans. Pattern Anal. Mach. Intell. 26, 756–770. doi: 10.1109/TPAMI.2004.17

Qi, W., and Aliverti, A. (2019). A multimodal wearable system for continuous and
real-time breathing pattern monitoring during daily activity. IEEE J. Biomed.

Health Inf. 24, 2199–2207. doi: 10.1109/JBHI.2019.2963048
Qi, W., Ovur, S. E., Li, Z., Marzullo, A., and Song, R. (2021). Multi-

sensor guided hand gestures recognition for teleoperated robot using
recurrent neural network. IEEE Robot. Autom. Lett. 6, 6039–6045.
doi: 10.1109/LRA.2021.3089999

Raguram, R., Chum, O., Pollefeys, M., Matas, J., and Frahm, J. (2013). Usac: a
universal framework for random sample consensus. IEEE Trans. Pattern Anal.

Mach. Intell. 35, 2022–2038. doi: 10.1109/TPAMI.2012.257

Raposo, C., and Barreto, J. P. (2016). “Theory and practice of structure-
from-motion using affine correspondences,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (Las Vegas, NV),
5470–5478.

Scaramuzza, D., Fraundorfer, F., and Siegwart, R. (2009). “Real-time monocular
visual odometry for on-road vehicles with 1-point ransac,” in 2009 IEEE

International Conference on Robotics and Automation (Kobe: IEEE), 4293–
4299.

Schonberger, J. L., and Frahm, J.-M. (2016). “Structure-from-motion revisited,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(Las Vegas, NV), 4104–4113.
Sweeney, C., Flynn, J., and Turk, M. (2014). “Solving for relative pose with

a partially known rotation is a quadratic eigenvalue problem,” in 2014 2nd

International Conference on 3D Vision, vol. 1 (Tokyo: IEEE), 483–490.
Vakhitov, A., Lempitsky, V., and Zheng, Y. (2018). “Stereo relative pose from

line and point feature triplets,” in Proceedings of the European Conference on

Computer Vision (ECCV) (Munich).
Vedaldi, A., and Fulkerson, B. (2010). “Vlfeat: an open and portable

library of computer vision algorithms,” in Proceedings of the

18th ACM international conference on Multimedia (Firenze),
1469–1472.

Xu, C., Qiu, L., Liu, M., Kong, B., and Ge, Y. (2006). “Stereo vision based
relative pose and motion estimation for unmanned helicopter landing,” in
2006 IEEE International Conference on Information Acquisition (Weihai: IEEE),
31–36.

Yang, J., Li, H., and Jia, Y. (2014). “Optimal essential matrix estimation via inlier-set
maximization,” in European Conference on Computer Vision (Zürich: Springer),
111–126.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Liu, Chen, Liu, Liang, Zhang and Knoll. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 March 2022 | Volume 16 | Article 820703

https://doi.org/10.1049/EL.2015.2500
https://doi.org/10.1109/TIE.2016.2573765
https://doi.org/10.1109/TASE.2021.3111678
https://doi.org/10.1109/LRA.2019.2959442
https://doi.org/10.1007/s10851-020-00958-5
https://doi.org/10.1137/080732730
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TPAMI.2004.17
https://doi.org/10.1109/JBHI.2019.2963048
https://doi.org/10.1109/LRA.2021.3089999
https://doi.org/10.1109/TPAMI.2012.257
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Globally-Optimal Inlier Maximization for Relative Pose Estimation Under Planar Motion
	1. Introduction
	2. Related Work
	3. Relative Pose Estimation Under Planar Motion Constraint
	3.1. Epipolar Geometry Under Planar Motion Constraint
	3.2. Proposed BnB Method

	4. Experiments
	4.1. Experiments on Synthetic Data
	4.2. Experiments on Real Data

	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


