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Different learning modes and mechanisms allow faster and better acquisition of skills as

widely studied in humans and many animals. Specific neurons, called mirror neurons,

are activated in the same way whether an action is performed or simply observed.

This suggests that observing others performing movements allows to reinforce our

motor abilities. This implies the presence of a biological mechanism that allows creating

models of others’ movements and linking them to the self-model for achieving mirroring.

Inspired by such ability, we propose to build a map of movements executed by a

teaching agent and mirror the agent’s state to the robot’s configuration space. Hence,

in this study, a neural network is proposed to integrate a motor cortex-like differential

map transforming motor plans from task-space to joint-space motor commands and a

static map correlating joint-spaces of the robot and a teaching agent. The differential

map is developed based on spiking neural networks while the static map is built as a

self-organizing map. The developed neural network allows the robot to mirror the actions

performed by a human teaching agent to its own joint-space and the reaching skill is

refined by the complementary examples provided. Hence, experiments are conducted

to quantify the improvement achieved thanks to the proposed learning approach and

control scheme.

Keywords: robotics, spiking neural networks, sensor-based control, visual servoing, imitation learning

1. INTRODUCTION

Robots are involved nowadays in many demanding and challenging tasks. With the aim to keep up
with the pace of such demands, adaptability and novel learning techniques are essential in robots.
One of the biologically inspired methods for learning is learning by demonstration or imitation,
where the robot is taught by a teaching agent to execute a specific task. An issue that arises is
relating the Cartesian space of both the teaching and the robot required for direct teaching from
demonstrations (Argall et al., 2009; Ravichandar et al., 2020). In primates, specific neurons in
several brain regions, called mirror neurons, are proven to trigger almost the same output while
executing or observing the same task (Heyes, 2010; Cook et al., 2014). Consequently, these neurons
are considered a key component in learning and refining motor skills in primates (Oztop et al.,
2006; Iacoboni, 2009). A biologically inspired mechanism is introduced in this study functionally
replicate the ability to learn through demonstrations. However, unlike other works in which the
robot was required to just copy a certain motor skill, this work aims for the improvement of an
acquired skill (i.e., target reaching) through imitation. In Iacoboni and Mazziotta (2007), mirror
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neurons would respond to intended tasks even with occlusions
occurring indicating the sensitivity of these neurons to specific
skills/actions rather than joints’ movements. Hence, most studies
focus on monitoring the mirroring activity in the high-order
brain regions as these regions are responsible for motion
planning. A study in monkeys investigated the activity in the
primary motor cortex, responsible for motion transformation,
after learning step-tracking while performing and observing the
task (Dushanova and Donoghue, 2010). A wide set of neurons
was found to attain activity while observing similar to that during
acting while preserving the same preferred direction of activity,
only with less amplitude. This occurs only while observing a
task that was already learned by the monkey. This indicates
that mirror neurons exist even in lower-order regions and may
contribute to the refinement of the learned skills.

Consider a system that builds a map without any prior
knowledge about body kinematics, analogous to the formation
of a transformation map in the motor cortex of newborn babies
(Zahra et al., 2021c). Through motor babbling, a training dataset
is generated to allow building the desired map correlating the
body state and the motor commands required to produce an
intended motion. However, since no inverse kinematic solver
or initial model of the kinematic relations is present, the
motor babbling commands correspond to random movements
in joint-space. For the studied case, the babbling produces
waving-like motions thanks to the revolute joints utilized. It
was observed that the error in the reaching actions is highly
related to the collected training data of waving-like motion.
This was concluded from the longer time and higher deviation
from the straight target path to the target point. Hence, an
auxiliary teaching mechanism is proposed to enrich the training
data. One solution proposed in Kormushev et al. (2015) is a
kinematic-free scheme for robot control based on generating
exploratory motions to find proper motor actions. In this
study, a more directed data collection is proposed where the
candidate mechanism relies on learning by imitating a human
agent providing more direct teaching examples. Such examples
make up for the lack of proper joint coordination during motor
babbling to produce motion in a straight path between numerous
points in the task-space.

Surveys of different systems developed for learning from
demonstrations discuss the different learning modes and
challenges faced by each mode (Argall et al., 2009; Ravichandar
et al., 2020). The studied case involves learning from external
observations, where demonstrations are performed by a teaching
agent with no sensors attached to the agent. Additionally, the
policy to be learned in this case aims for low-level control of the
robot in the joint space. As this case involves passive observation
imitation learning, it suffers from the correspondence issue to
transform the demonstration from the teacher’s joint space to
the robot’s joint space. In Shavit et al. (2018), a dynamical system
(DS) is proposed to learn from kinesthetic demonstrations. The
DS is then capable of computing the desired motion to be
executed in joint space to reach a target in task-space. However,
no mechanism for learning from demonstrations of a teaching
agent is included in the study as teaching occurs only by moving
the robot links manually to execute the task (i.e., kinesthetic

learning only). In Tieck et al. (2017), a spiking neural network
(SNN) is introduced to reproduce the grasping motion of a
hand. The data collected during a human hand grasping different
objects is recorded to train the network. Then, the SNN guides
the fingers of a robotic hand to grasp the objects. While the
SNN reproduces the pattern of recorded movements, it does not
address the case where different link lengths exist in the teaching
agent/hand and the robot. Moreover, the error recorded for the
joints is relatively big at the end of the training.

In this study, an SNN is developed to guide the motion of a
robot through joint space motor commands in a visual servoing
task. Without any prior knowledge about the robot configuration
and intended direction of motion, the SNN is trained through
motor babbling to provide adequate motor commands. The
developed sensorimotor map is then refined by imitating the
movements of a teaching agent, a human arm movement in
this study, to make up for the missing knowledge about the
desired movements. The teaching examples are transformed into
robot coordinates through a network developed based on the
self-organizing map (SOM) and Hebbian learning plasticity rule.
Hence, this study contributes to the following:

• Solving the correspondence issue via SOMs and a biologically
inspired plasticity rule.
• Improving the performance of a feedforward SNN (Zahra

et al., 2021c) relying on Bayesian optimization and
inhibitory interconnections.
• Validating the improvement in representation capabilities of

the developed SNN via complementing the training data.

To the best of our knowledge, this is the first study to
utilize SOMs to solve the correspondence issue for imitation
learning and demonstrate the improvement in a motor cortex-
like SNN architecture. The rest of this paper is structured as
follows: Section 2 introduces the methodology followed for the
development of the subnetworks and integration to construct
the proposed network; Section 3 introduces the results obtained;
Section 4 gives and discusses the conclusions of this study.

2. METHODS

While the extent of learning through imitation in humans is yet to
be fully understood, this study introduces a biologically inspired
mechanism that improves the quality of the target reaching skill
by minimizing deviation from the intended target path. In a
previous study (Zahra et al., 2021c), an SNN demonstrated the
ability to learn from motor babbling and the ability to build
a coarse differential map. While this map allows estimating
the motor commands necessary for sensor-guided reaching of
targets, the coarse estimations lead to wide deviations from the
intended path. It was assumed that such deviations arise mainly
due to the nature of the training set collected from waving-
like motions while moving linearly in joint space. Consequently,
providing better training examples, in this case, is one viable
solution. In this study, the proposed mechanism acts to not
only imitate actions in task space but to learn as well from the
activity in joint space to refine the reaching skill. Hence, the
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joint space of the teaching agent (human arm in this case) is
mapped to the joint space of the robotic arm. This mapping
correlates the angular positions of the human arm to those of
the robotic manipulator that hold the same end effector position
(as shown in Figure 1). Such a correlation in angular positions
allows teaching the robot and refining the reaching movements
by complementing the training examples by human reaching
movements after transforming into the robot’s joint space (i.e.,
solving the correspondence issue).

2.1. Biologically Inspired Imitation Learning
In this study, a robotic manipulator, with m degrees of freedom
(DoF) and a task/action space of z dimensions, executes a
target reaching task via low-level joint velocity control. The
kinematic relations are built based on data collected from
randommovements of the manipulator with no prior knowledge
of configuration. Hence, the data collected as pairs of sensory
readings of the joint space JSR (qr ∈ R

m and ur ∈ R
m)

and the task-space TS (xr ∈ R
z and vr ∈ R

z) as mk
r =

{{qt−1,kr , ut−1,kr , xt−1,kr , vt,kr }}t=1,...,Tk , where qr and ur are the
angular position and velocity, respectively, and xr and vr are
the Cartesian position and velocity, respectively. Tk is the
number of time steps taken to execute the kth robot reaching
movement Mr = {{m

k
r }}k=1,...,K where K is the total number of

movements recorded.
Such random movements are executed linearly in joint space,

which does not normally correspond to linear movements
in the task space. Consequently, in most cases, the training
data collected through robot babbling lack good examples of
linear motion in Cartesian-space, which is essential to reduce
the time needed for target reaching and to achieve dexterous
manipulation. Thus, complementary examples are needed to
enrich the training dataset. However, it is not possible to
generate such examples through robot movements in absence of
a mathematical model for the kinematic relations. Hence, it is
adequate to provide such examples through a teacher capable of
providing the desired movements. It follows that the teacher shall
move across the studied z-dimensional work-space to provide
these examples. Although the teacher can have a different number
of DoFs from that of the robot, in this study, the same number
of DoFs is assumed for simplicity. So, the human teacher is
administered to collect the data from arm joint space JSH (qh ∈

R
m) and the task-spaceTS (xh ∈ R

z) asmk
h
= {{qt,k

h
, xt,k

h
}}t=1,...,Tk ,

where qh is the angular position, and xh is the Cartesian position.
Tk is the number of time steps taken by the human arm to
reach the kth target. Mh = {{m

k
h
}}k=1,...,K , where K is the total

number of targets reached. Then, Mh can be transformed via a
separate mapping to the robot coordinates to be utilized in the
learning process.

Thus, to be able to learn the policy P mapping the robot
configuration to the motor actions, two modes of learning
have to be adopted: (i) learning via motor babbling from the
robot’s own actions Mr , and (ii) learning by imitating the
human teaching agent Mh (P :QR −→ UR). The former (i.e.,
first mode) allows building a generalization of the differential
motion achieved for specific motor commands for different
configurations P :QR −→ UR (where qr ∈ QR and ur ∈ UR).

While the latter (i.e., second mode) allows refining these motions
for specific desired movement paths by transforming Mh to the
robot’s joint-space 4 :QH −→ QR (where qh ∈ QH). The two
learning modes are detailed in the following subsection.

2.2. Learning via Motor Babbling
To functionally emulate the motor cortex, a spiking neural
network is built to transform the intended motion from task-
space to motor commands. This motor cortex-like map (MCM)
consists of one-dimensional arrays of neurons forming input and
output layers, with each array encoding either a sensory input
value or motor command output as shown in Figure 2. Input
and output layers are connected through all-to-all (A2A) plastic
connections obeying the symmetric spike-timing-dependent
plasticity (STDP) rule (Woodin et al., 2003), shown in Figure 3A,
formulated as:

1ǫij =W

(

1−

(

1t

τa

)2
)

exp

(

|1t|

τb

)

(1)

where1ǫij is the change in the strength of synaptic connection ǫij
connecting the pre-synaptic neuron i to the post-synaptic neuron
j. W defines the magnitude of the change, the ratio between τa
and τb defines the window through which change (either increase
or decrease) occurs, and 1t is the difference between the timing
of spikes at postsynaptic and presynaptic neurons. This rule is
chosen as the order of spikes coming from pre and post-synaptic
neurons is not relevant compared to the difference in timing of
these spikes which is crucial for learning in this case. In the output
layer, lateral synaptic connections allow neurons with the highest
activity to suppress distant neurons for better estimations.

The neurons are modeled as Izhikevich neurons,
compromising the computational cost needed and biological
plausibility, demonstrated by the ability to reproduce firing
patterns of neurons in various brain regions (Izhikevich, 2004).
Hence, the adjustment of the parameters in the model allows for
better control of the firing dynamics compared to other models.
The Izhikevich neuron model is formulated as:

v̇ = f (v, u) = 0.04v2 + 5v+ 140− u+ I (2)

u̇ = g(v, u) = a(bv− u) (3)

After a spike occurs, the membrane potential is reset as:

if v ≥ 30 mV, then v← c, u← (u+ d) (4)

where v is the membrane potential and u is the membrane
recovery variable. Parameter a determines the time constant for
recovery, b determines the sensitivity to fluctuations below the
threshold value, c gives the value of the membrane potential after
a spike is triggered, and d gives the value of the recovery variable
after a spike is triggered. The term I represents the summation of
the external currents introduced.

For the proposed network to execute the desired
transformations, the information needs to be input/encoded into
the network and extracted/decoded in a proper way. To be able
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FIGURE 1 | The robotic manipulator and human arm sharing the same end effector position and jointly moving during motor babbling to provide a proper training data.

to convert the signals from and to the network properly, the
encoders (converting signals to spikes) and decoders (converting
spikes to signals) are used. The input to the sensory layer (during
the training and control phases) and motor layers (during the
training phase only) are calculated for each neuron based on its
preferred (central) value ψ i

c at which the activity of the neuron is
maximum. Thus, the tuning curve for the encoders is chosen to
be the Gaussian distribution. The input current to a neuron i for
a certain input can be formulated as:

κi = A exp

(

−‖ψ − ψ i
c‖

2

2σ 2

)

(5)

where ψ is the input value, A is the amplitude of the input
current, and σ is calculated based on the number of neurons per
layer Nl, and the range of change of the variable to be encoded
from9min to9max. Hence, it can be formulated as:

σ =
9max −9min

Nl
(6)

This leads to the contribution of the whole layer to encode a
particular value (a process that can be interpreted as “population

coding” Amari et al., 2003). For input neurons, κi is the only
external current source, while for output neurons, the current
is injected from both the input layer and the interinhibitory
connections in the output layer. The value of A is chosen based
on the neuron parameters and different values of activation
are assigned for the sensory and motor layers as As and Am,
respectively. The choice of As and Am along with the neuron
parameters allows to have a controlled firing activity and, hence,
a controlled learning process. The developed network acts as
a differential map to relate the robot’s current configuration qr
and intended spatial velocity v with the corresponding motor
command ur such that:

ur = g(qr , v) (7)

NeMo library allows simulating the SNN using a GeForce GTX
1080Ti GPU card with almost realtime performance (Fidjeland
et al., 2009; Gamez et al., 2012). The synaptic weights are updated
every algorithmic time step (one millisecond). Additionally,
spikes are saved for the defined time window, through which pre-
synaptic spikes are compared to a post-synaptic one to apply the
STDP rule accordingly.
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FIGURE 2 | Schematic diagrams for motor cortex-like map (MCM).

FIGURE 3 | (A) The symmetric spike-timing-dependent plasticity (STDP) learning rule at various values for τa and τb. (B) A plot of change in synaptic weight vs.

training iterations.

2.3. A Numerical Simulation: Proof of
Concept
To verify the proposed methodology before proceeding to

solve the correspondence issue and real robot experiments, a

simulation is designed to carry out the verification. A numerical

simulation for the reaching task using a 3 link robot is set to
compare the results for training using random motor babbling

vs. straight path object reaching. First, the well-known forward
kinematics for the robot is derived to describe the relationship
between joint angles and the end effector position. Let8 describe
the orientation of the end effector, l1, l2, and l3 define the length
of the 3 links starting from the base, 2 = [θ1, θ2, θ3] define the
joints’ angles as shown in Figure 4. cθi and sθi refer to cosine and
sine of θi, respectively, while cθij refers to cosine of θi + θj, and
so on. The Jacobian matrix J(2) can then be derived to describe
the differential relationship between the robot’s joint space and

task space:





ẋ
ẏ

8̇



 = J(2)





θ̇1
θ̇2
θ̇3



 (8)

By partial differentiation of the differential forward kinematics
(DFK) equations, J(2) can be obtained:

J(2) =





−l1sθ1 − l2sθ12 − l3sθ123 −l2sθ12 − l3sθ123 −l3sθ123
l1cθ1 + l2cθ12 + l3cθ123 l2cθ12 + l3cθ123 l3cθ123

1 1 1





(9)
To collect motor babbling data, the robot moves linearly in the
joint space by generating target joint angles2∗ within the studied
space, and commanding the robot to move to these joint angles.
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FIGURE 4 | (A) A three link planar arm employed for numerical simulation. The robot deviates from a target path φ while moving from the current pose to the target

pose to move through ρ instead. (B) The data collection schemes are illustrated. Motor babbling (in the upper panel) commands linear motion in joint space under the

guidance of a differential forward kinematic DFK solver. Target path follower (in the lower panel) under the guidance of a differential inverse kinematic DIK solver.

The joint velocities 2̇ are set based on the formula:

2̇ = Cθ
eθ

‖eθ‖
(10)

where Cθ is a scaling gain and eθ is the error/difference between
the current joint position2 and2∗.

Then, based on Equation (8), a differential inverse kinematic
solver (DIK) can be built to guide the robot’s motion based on the
inverse Jacobian matrix J#(2).

This allows moving the simulated robot in straight and curved
paths by solving for the desired motor commands 2̇ to move
in a desired direction inside the defined workspace. This allows
bypassing the correspondence problem and directly verify the
efficacy of the main concepts upon which this work is built.
Hence, both the collected datasets are used to train the MCM
network to demonstrate the improvement achieved in this case,
as discussed in the following section.

2.4. Learning by Imitating
To be able to imitate the human teaching agent, it is essential
to solving the correspondence issue by transforming the data
collected from the agent to the corresponding robot state. Thus,
in the studied case, correlation of the joint spaces of both
the robot and the teacher at the same position in the task
space is carried out. Firstly, a representation of each of the
correlated joint spaces is built using a self-organizing map (SOM)
to allow for dimensionality reduction as shown in Figure 5.

SOM is built upon the rules of competition, cooperation,
and adaptation.

Competition: With each node/neuron k associated with a
position/weight vector ωk, the nodes/neurons compete among
each other by comparing the weights to that of an introduced data
sample q. The winning node, known as BestMatching Unit BMU,
is chosen to be with the least Euclidean distance between ωk and
q, such that i = argmink ‖ωk − q‖, where i denotes the index
of the BMU. Adaptation: The weights vector of the BMU ωi is
then updated to give a better representation of the input vector q.
Cooperation:While the nodes compete to be chosen to represent
an input vector, the nodes within the neighborhood of the BMU
are updated as well in the adaptation phase, formulated as:

ωj(t + 1) = ωj(t)+ λ(t)ηji(t)(q− ωj(t)) (11)

λji(t) = exp

(

−‖pj − pi‖
2

2̺2(t)

)

(12)

where pj and pi are the positions of the ith and jth nodes within
the SOM lattice, λ is the learning rate, ηji is the neighborhood
function, and ̺ is the neighborhood radius. Values of the learning
rate and neighborhood radius are defined initially at ̺0 and η0,
respectively. As the training proceeds forTd, the learning rate and
neighborhood radius decay such that:

̺(t) = ̺0 exp

(

−t

Td

)

, η(t) = η0 exp

(

−t

Td

)

(13)
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FIGURE 5 | Schematic diagrams for SOMs connected through Oja-Hebbian plastic synapses. This architecture allows correlating the joint spaces of the human arm

and robot arm. During the training phase, BMUs (in AJ-SOM and RJ-SOM) from both maps that fire together are more likely to have an increase in strength of the

connecting synapses. Consequently, during the control phase, if the same BMU in AJ-SOM becomes active, the corresponding node in RJ-SOM becomes active as

well.

However, one drawback of the basic SOM mentioned in the
literature is the tendency to have higher approximation errors at
the map boundaries (Kohonen, 2013). A model of the SOM with
a varying density of nodes across the map is chosen for this study
(Zahra and Navarro-Alarcon, 2019). As the output of the SOM
depends on the activity of the neighborhood nodes, this model
allows preserving the quality of the mapping by attracting more
nodes closer to the map borders to ensure the presence of enough
nodes in the neighborhood for accurate estimations. Thus, the
neighborhood function differs from that of the standard SOM. A
coefficient is defined for node density ϕ computed as:

ϕ = exp



−
∑

j∈5

‖wi − wj‖
2



 (14)

where 5 is the local neighborhood around the node. ϕ allows to
quantitatively find the nodes with less number of nodes in the
neighborhood, and hence, more nodes shall be attracted to their
proximity. Thus, the neighborhood function can be redefined to

allow varying the density across the map based on ϕ:

η(t) =

(

t

ϕTd

)4

exp

(

−t

̺2(t)Td

)

(15)

In our varying density SOM, the nodes within the neighborhood
cooperate to give better estimations of the output. Thus, the
cooperation extends as well after the training phase thanks to
the varying density structure. AJ-SOM and RJ-SOM provide a
representation for human arm joint-space JSH and robot arm
joint-space JSR, respectively. Each SOM is fed with data collected
while holding a correspondence between JSH and JSR, where
the training examples are collected while moving in the shared
workspace as shown in Figure 1. The SOMs are trained for
several iterations until reaching the target accuracy of encoding
for both spaces. Then, the SOMs are connected through Oja-
Hebbian synapses and modulated by introducing corresponding
samples to both SOMs. The activity αj of a node j for an input
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FIGURE 6 | A schematic diagram of the correspondence of the human and robot joint spaces along with the task space TS. The data collected from the human and

robot together allows building correlation (i.e., f (qh) between JSH and JSR ). This allows generating more examples to train the map g(qr , v) correlating TS to JSR by

transforming examples conducted by the human arm (in TS) into JSR.

vector q is then decided based on the following equation:

αj(t) = exp

(

−‖wj(t)− q‖2

̺2(t)

)

(16)

The synaptic strength is then updated based on the activity of
both pre-synaptic i and post-synaptic j neurons:

�ij(t + 1) = �ij(t)+ ζ (αiαj − β�ij(t)α
2
j ) (17)

β(t) = β0 exp

(

Td − t

Td

)

, ζ (t) = ζ0 exp

(

Td − t

Td

)

(18)

where �ij denotes the strength of the synaptic connection from
node i to node j. The terms β and ζ are defined to adjust the
learning process by adjusting the β0 and ζ0 coefficients.

This allows for building a static mapping between JSH and JSR
such that:

qr = f (qh) (19)

where f is the map formed by the described network which allows
approximating the value of qr corresponding to a certain qh value
to give the same end effector position x for both the human
and robot agents as shown in Figure 6. Thus, the differential
mapping occurs first relying on self-generated motor babbling
data, followed by learning through mirrored data relying on the
static map f built earlier, as shown in Figure 7. The working
space and joint space are chosen to minimize the occurrence of
redundant states.
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FIGURE 7 | A schematic diagram of the full system including both the static (SOMs network) and differential(MCM network) maps formed. Blocks with an inclined

arrow passing through are the ones where learning/adaptation occurs during each phase.

The formed map allows the transformation of the reaching
movements demonstrated by the human agent from JSH to JSR.
The angular positions of both agents, the end effector position
along the timestamp are recorded while babbling at a frequency
of 100 Hz, which is then downsampled to 30 Hz to allow for a
significant change between the recorded subsequent points.

2.5. Optimizing the Hyperparameters
In this study, the hyperparameters (Ŵ) of MCM are optimized
using Bayesian optimization with the regression model as an
adaptive form of tree Parzen estimator (ATPE) (Arsenault, 2018)
and the acquisition function as expected improvement (EI). The
optimal values for the hyperparameters (γ ∗) are sought through
minimizing an objective function l(Ŵ), given by:

γ ∗ = argmin
γ∈Ŵ

l(γ ) (20)

A probabilistic regression model gives an approximation of
the objective function, defined as A = P(S|Ŵ) to map Ŵ

hyperparameters to the likelihood of a score S for the chosen
objective function l.

The Parzen estimator PE is a kernel-density estimator that
relies on a group of continuous distributions/kernels to model
some function. TPE is formulated as:

P(Ŵ) =
1

Nkξ

Nk
∑

j= 1

K

(

Ŵ − Ŵj

ξ

)

(21)

where Nk defines the number of the approximation kernels used,
ξ is the kernel’s bandwidth, and K is defined as a Gaussian kernel.
U and D are modeled to promote hyperparameters with a higher
likelihood to return lower values for the objective functions for
the following observations.

The EI (Bergstra et al., 2011) can be formulated as:

EIS∗i (Ŵi) =

∫

S
∗
i

−∞
(S∗i − Si)P(Si|Ŵi) dSi (22)

TABLE 1 | Simulation results.

Maximum deviation

Mean (mm) Successful trials (out of 10)

linear w/o KL 53.7 6

linear with KL 30.1 10

curved w/o KL 40.6 8

curved with KL 15.5 10

The Bayes rule is applied to replace the posterior P(S|Ŵ) by
P(Ŵ|S) instead for TPE before substituting in Equation (22)
(Bergstra et al., 2011) to formulate EI as:

EIS∗i (Ŵi) =
µS∗i D(Ŵi)−D(Ŵi)

∫ S
∗
i
−∞ P(Si) dSi

µD(Ŵi)+ (1− µ)U(Ŵi)
(23)

EIS∗i (Ŵi) ∝ (µ+
U(Ŵi)

D(Ŵi)
(1− µ))−1 (24)

Hence, it can be concluded that EI maximizes the ratio
D(Ŵi)/U(Ŵi) to provide better candidates for the search
process while maintaining a balance between exploitation and
exploration. The reference value of S∗i is decided by the value set
for the ratio P(Si < S

∗
i ) = µ.

The time complexity for TPE is less than other BO methods
(such as Gaussian Process). However, interaction among the
hyperparameters is not modeled in TPE. This drawback is
addressed in ATPE by concluding from Spearman correlation
(Zar, 2005) of the studied hyperparameters the best parameters
to tune to explore the search space efficiently. ATPE suggests
empirical formulas, taking into account the search spaces’
cardinality, to give optimal values of µ and the number of
candidates needed by the acquisition function to generate a
candidate optimal solution (Bergstra et al., 2011).

For the optimization process, the objective function is set to
minimize the difference between the target v and the actual ṽ
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FIGURE 8 | (A) The human arm while moving in straight paths and (B) the plot of the Cartesian position of the hand-held object while moving.

spatial velocity such that:

l(γ ) =

∣

∣

∣

∣

∣

arccos

(

Ẽv · Ev

‖Ẽv‖‖Ev‖

)∣

∣

∣

∣

∣

(25)

where minimizing the value returned by the objective l(γ )
ensures minimizing the error in estimations and hence reducing
the deviation from the reference path while reaching a target.
The search space for the optimization includes 15 parameters
for both the neuronal units and synaptic connections. For the
chosen Izhikevich neuron model, 4 parameters (a, b, c, and d)
are defined for units in each layer and the parameters As and
Am define the amplitude of the input current to the sensory
neurons andmotor neurons, respectively. The other 5 parameters
define the synaptic properties for the chosen spike timing-
dependent plasticity (STDP) learning rule including the learning
rate W, maximum CE, and minimum CI synaptic weights, τa
and τb.

To train the SNN, examples from both the saved direct
motor babbling trails and imitatory transformed trails are
introduced. The motor babbling trails allow the SNN to
develop the initial mapping for direct transformations, while
the imitatory trails provide a complementary dataset of
transformed demonstrations. Hence, the intended motion paths

TABLE 2 | Adaptive form of tree Parzen estimator (ATPE) tuning network

parameters.

Neuron parameters

a b c d As Am N

lθ̇i 0.07 -0.12 -68 6.8 5 0 20

lθi 0.22 0.15 -55 7.5 56 72 20

lvj 0.22 0.15 -55 7.5 56 72 20

Synaptic connections

W τa τb CI CE Itr*

A2A 0.03 18 12 −4 4 4000

are demonstrated through the human teaching agent to aid in
refining the formed map.

3. RESULTS

3.1. Numerical Simulation Results
To test and quantify the improvement achieved by
complementing the datasets with direct examples to reproduce
these examples, the simulation, described in subsection 2.3, is
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FIGURE 9 | Heatmaps of the standard Kohonen SOM depicting the relation between each input from the joint spaces of (A) the human arm and (B) robot agents.

employed to test moving in curved and straight target paths.
With the length of the three links set as 30, 30, and 20 cm from
base to end effector, the range of joint angles are set for the base,
shoulder, and wrist joints as [0◦, 30◦], [20◦, 50◦], and [−10◦, 30◦],
respectively. To assess the quality of the robot motion, the
maximum deviation of the end effector from the intended path
and the ability to reach the target is the chosen metrics. The
intended path, denoted as φ, is divided into equidistant 1,000
points and the actual path, denoted as ρ, is divided similarly
into 1,000 points. To check the deviation of each point ρi from
the target path, the Euclidean distance to each point φj shall be
calculated and compared to define the deviation δi as the least
distance measured at the point ρi, such that:

δi = min
j
‖ρi − φj‖

2 (26)

Thus, the maximum deviation δmax for the whole path ρ is the
maximum distance measured for all of its points, hence:

δmax = max
i
(δi) (27)

Moreover, the servoing process is considered successful if the
arm reaches within a threshold of 1 mm away from the target.

The data for moving in a straight line is generated by assigning a
target to the robot and, consequently, a vector is concluded from
the current position to the target position. By substituting for
the current joint angles in J#(2), the joint velocities necessary
to move in a straight line are calculated. The data for moving
in curved paths are generated by assigning random joint angles
and moving linearly in the defined joint space. This is equivalent
to kinesthetic learning (KL) by guiding the robot movement
manually. The results obtained can be summarized in Table 1 for
both φ defined as linear or curved target paths. This concludes
the feasibility and amount of improvement expected upon
introducing appropriate training data to theMCM network. The
change in weight of all excitatory synapses ǭ is plotted against the
training iterations in Figure 3B to show the learning progress.
Among these connections, only 12.5% of the synaptic weights
undergo change with an SD equal to 1.35 at the end of the training
phase. In future studies, pruning of the inactive synapses would
be included to reduce the computational cost without affecting
the network’s current learning capabilities.

3.2. Robot Setup
The human and robot agents are arranged in an adequate setup,
as illustrated in Figure 1, to share the same end effector position
and move jointly in the defined workspace while the robot
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FIGURE 10 | Heatmaps of the varying density SOM depicting the relation between each input from the joint spaces of (A) the human arm and (B) robot agents.

TABLE 3 | Reaching results.

Maximum deviation

Mean (mm) SD (mm)

30% 32.7 13.8

50% 28.1 10.9

70% 37.3 15.2

executes the random motor babbling. The motion, in this case,
is planar utilizing 3 degrees of freedom (DOF) for the agents. By
visual inspection, the human agent stops the motion of the robot
when the end effector moves out of the defined workspace or
forces a configuration that can not be maintained by the human
agent. The human arm is tracked using five aruco markers to be
able to extract the angular position of each of the shoulder, elbow,
and wrist joints. The posture of the human agent is maintained
while collecting the data to fix a reference pose for the base
coordinates of the agent.

Two aruco markers are fixed on the arm, two markers fixed
on the forearm, and one fixed on the wrist, as shown in Figure 8.
Four vectors are defined to calculate the angular position qh; EBS
extends from the base coordinates and normal to the body, ESE
extends from the first marker to the second one (i.e., along the
arm from the shoulder to the elbow), EEW extends from the third
marker to the fourth (i.e., along the forearm from the elbow to
the wrist), and EEN extends from the wrist to the end effector. The
angular position qh = [θhs , θ

h
e , θ

h
w] can then be calculated as:

θhs = arccos

(

EBS ·
ESE

‖ EBS‖‖ ESE‖

)

(28)

θhe = arccos

(

ESE ·
EEW

‖ ESE‖‖ EEW‖

)

(29)

θhw = arccos

(

EEW ·
EEN

‖ EEW‖‖ EEN‖

)

(30)

The joint encoders provide the angular position of the robotic
joints qr = [θ rs , θ

r
e , θ

r
w]. The data collected from human and robot
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FIGURE 11 | (A) The robot arm while moving after training by the transformed data and (B) the plot of the Cartesian position of the end effector while moving.

joint spaces are used to train the AJ and RJ SOMs and train the
synaptic linkage between them. This linkage allows solving the
correspondence issue to provide the complimentary examples by
transforming the motion executed by the teacher into the robot’s
joint space representation to refine the training process in the
MCM network. After the training process ends, the end effectors
of the teacher and the robot are detached to test the performance
of the robot in executing the servoing task as demonstrated. The
performance metrics are introduced in the next subsections.

3.3. Sub-networks Performance
MCM: The value of the objective function l(γ ) successfully
converges to a value of 0.58 rad after around 170 iterations to
obtain the values for the network parameters in Table 2. This
allows to lower the mean value of the maximum deviation error
from around 62 mm, following the tuning method introduced
in Zahra et al. (2021c) to 46 mm in the studied workspace and
reduction of the number of neurons per neuron assembly from

136 to 20 neurons. It can be noticed in Figure 12 that spikes occur
in the fitness values, which indicates the balance held between
exploration and exploitation while searching for the optimal
values.

SOM: The mapping of the joint-spaces is studied first using
the basic SOM developed by Kohonen, as shown in Figure 9, to
provide a reference value for the improvement in the accuracy
of the provided estimations for using the varying density SOM
instead, as shown in Figure 10. A smooth gradient can be
observed across the heatmaps in Figure 10 compared to Figure 9,
which indicates a more uniform and even mapping in the case
of the varying density SOM. The mean error in estimation is
concluded to be approximately 0.25 and 0.16 rad in the case of
the SOM compared to 0.17 and 0.11 rad in the case of varying
density SOM for the human and robot agents, respectively. This
allows for better estimation of the angular positions and, hence,
angular velocities which improve the quality of the training data
fed to the MCM.
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FIGURE 12 | Values of the fitness function vs. the number of optimization iterations.

3.4. Target Reaching
With the task to reach targets through a straight line as the
shortest path, the end effector moves from the current position to
a target position, as shown in Figure 11. First, the data collected
from motor babbling is assessed in terms of the mean and SD
of the maximum deviation from a straight line. The obtained
values for the robot reaching [i.e., reproducing results fromZahra
et al. (2021c)] are 4.2 and 2.3 cm for the mean and SD values,
respectively, are bigger than those achieved by the human agent
while recording the straight line reaching demonstrations with
a mean and SD values of 2.1 and 1.3 cm, respectively. The
teaching imitation data is then generated by introducing these
examples to the AJ-SOM and recording the output from RJ-SOM.
The mean and SD calculated for these examples to be equal
to 3.4 and 1.9 cm, respectively, which proves the efficiency of
the proposed network and the feasibility of improvement by the
generated data.

Different percentages of contribution from the two sets of
examples are employed to quantify the enhancement in the

reaching movements in each case. Percentages of 30, 50, and 70
are applied with the quality of reaching movements recorded in
each case and the results are obtained as shown in Table 3.

4. DISCUSSION AND CONCLUSION

In this study, the representation capabilities of the SOM and
MCM are matched together to allow the robot to reduce the
error while reaching targets. The static mapping of spaces by the
SOM and the Oja-Hebbian synapses allow transforming human
demonstrations into teaching examples in the robot’s joint space.
The MCM is trained by examples provided by motor babbling as
well as demonstration examples to give the desired results.

Using the varying density SOM reduces the error in static
transformation compared to the basic SOM. Additionally,
optimizing the parameters, as shown in Figure 12 and
Table 2, of the MCM facilitates decreasing the error in
the mapping and reducing the number of neurons in the
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network compared to relevant previous studies (Zahra et al.,
2021c). The proposed method successfully decreases the
deviation of the manipulator from the target path: first by
applying Bayesian optimization introducing an improvement
of around 25% and the post-optimization deviation is
further reduced by 33% through imitation learning. It can
be concluded as well that maintaining a good balance of
self-generated data and “others” demonstration data helps
obtain better results as shown in Table 3. Compared to
Tieck et al. (2017) which utilizes an SNN to imitate grasping
actions, the proposed system incorporates a solution for
the correspondence issue and attains less error for a wider
set of examples.

The proposed system does not take into account handling
redundant solutions which shall be considered in future studies.
Additionally, the equations ruling the amount and ratio of data
from each of these categories shall be further investigated. A
spiking model of the SOM shall be employed with a proper
optimization technique as well, which would allow utilizing
the incorporated temporal domain for faster learning, more
biological plausibility, and energy efficient emulation while
running in neuromorphic hardware (Evans and Stringer, 2012;
Rumbell et al., 2013; Hazan et al., 2018; Khacef et al., 2020).
Moreover, combining the cerebellar model with the developed
network shall improve the performance and provide a good basis

for a highly adaptive neural controller (Tolu et al., 2020; Zahra
et al., 2021a,b).
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