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In this article, an impedance control-based framework for human-robot composite layup

skill transfer was developed, and the human-in-the-loop mechanism was investigated to

achieve human-robot skill transfer. Although there are some works on human-robot skill

transfer, it is still difficult to transfer the manipulation skill to robots through teleoperation

efficiently and intuitively. In this article, we developed an impedance-based control

architecture of telemanipulation in task space for the human-robot skill transfer through

teleoperation. This framework not only achieves human-robot skill transfer but also

provides a solution to human-robot collaboration through teleoperation. The variable

impedance control system enables the compliant interaction between the robot and the

environment, smooth transition between different stages. Dynamic movement primitives

based learning from demonstration (LfD) is employed to model the human manipulation

skills, and the learned skill can be generalized to different tasks and environments,

such as the different shapes of components and different orientations of components.

The performance of the proposed approach is evaluated on a 7 DoF Franka Panda

through the robot-assisted composite layup on different shapes and orientations of

the components.

Keywords: semi-autonomous composite layup, human-in-the-loop, dynamic movement primitives, learning from

demonstration, teleoperation

1. INTRODUCTION

Currently, robots have been widely used in various fields, such as an industrial plant (Björnsson
et al., 2018; Lamon et al., 2019; Rodrıguez et al., 2019; Raessa et al., 2020), medical healthcare
(Tavakoli et al., 2020; Yang et al., 2020), rehabilitation exoskeleton (Li et al., 2019, 2020), space
exploration (Papadopoulos et al., 2021) and it has great advantages on the repetitive accuracy
and reducing the cost. Nowadays, robots are expected to perform more challenging tasks, such
as medical scanning, and composite layup as shown in Figure 1. These tasks often feature contact-
rich manipulation and significant uncertainty of the different tasks, such as variance among the
products in flexible manufacturing. Although our humans do not understand the principle behind
manipulation, humans have the amazing capability to deal with the uncertainty and complexity
in these tasks (Zeng et al., 2021). Therefore, roboticists proposed to make the robot learn the
manipulation skills from humans. One of the main problems is how to learn complex and
human-like manipulation skills. This study aims to develop a human-robot skill transfer system
based on teleoperation and propose an approach to transfer human skills to robots. Figure 1
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FIGURE 1 | (A) shows a robot-assisted composite layup, and an in-site assisted person can collaborate with the robot and a demonstration expert in (B). A camera

in (A) provides visual feedback for the human operator sitting in (B), who can teleoperate the robot manipulator to execute composite layup based on the visual

feedback. (B) presents the teleoperation scenario, in which the human operator commands the robot based on the visual feedback and the teleoperated device. The

two people can collaborate to perform the composite layup and transfer the composite layup skills to the robot manipulator.

illustrates the composite layup process through teleoperation
and human-robot collaboration. It is challenging to transfer the
manipulation skill to robots through teleoperation efficiently and
intuitively (Si et al., 2021c).

Collaborative robots have been increasingly important in
manufacturing, such as the human-robot interaction and
collaboration. Especially for the flexible manufacturing, small-
batch and variance among the components put forward new
requirements for traditional industrial robots in the smart
factory. The main challenge is the flexibility of the manufacturing
system, which allows the system to react to the changes of
the new products. The human-robot skill transfer has proved
a potential solution for flexible manufacturing systems (Ochoa
and Cortesao, 2021; Yang et al., 2021b). To realize lightweight
structures with high performance, composites have been widely
used in several industries, such as aerospace, automotive,
and construction etc. Carbon fiber is the main raw material
of composite material production. Currently, for low-volume
production and complex parts, a hand layup is still the main
method, which laminates plies of carbon fiber prepreg (Malhan
et al., 2021). The hand layup process is ergonomically challenging
and skill-intensive. Human operators must apply various levels
of pressure to the plies. In addition, sometimes several people
need to collaborate to conform larger plies to complex contours.
However, the hand layup process is labor-intensive and can
exhibit inconsistency due to variability in human operation. Sheet

layup automation can reduce ergonomic challenges, increase the
production efficiency, and ensure processing quality (Malhan
et al., 2020).

As machine learning techniques have been employed in
various areas, such as image recognition, distributed wireless
sensor networks (Lu et al., 2021b), and natural language
process, the data-driven methods have proved to have several
benefits, especially the generalization capability, for robot skill
learning. Nowadays, robot skill learning gained much attention,
and machine learning methods have been used in robot
learning. For example, reinforcement learning (RL), especially
the deep reinforcement learning (DRL) method, has shown
powerful generalization capability for complex manipulation
skills (Kroemer et al., 2021). Deep learning techniques can
investigate the powerful capability for the multimodal perceptual
information; hence, the DRL equipped the RL with an enhanced
representation capability for multimodal information, such as
vision and haptic information. However, the limitation of the
DRL is the low learning efficiency and relying on big data.
It is hard and expensive to acquire massive training data for
robot skill learning in practice. Researchers proposed to train the
manipulation skill on the simulator and then the transfer learning
technique was employed to deploy the learned skill in real robots.
However, the high-accuracy simulation environment for contact
manipulation tasks is hard to attain, since the friction, stiffness,
and damping of the contact process is hard to model. Learning

Frontiers in Neurorobotics | www.frontiersin.org 2 February 2022 | Volume 16 | Article 840240

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Si et al. Skill Learning and Generalizing Through Teleoperation

from demonstration (LfD) is a feasible solution for robot skill
learning and human-robot skill transfer (Wang et al., 2020).

Robot skill LfD can be categorized into two branches,
based on the dynamic system method and statistical methods
(Ravichandar et al., 2020). The dynamic system based methods,
such as dynamic movement primitives (DMPs) (Ijspeert et al.,
2013) and autonomous systems, can guarantee the converge
of the skills, which is significantly important for physically
human-robot interaction and critical safety tasks, such as medical
scanning. In order to enhance the encoding capability of the

dynamic system based model, it has been extended into non-
Euclid space, such as stiffness, quaternion based orientation skill,
and manipulability skills (Yang et al., 2018; Ravichandar et al.,
2020). The statistical methods, such as Gaussian mixture model
(GMM)/Gaussian mixture regression (GMR), hidden semi-
Markov models (HSMM), probabilistic movement primitives
(ProMP), could benefit the statistical property to make the best
use of the multiple demonstration data and model the multiple
modal information (Zeng et al., 2020). Currently, the combined
methods have been proposed tomake use of the advantages of the

FIGURE 2 | The diagram of the proposed framework for human-robot skill transfer through the human-in-the-loop. The human-in-the-loop module is the teleoperation

based subsystem, which could command the robot through the teleoperation interface, a 3D mouse, and receive visual and force feedback from the perception

subsystem. The impedance controller can generate joint torque command for the robot either through the teleoperation or autonomous mode (through skill library).

FIGURE 3 | The diagram of the impedance-based control system. The task interface module generates the desired position and orientation through teleoperation or

learned skill model. The impedance controller is used to track the desired position and orientation. The null-space controller is used to optimize the joint pose by using

redundancy to keep the joint angle close to the middle value.
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convergence guarantee of dynamic system based method and the
statistical property of the statistical methods.

The main contributions of this study can be summarized
as follows: 1) We developed a human-robot skill transfer
system consisting of a 3D mouse device as the teleoperation
interface, a 7 DoF Franka Emika robot manipulator, and
a Realsense camera for visual feedback. Additionally, the
composite layup task was used to evaluate the performance
of the system. 2) DMPs were used to model the primitive
motion skills as high-level “bricks” of the complex task. A
complex task is parameterized into several motion primitives

represented by the parameters of primitive motion skill;
hence, combining and re-organizing the motion primitives
can form a complex trajectory, which allows generalizing
the learned skill to novel tasks and environments. 3) The
human-robot skill transfer based on the proposed system
provides a solution for robot skill learning through
teleoperation or human-robot collaboration. The proposed
method is more suitable for human-robot skill transfer in
hazardous environments or situations that humans cannot
access, such as nuclear waste disposal, lockdown under
the pandemic.

FIGURE 4 | The experiment setup for the composite layup. In the leader site, the human operators teleoperate the robot to perform the composite layup.

FIGURE 5 | The GUI for the control system. The human operator could modify the parameters of the controller online to change the compliant behavior.
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The rest of this article is organized as follows. Section
II presents the most related previous studies on LfD
through teleoperation and motion primitive method.
Section III presents basic knowledge of the dynamics of

robot manipulators, null-space optimization, and the DMPs.
The methodology is detailed in Section IV, followed by the
experiments in Section V. Finally, Section VI concludes
this article.

FIGURE 6 | The three coordinate frames, the base frame of the robot, the end-effector frame, and the component frame.
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2. RELATED WORK

2.1. Teleoperation for Human-Robot Skill
Transfer
In terms of algorithms for LfD, there are generally two
types, offline and online learning. Learning from demonstration
through teleoperation could provide solutions to both types,
offline learning and online learning. In Peternel et al. (2016), the
authors proposed a human-in-the-loop paradigm to teleoperate
and demonstrate a complex task to a robot in real-time.
However, this work did not consider the compliant manipulation
skills. Online LfD has some advantages over offline learning
from demonstration. First, online LfD could form the skill
model gradually during the demonstrations. Second, the
transition between the teleoperatedmode, semi-autonomous and
autonomous mode is straightforward. Third, online learning
also could provide real-time feedback on the performance of
the model, which is like the iterative learning control. The
demonstrator could get real-time feedback on the performance
of the learned skills. In addition, the learned skill could
execute the task online and directly on the sensorimotor level.
Finally, because the skill is encoded in the end-effector, it is
straightforward to transfer among different robot platforms.

In Latifee et al. (2020), incremental learning from the
demonstration method was proposed based on the kinaesthetic
demonstration to update the current learned skill model. But
the kinaesthetic teaching method lacks immersive, especially
involved contact-rich task with tactile sensing. Also, it is hard
to demonstrate the impedance skill simultaneously. During the
human-in-the-loop demonstration, there is a requirement on
the mechanism of control allocation and adaptation between
the human demonstration and the autonomous execution by
the robot.

In Rigter et al. (2020), the authors integrated shared
autonomy, LfD, and RL, which reduced the human effort in
teleoperation and demonstration time. The controller can switch

between autonomous mode and teleoperation mode, enabling
controller learning online. The human-in-the-loop provides a
solution for imitation learning to exploit human intervention,
which can train the policy iteratively online (Mandlekar et al.,
2020). Shared control is an approach enabling robots and
human operators to collaboratively efficiently. In addition, shared
control integrated with LfD can further increase the autonomy of
the robotic system, which enables efficient task executions (Abi-
Farraj et al., 2017). Human-in-the-loop and learning from the
demonstration were used to transfer part assembly skills from
humans to robots (Peternel et al., 2015). An approach combining
operator’s input and learned model online was developed for
remotely operated vehicles (ROVs) to reduce human effort and
teleoperation time. In addition, intelligent control methods were
employed in the teleoperation to improve the trajectory tracking
accuracy, which can ensure the stability of the human-robot
skill transfer system (Yang et al., 2019, 2021a). A comprehensive
review on human-robot skill transfer can refer to Si et al. (2021c).

2.2. Motion Primitives
In the past years, many researchers from the motor control and
neurobiology field tried to answer how biological systems execute
complex motion in versatile and creative manners. The motion
primitives theory was proposed to answer this question, which
means our humans can generate a smooth and complex trajectory
out of multiple motion primitives. DMPs are an effective model
to encode the motion primitives for robots. Therefore, how to
generate a smooth and complex trajectory based on a library
of DMPs, has gained attention in the robot skill learning
communities, and several approaches have been developed to
merge the DMPs sequences. In Saveriano et al. (2019), the
authors proposed a method to merge motion primitives in
Cartesian space, including position and orientation parts. The
convergence of themerging strategy has proved theoretically, and
experimental evaluation was performed as well.

FIGURE 7 | Modeling the motion primitive by dynamic movement primitive (DMP).

Frontiers in Neurorobotics | www.frontiersin.org 6 February 2022 | Volume 16 | Article 840240

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Si et al. Skill Learning and Generalizing Through Teleoperation

Additionally, the motion primitives theory and knowledge-
based framework were integrated and employed in the surgery,
which can be generalized to different tasks and environments
(Ginesi et al., 2019, 2020). Furthermore, the sequence of DMPs
was employed to encode cooperative manipulation for mobile
dual-arm (Zhao et al., 2018). The authors proposed to build
a library of motion primitive through LfD, and the library,
including the translation and orientation, can be generalized to
different tasks and novel situations (Pastor et al., 2009; Manschitz
et al., 2014). Also, a novel movement primitive representation,

TABLE 1 | Parameters of Dynamic movement primitives (DMPs) and the controller.

Parameter Descriptions Value

N Number of Gaussian functions 100

αz Coefficient of DMP 80

βz Coefficient of DMP 20

τs Coefficient of DMP 1

Kpx ,Kpy Stiffness of position controller along X and Y axis 3,000

Kpz Stiffness of position controller along Z axis 6,000

Dpx ,Dpy Damping of position controller along X and Y axis 100

Dpz Damping of position controller along Z axis 150

named Mixture of attractors, was proposed to encode complex
object-relative movements (Manschitz et al., 2018). In our
previous study, we proposed a method to merge the motion
primitive based on the execution error and real-time feedback
to improve the generalization capability and robustness (Si et al.,
2021b).

3. PRELIMINARY

3.1. Robot Dynamics
The general form of dynamics of the n-DOF serial manipulator
robot can be modeled as Santos and Cortesão (2018),

D(q)q̈+ C(q, q̇)q̇+ G(q)+ τ ext = τc (1)

where the D(q) is the inertia matrix, the C(q, q̇), and G(q)
represent the Coriolis and centrifugal, respectively. q and q̇ are
the joint position and velocity in the joint space, respectively. τc
is the actuator torque and τ ext represents torque generated by the
end-effector interacting with environments.

τc = τ ext + C(q, q̇)q̇+ G(q)+ τcmp (2)

Based on Equations (1) and (2), the designed control variable can
be described as the following,

τcmp = D(q)q̈ (3)

FIGURE 8 | The trajectory of the roller in the autonomous mode.The green bar and the yellow bar represent the motion primitive. In this works, the motion primitive is

the same, but the start and end of each motion primitives are different.
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where τcmp represents a new control variable in the joint space. In
order to facilitate the following analysis, we design the controller
in Cartesian space; hence, Equation (3) is rewritten in Cartesian
space as the follows,

mp(q)ẍp −mp(q)J̇(q)q̇ = ftol (4)

mp(q) = (J(q)D−1(q)JT(q))−1 (5)

wheremp(q) represents the inertial matrix in Cartesian space, ftol
is the control force in Cartesian space, and J(q) is the Jacobian
matrix. The task space velocity can be described as,

ẋp = J(q)q̇ (6)

The ẋp is the velocity in Cartesian space. Additionally, the control
torque τcmp can be described as,

τcmp = JT(q)ftol (7)

3.2. Null-Space Optimization
For the redundant manipulator, the null space can be used
to execute second priority tasks, such as obstacle avoidance,
tracking orientation, and pose optimization. The property of the
null space has a lot of benefits, such as the control torque will not
influence the main task. In this study, we optimize the robot pose
to keep the joint close to the middle of the range of the joint. The
total torque employed in the joint can be described as,

τcmp = τm + τnull (8)

where τnull is the optimization torque in the null space, and τm is
the torque for the main task. The τnull can be represented as,

τnull = NT
pro(q)τn (9)

where τn represents the optimization torque, and NT
pro(q) is the

null space projector. Because the τnull is executed in the null-
space, the optimization task will not affect the main task. The null
space projector NT

pro(q) can be described as,

NT
pro(q) = [I − JT(q)J+(q)T] (10)

where I is a identity matrix, and the J+(q) is the inverse of J(q),
which can be described as,

J+(q) = D−1(q)JT(q)mp(q) (11)

where mp(q) represents the inertial matrix in Cartesian space,
J(q) is the Jacobian matrix. D(q) is the inertia matrix. The
optimization torque can be computed as,

τn = D(q)Ko
∂Q(q)

∂q
(12)

Ko is a gain matrix, which needs to be designed based on the
requirement on the pose optimization and main tasks. Q(q) is
the cost function, which tries to control the joint as close as the
middle of the joint angle range.

Q(q) = −
1

2

n
∑

i=1

(

qi − qid

qimax − qimin

)2

(13)

where qi is the current angle of the ith joint, qid is themiddle angle
of ith joint. qimax and qimin are the maximum and the minimum
angle of ith joint.

3.3. Dynamic Movement Primitives
Dynamicmovement primitives is an effective model for encoding
motion skills via a second-order dynamical system with a

FIGURE 9 | The tracking error along the X, Y, and Z-axis; and the orientation tracking in yaw, pitch, and roll.

Frontiers in Neurorobotics | www.frontiersin.org 8 February 2022 | Volume 16 | Article 840240

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Si et al. Skill Learning and Generalizing Through Teleoperation

nonlinear forcing term. The core idea of robots skills based on
DMPs is to model the forcing term in such a way, allowing to
generalize the learned skills to a new start and goal position while
maintaining the shape of the learned trajectory. DMPs can be
used tomodel both periodic and discretemotion skills. Currently,
most research on DMPs mainly focuses on the position and
orientation DMPs and their modifications (Lu et al., 2021a;
Si et al., 2021a), which can be used to represent arbitrary
movements for robots in Cartesian or joint space by adding a
nonlinear term to adjust the shape of trajectory. Also, the DMPs
can be used to model the force profiles (Zhang et al., 2021) and
stiffness profiles (Zeng et al., 2018). For one degree of multiple
dimensional dynamical systems, the transformation system of
position DMP can be modeled as follows (Ijspeert et al., 2013),

τsv̇ = αz(βz(pg − p)− v)+ Fp(x) (14)

τsṗ = v (15)

where the pg is the desired position, p is the current position;
v is the scaled velocity, τs is the temporal scaling parameter,
which can be used to modify the velocity. αz ,βz are the design
parameters, generally, αz = 4βz . Fp(x) is the nonlinear forcing
term responsible for tuning the shape of the trajectory. The Fp(x)
can be approximated by a set of radial basic functions,

Fp(x) =

∑N
i=1 ψi(x)wi

∑N
i=1 ψi(x)

x(pg − p0) (16)

ψi(x) = exp(−hi(x− ci)
2) (17)

where ψi(x) is a Gaussian radial basis function with the center ci
and width hi; p0 is the initial position, wi is the weight LfD. The
phase variable x is determined by the canonical system, which can
be represented as follows,

τsẋ = −αxx, x ∈ [0, 1] ; x(0) = 1 (18)

FIGURE 10 | The autonomous trajectory of end-effector in the base frame of robot for novel and small plane.
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where αx is a positive gain coefficient, τs is the temporal scaling
parameter, and the x0 = 1 is the initial value of x, which
can converge to zero exponentially. For the multiple Degree of
Freedom (DoF) dynamic system, each dimension can bemodeled
by a transformation system, but they share a common canonical
system to synchronize them.

4. METHODOLOGY

4.1. Task-Space Formulation
As shown in Figure 2, the proposed framework includes
teleoperation, perception, skill modeling and robot control.
This section derives the controller in Cartesian space, and the
whole control structure can be found in Figure 3. It will be
convenient to design the controller in the task space because
the teleoperation control would be intuitive and straightforward
in the task space. For the human-robot collaboration task, the
safety of the human is significant; hence, compliant control has
been employed for the collaborative robots. In 1985, impedance
control was first proposed by Hogan (1985), and since then,
a lot of exciting work has been done. A number of work on
the impedance control was done for the manipulator control.
Additionally, in order to achieve human-like manipulation,
the variable impedance control was employed in the human-
robot interaction. The core idea of impedance control models
the dynamic behavior of robots under disturbance from the
environment. In Ochoa and Cortesao (2021), the authors
proposed a similar impedance controller for the polishing task.
The impedance controller can be described as the following,

fimp = Aẍp + D(ẋp − ẋd)+ K(xp − xd) (19)

where A is the mass matrix, D is the damping matrix, and
K is the stiffness matrix. xd represents the equilibrium point
and xp is the current position of the robot end-effector. fimp

is the interaction force between the robot end-effector and the
environment. For the dynamic equation of manipulator in the
task space, Equation (4), the total force ftol, exerting on the robot,
can be calculated as follows:

ftol = fc + fimp (20)

We define a new control variable f ∗
tol
, and the fc is represented

as follows,

fc = −mp(q)J̇(q)q̇+ f ∗tol (21)

The Equation (4) can be represented as follows,

mp(q)ẍp = f ∗tol + fimp (22)

Therefore, the control law of f ∗
tol

is,

f ∗tol = mp(q)ẍp − [Aẍp + D(ẋp − ẋd)+ K(xp − xd)] (23)

In this article, the mass matrix is approximated by Ochoa and
Cortesao (2021),

A = mp(q) = (J(q)D−1(q)JT(q))−1 (24)

So, the control law becomes,

f ∗tol = D(ẋd − ẋp)+ K(xd − xp) (25)

The joint torque for the main task can be given by,

τm = JT(q)ftol = JT(−mp(q)J̇(q)q̇+ f ∗tol) (26)

Because the J̇(q) has a small influence on the system, the
−mp(q)J̇(q)q̇ can be ignored. Therefore, the control law for the
main task in the Cartesian space can be written as follows,

τm = JT f ∗tol (27)

FIGURE 11 | The tracking error along the X, Y, and Z-axis (B); and the orientation tracking in yaw, pitch, and roll for the small plane (A).
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where f ∗
tol

can be rewritten as,

f ∗tol =

[

f
u

]

(28)

where f is the force vector for translation control in Cartesian
space, and u is the torque vector for orientation control. The
translation controller in discrete form can be described as
the following,

f = −Dpṗc+Kp(pd[t]−pc[t])+Ip(ip[t−1]+(pd[t]−pc[t])) (29)

where Dp is the damping matrix, Kp is the stiffness matrix, and
Ip is the integral matrix. ip[t − 1] is the integral error in the
position at time [t−1]. pd[t] and pc[t] are the desired position and
current position at time t, respectively. Similarly, the orientation
controller in discrete form can be represented as,

u = −Dowc + Ko1ocd + Ioio (30)

where Do is the damping matrix, Ko is the stiffness matrix, and
Io is the integral matrix. wc is the angular velocity, 1ocd is
the orientation error, and io is the integral error in orientation.
Finally, based on Equations (2), (8), and (27), the total torque
command can be described as the following,

τc = JT f ∗tol + τ
ext + NT

pro(q)τnull + C(q, q̇)q̇+ G(q) (31)

4.2. Task Interface Design
The desired trajectory, including the translation and orientation,
is generated from the input device based on displacement
commands in the teleoperation mode. The human operator is
provided with a GUI interface and a 3D mouse to monitor and
control the system. The 3D mouse has two buttons and a six-
DoF motion sensor. The two buttons are used to switch control
modes, such as teleoperation, autonomous, and collaboration.
The six-DoF motion axis of the 3D mouse is employed to

FIGURE 12 | The trajectory of end-effector in the base frame of robot in autonomous mode for the slope plane.
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generate the reference trajectory for the impedance controller in
Cartesian space.

1Z =
[

1P 1R
]T

(32)

where 1P and 1R represent the translational and rotational
displacements, respectively. 1Z is then converted to the desired
motion in the robot’s base frame.

In the autonomous mode, the desired trajectory in the
robot’s base frame, including the translation and orientation, is
generated based on the learned DMPs.

Zd =
[

Pd Rd
]T

(33)

where Pd and Rd represent the desired trajectory in translational
and rotational directions, respectively. Zd is then converted to the
desired motion in the robot’s base frame.

5. EXPERIMENT STUDY CASE

This section aims at evaluating the proposed solution, human-
robot skill transfer through teleoperation, by performing
composite layup for different components.

5.1. Experiment Setup
A collaborative robot, Franka Emika Panda, was used to conduct
experiments, as shown in Figure 4. An external force/torque
sensor is equipped in the wrist to sense the interaction force
and torque between the end-effector tool and the environment.
As shown in Figure 4, we designed the fixtures (3D printing) to
connect the layup tool (roller), force/torque sensor, and the robot
end-effector. A RealSense depth camera D435 is used to observe
the working scenario of the robot, and the visual feedback is
transmitted to the computer on the leader side for the human
operator to monitor the remote scenario.

A 3D mouse from the 3DConnexion company is more
suitable for teleoperation, and it can output linear and angular

components of the joystick’s position and the status of the two
buttons. The twist command of the 3D mouse, consisting of the
linear and angular components, is used to map the translation
and orientation of the end-effector. The buttons states as an
event-trigger signal were employed to switch control modes.
There is a control interface of the robot manipulator provided
by the Franka control interface (FCI) on the robot side, which
provides the control interface and a fast and direct low-level
bidirectional connection to the robot arm. In the leader site,
there is a laptop to execute the control and learning algorithm.
The generated command is transferred to the Franka control
board. Linux Operating system is run on the laptop, and Robot
Operating System (ROS) is used to communicate among the
different modules.

5.2. The User Interface of the Control
System
As shown in Figure 5, the control system parameters can be
displayed and modified by the human operators online. The
human operators can change the control modes (switching
between teleoperation mode and collaboration mode) via
adjusting these parameters, including stiffness Kp and Ko,
damping Dp and Do, integral Ip and Io, and the null-space
optimization gain matrix Kn. These parameters can be modified
online based on the different task requirements, such as more
stiff in one degree or more compliant in another degree.
The interaction force/torque between the end-effector and the
environment can also be displayed on a monitor, which provides
more knowledge on the interaction process.

In terms of the controller design and the human-robot skill
transfer, defining the proper coordinate frame is necessary.
The proper frame could reduce the cognitive workload
during teleoperation and human-in-the-loop interaction and
collaboration. In this study, we defined three frames on the robot
sides, as shown in Figure 6. The impedance controller is defined
in the cartesian space, and the desired command is based on the

FIGURE 13 | The tracking error along the X, Y, and Z-axis (B); and the orientation tracking in yaw, pitch, and roll for the slope plane (A).
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based frame of the robot. The task description is based on the
component frame, and the transformation from the based frame
of the robot to the component frame is fixed. The impedance gain
defined by the user is based on the end-effector frame, therefore,
the parameters of the controller need to be transformed into the
based frame.

5.3. Human Demonstration Through
Teleoperation
To enable the human-robot composite layup skill transfer, the
human operator needs to composite layup through teleoperation.
The motion primitives of composite layup were recorded, as
shown in Figure 7. During the demonstration, the human
operator demonstrated the layup for a flat component. From the
results, the roller moves forward and back in the X-Y plane,
which is the primitive motion skill for the composite layup.
We modeled this motion primitive by DMPs, which can be
generalized to different locations. Regarding the parameters of
DMPs, please refer to Table 1. For the Z-axis, there is a small
motion, which can be used to generate the contact force along
Z-axis in the end-effector frame. The stiffness parameters for the
X and Y are the same, K = 3,000, while for the Z-axis is large, K
= 6,000, which can be guaranteed to generate contact force along
Z-axis. The small impedance along X and Y, which can feature a
compliant manner.

5.4. Generalize to a Novel and Big Plane
In this case study, we would like to evaluate the generalization to a
novel and large component, which is necessary for the composite
layup in the real industry plant. The automation of composite
layup only relies on the motion primitive and a little bit of
information on the component. Generally, it is straightforward to
attain the geometry of the component based on the CAD model
of the part. In this case, we assumed that the vertex coordinates

of the part are known. For example, given the four vertex
coordinates, we can get the region where the parts need to be
manufactured for a plane. For the area that needs to be processed,
we divided several sub-areas. Each sub-area can be modeled with
a task variable, including the start and end coordinates. For the
DMPs based skill model, only the task variable is needed to
reproduce the motion skills.

The number of motion primitive is dependent on the size
of the component. For the X direction, as the generalization
of DMP, the number can be random. In the Y direction, the
number is the length of the workpiece, divided by the width
of the roller, which ensures the roller can cover the whole
workpiece. As shown in Figure 8, there are 16 motion primitives
for the big plane. Each motion primitive is similar to the human
demonstration motion. Between two motion primitives, we used
a motion planning algorithm to generate a transition trajectory.
The first row, along X-axis, shows that the coordinates of the
roller decrease from 0.6 to 0.34 m. The middle row, along the
Y-axis, shows that the coordinates of the roller change between
−0.17 m and 0.1 m. The real trajectory of robots can cover the
whole workpiece.

The Figure 9 shows the tracking error between the command
from the DMP model and the actual trajectory of the roller. The
tracking error is less than 0.005 m in the X, Y, and Z-axis. During
the composite layup, the orientation of the end-effector is fixed,
and the tracking error is less than 0.02 rad. The control accuracy
is enough for the composite layup, which proves the performance
of the impedance controller for the composite layup.

5.5. Generalize to a Novel and Small Plane
In this case study, we would like to evaluate the generalization to
a novel and small component, which is similar to the previous
experiment case. The main difference is that the four vertex
coordinates are changed. The motion primitive is the same as the

FIGURE 14 | The trajectory of end-effector in the collaboration mode through teleoperation. (A) is the teleoperation command, and (B) is the input command from the

in-site human operator.
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previous experiment, and we evaluate that the learned skill can
be generalized to a novel component with different sizes.

As shown in Figure 10, for the small component, only eight
motion primitives are needed to cover the whole plane. The
proposed framework could generalize to different sizes only
based on the vertex coordinates for a plane part. From Figure 11,
the tracking errors are less than 0.005 m, and the orientation
tracking errors are less than 0.02 rad. The control accuracy is
enough for the composite layup.

5.6. Generalize to a Slope Plane
This experiment case aim at evaluating the generalization to
an inclined plane. In this case, the key points for this task are
P1(0.36,−0.14, 0.38), P2(0.37, 0.01, 0.42), P3(0.50, 0, 0.42), and
P4(0.50,−0.18, 0.38). We assume that we know the CAD model
of the component or the orientation of the model can be
measured based on sensing technology, such as machine vision.

From Figure 12, there are eight motion primitives to cover
the whole inclined plane. The main differences between the

inclined plane and the horizontal plane are the motion along
the Z-axis and the orientation. From the third row, the motion
range along the Z-axis is from 0.41 to 0.38 m in Figure 13.
Additionally, the orientation is different, which needs to keep the
roller perpendicular to the plane. The tracking errors are less than
0.005m, and the orientation tracking errors are less than 0.02 rad,
which demonstrates the generalization of the learned skill and the
performance of the impedance-based controller for a composite
layup in the inclined plane.

5.7. Collaboration Through Teleoperation
This experiment aims at evaluating the collaboration
performance of the impedance control-based teleoperation
system. Existing research focuses mostly on physical human-
robot collaboration, with less work on collaboration between
teleoperation, in-site humans and robots. In this experiment, we
evaluated that teleoperation and in-site human can collaborate
smoothly through modifying the parameters of the impedance
controller. We make use of the character of the torque-computed

FIGURE 15 | The trajectory of the end-effector in the base frame of the robot in the collaboration mode.
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control based on impedance control. For example, we set
the stiffness of the impedance controller to a specific degree;
the control along this degree becomes a free-motion mode,
which can be kinesthetic teaching or adjusting the robots by an
in-site human.

From Figure 14A is the control command from the
teleoperation, and (Figure 14B) is the command by in-site
human operation. The orientation control is autonomous by
the robot. Figure 15 is the trajectory of the end-effector in
the hybrid control mode. The results show that the control
system can integrate teleoperation and kinesthetic demonstration
and autonomous. The transition among the three modes can
be smooth.

6. DISCUSSION AND CONCLUSION

In this article, a torque-computed framework based on
impedance control was proposed to enable the human-robot
skill transfer through teleoperation. The human user interface
was developed to display the parameters of the controller and
the contact force, and the human operator could modify the
parameters of the control system. The 3D mouse has been
used as the input device for teleoperation. In addition, because
the teleoperation control design is in Cartesian space, the
teleoperation mapping between the input and the robot motion
is intuitive. Also, the proposed teleoperation system is compatible
with other input devices, such as Omni joystick and Omge.

For the robot-assisted composite layup, the layup skills
are modeled by DMPs and transferred to the robot through
teleoperation. The generalization of the proposed framework has
been demonstrated through different components with various
sizes and orientations. Additionally, the tracking error of the

impedance-based controller is less than 0.005 m, which is feasible
for the composite layup. In addition, we also evaluated the
performance through an experiment, teleoperation, and in-
site human operator co-work. From the results, the transition
is smooth. In the future, we will conduct a user study to
improve the human teleoperation interface design, such as
combining multiple input devices and visualizing the interaction
states. We will also study the deep learning techniques to
automate the perception information to investigate reactive and
automated monitoring.
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