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Endoscopic imaging plays a very important role in the diagnosis and treatment of lesions.

However, the imaging range of endoscopes is small, which may affect the doctors’

judgment on the scope and details of lesions. Image mosaic technology can solve the

problem well. In this paper, an improved feature-point pair purification algorithm based on

SIFT (Scale invariant feature transform) is proposed. Firstly, the K-nearest neighbor-based

feature point matching algorithm is used for rough matching. Then RANSAC (Random

Sample Consensus) method is used for robustness tests to eliminate mismatched point

pairs. The mismatching rate is greatly reduced by combining the two methods. Then, the

image transformation matrix is estimated, and the image is determined. The seamless

mosaic of endoscopic images is completed by matching the relationship. Finally, the

proposed algorithm is verified by real endoscopic image and has a good effect.

Keywords: endoscope, feature point matching, image mosaic, SIFT algorithm, K-nearest, RANSAC

INTRODUCTION

Endoscopy is one of the most commonly used detection tools in clinical practice (Rosen and
Ponsky, 2001; Zhou et al., 2016; Yang et al., 2017; Ni et al., 2019). It plays a very important role in
determining and treating diseases. However, the result of detection would depend on the amount of
information delivered by the endoscopic imaging (Liu et al., 2015, 2018), which have been discussed
in many other disciplines (Zheng et al., 2015, 2016a; Li et al., 2017, 2020; Yin et al., 2019; Tang et al.,
2020b). It is impossible to get the best field of view and magnification of an endoscopic image
at the same time. For example, the larger the image’s magnification, the more detailed the image
information will be. However, the field of vision information contained in the image will become
smaller. Therefore, in the case of large magnification, it is impossible to realize the inspection of
large organs at one time. This has a great influence on doctors in judging the details and scope of
the disease in detail. However, the qualitative judgment of the disease is not helpful (Tang et al.,
2020a).

Early endoscopic image stitching techniques mostly used a combination of frequency domain
correlation algorithms (Ellmauthaler et al., 2012; Chen and Dai, 2013; Li et al., 2015; Tang et al.,
2020a) and maximummutual information (Zheng et al., 2016b, 2017; Yang et al., 2018; Chen et al.,
2020; Xu et al., 2020). For example, Mier et al. (2006) proposed an automatic stitching algorithm
for two-dimensional cryptoscopic sequence images. The algorithm is robust to fuzzy, illumination,
and heterogeneous radial distortion images. And it can use the cancer autofluorescence effect
in the image to detect cancer lesion information. In 2004, Lowe (2004) proposed SIFT based
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on scale invariance, which is an algorithm to describe local
features. The main approach is to construct Gaussian pyramids
of different scales for images. The feature points to be obtained
are the extreme values detected in the difference pyramid. The
algorithm has great robustness in the case of image viewing
angle, scale change or rotation, and it has a certain milestone
in feature extraction. In response to the complexity of SIFT
calculations, the SURF (speed up robust features) feature (Bay
et al., 2006), binary SIFT feature (Peker, 2011), and the GLOH
(gradient location orientation histogram) feature (Mikolajczyk
and Schmid, 2005) were developed. After that, the researchers
applied the SIFT feature detection algorithm to endoscopic
image mosaic technology. Behrens (Behrens, 2008) proposed
a two-dimensional homographic matrix based on the SIFT
feature point estimation image. It used an endoscopic bladder
fluorescence image stitching algorithm that combines an affine
model and an adaptive iterative algorithm. The algorithm has
a good splicing effect. However, the amount of calculation is
relatively large. Therefore, he improved the algorithm afterwards
(Behrens et al., 2009), and solved the problems of waveform
correction of images after cystoscope splicing and automatic
recognition of sequence image space. Burkhardt et al. (2013)
proposed a microrobot with flexible motion and an automatic
bladder scanning system. The robot can adjust the endoscope’s
motion based on the image’s feedback information to capture the
image of the bladder surface. Then the image is matched based on
SIFT feature points to realize automatic image stitching. Robot-
assisted surgery can completely realize the unsupervised state
(Behrens et al., 2009).

Chen et al. (2010) proposed an endoscopic image mosaic
algorithm based on the large intestine. The algorithm uses SURF
for feature matching and simplifies the dimension of features and
the main direction of calculation features. It improves the speed
of splicing. The effect of stitching is also very good, which is
more suitable for endoscopic image mosaic. Rosten et al. (2008)
proposed a FAST algorithm for corner detection. This algorithm
is based on SUSAN (small univalve segment assimilating nucleus)
corner detection. In the search process, the speed of feature
point detection is greatly improved. However, the disadvantage
of FAST is that it does not have scale invariance. Therefore,
Rublee et al. (2011) proposed a new method based on FAST and
BRIEF (binary robust independent element feature). Based on
this algorithm, a fast matching algorithm ORB (Oriented Brief)
is proposed to solve the problem of susceptibility to noise and
lack of scale and deformation. In recent years, because of their
excellent quality and development of the deep learning, binary
descriptors are popular in keypoint detection and registration
and are widely used in image alignment. Especially recently, there
are more and more experts and scholars studying local binary
image feature descriptors, which makes the binary description
develop very rapidly. Many new binary descriptors, such as
BRISK (Leutenegger et al., 2011) (binary robust invariant scalable
keypoints) and FREAK (fast retina keypoint) (Alahi et al., 2012),
have been produced. Compared with the ORB, fixed sampling
mode is used to replace random sampling structure mode.
Although the ORB algorithm has been used in many image
mosaics, it is still seldom used in endoscopic image mosaic.

For example, Wang et al. (2004) and others proposed a method
of aerial image mosaics using ORB features. The matching
feature in this algorithm is to use ORB feature points and
use binary feature vectors to calculate the distance of feature
points. Therefore, the speed of feature extraction and matching
has been greatly improved. In the image matching, cross-
validation algorithm, next nearest neighbor screening algorithm,
and RANSAC estimation algorithm are used to calculate the
homography matrix between the sequence images to complete
the mosaic.

Similarly, endoscopic instruments have been further
improved with the advancement of technology. Luo et al. (2021)
proposed a humanmotion intention predictionmethod based on
an autoregressive (AR) model for teleoperation. The proposed
human motion prediction algorithm acts as a feedforward
model to update the robot’s motion and to revise this motion
in the process of human-robot interaction (HRI). Then, Su
et al. (2022) applied the swivel motion reconstruction approach
to imitate human-like behavior using the kinematic mapping
in robot redundancy. They proposed a novel incremental
learning framework that combines an incremental learning
approach with a deep convolutional neural network for fast and
efficient learning.

Although there are many stitching algorithms in image
mosaic technology, these algorithms are generally suitable for
ordinary images. In this paper, an improved stitching algorithm
is proposed for endoscope images. This paper proposes to
combine the nearest neighbor matching method with RANSAC
(random sample consensus) matching algorithm. Firstly, the
distance ratio between the nearest neighbor and the next
nearest neighbor is used to determine the matching point
pairs preliminarily. Secondly, the RANSAC matching algorithm
eliminates the mismatched points and obtains the holography
matrix between the corresponding frames. Then, the endoscopic
image registration is performed according to the holography
matrix. Finally, a weighted fusion algorithm based on gradual in
and gradual out is used to fuse the registered images to eliminate
the obvious gaps in image mosaic and realize a seamless mosaic
of endoscopic panoramic images. The experimental results show
that the mosaic effect is good, and the accuracy of feature point
matching is improved.

METHOD

In general, endoscope Mosaic technology consists of four parts:
preprocessing image, matching image, image transformation and
image fusion. It is necessary to analyze two or more endoscope
images completely because the splicing of multiple continuous
endoscopes is the problem to be solved by endoscope splicing
technology. In this way, compared with image interpolation or
compression and other processing technologies, the diversity,
complexity and pertinence of endoscope Mosaic technology
are different.

If there are many mismatches in the process of feature
point matching, it will cause a great deviation in the image
stitching results. However, the existing mismatch elimination
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technology generally only selects a single method, which has a
low efficiency. To improve the efficiency, this paper proposes an
improved feature point pair purification algorithm. First, use the
keypoint matching algorithm based on K-nearest neighbors, that
is, two-way registration to initially determine the matching point
pairs, then use RANSAC to delete the wrong matching points
and obtain the homography matrix between the corresponding
frames. Finally, the registration of the endoscopic image is
performed according to the homography matrix. The flowchart
of the improved SIFT algorithm is shown in Figure 1.

Principle of SIFT Algorithm
DOG Space Extreme Point Detection
The SIFT algorithm performs keypoint detection in a multi-scale
space, and the Gaussian kernel is the only linear kernel that can
complete the scale transformation. We take the convolution of
the Gaussian kernel function G(x, y, σ ) and the image I(x, y) as
the scale space L(x, y, σ ) of the image, that is, the LOG (Laplacian
of Gaussian) operator:

L(x, y, σ ) = G(x, y, σ ) ∗ I(x, y) (1)

G
(

x, y, σ
)

is a scale-variable Gaussian function.

G(x, y, σ ) = 1

2πσ 2
e
−(x2+y2)

2σ2 (2)

Convolution is represented by the symbol ∗, the scale factor is σ ,
and each pixel position of an image is (x, y). Large scale is used if
we need to know the general features of the image, whereas small
scale is used if we need to know the detailed features of the image.
This is because the larger the scale, the more the image is filtered.

In order to make the key points of detection more stable,
David. Lowe et al. proposed to convolved the image with
Gaussian difference function to obtain the extreme value of the

scale space, i.e.,

D(x, y, σ ) = (G(x, y, kσ )− G(x, y, σ )) ∗ I(x, y) = L(x, y, kσ )

− L(x, y, σ ) (3)

Where k represents the multiple relationship in adjacent images,
and k =

√
2 is taken in this paper.

We usually use the response value of the DOG operator
to approximate the value of the σ 2∇2G operator, because the
Gaussian difference operator can be equivalent to the Laplace
operator to some extent.

Where, the relationship between D(x, y, σ ) and σ 2∇2G can be
calculated as follows:

∂G

∂σ
= σ∇2G (4)

Calculate the difference of Equation (4) as follows:

σ∇2G = ∂G

∂σ
≈ G(x, y, kσ )− G(x, y, σ )

kσ − σ
(5)

That is:

G(x, y, kσ )− G(x, y, σ ) ≈ (k− 1)σ 2∇2G (6)

D(x, y, σ ) can be approximated as σ 2∇2G, because the constant
(k−1) on the right side of the equation in Formula (3–6) generally
does not interfere with the position of the key point. Therefore,
this also proves that the DOG operator can be approximated as
the LOG operator.

The advantages of the DOG operator are self-evident. (1)
Since the information (size and scale) of each layer of images
generated in the pyramid is contained in the DOG operator, we
can directly use the spatial scale images obtained in Formula
(1−3) and obtain the features in the images we need without
recalculating the scale again; (2) The LOG operator takes less
time to compute Gaussian convolution kernels. This is because

FIGURE 1 | Flow chart of improved SIFT algorithm.
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compared with the LOG operator, DOG operator only uses one
convolution kernels to compute. (3) Since DOG operator can be
simplified and approximate to LOG operator, DOG has excellent
properties of LOG. For example, LOG operator has invariability
on noise, and it will be more stable than other detection methods
when carrying out characteristic point detection, such as DoH of
Hessian, Harris characteristic point detection, etc.

The strong edge response of DOG operator is caused by
the weak response of some feature points, so the key points
obtained are not necessarily stable. We can generally use a three-
dimensional quadratic function to accurately determine the scale
and location information of key points, so that those unstable and
low contrast key points are also removed, so that the stability
of registration is improved, and the anti-noise performance is
also strengthened.

For the difference functionD(x, y, σ ), expand the second order
of Taylor’s formula:

D(x) = D+ ∂DT

∂x
x+ 1

2
xT

∂2D

∂x2
x (7)

Assume the extreme point x̂ of x and assume that Equation (7)
can be derived and the left-hand side of the equation should be 0.

x̂ = −∂2D−1

∂x2
∂D

∂x
(8)

By substituting the values obtained in Formula (8) back into
Formula (7), feature points with low contrast can be removed:

D(x̂) = D+ 1

2

∂DT

∂x
x̂ (9)

If the displacement of x̂ in all directions is >0.5 relative to the
interpolation center point, this point needs to be eliminated
because the center point may have shifted to a nearby point. And
when |D(x̂)| < 0.03, the response value point also needs to be
deleted because it is too small so it is not stable when disturbed
by noise.

Because the image edge will have a great influence on the
stability of key points, if some key points are close to or even on
the image boundary, then these points cannot be used in image
registration because they are extremely unstable. Therefore, in
order to prevent the detected key points from being affected by
noise, it is not enough to delete only the points with low contrast.
Since points on the boundary are easily unstable when affected by
noise, and it is difficult for us to accurately determine the position
of points on the boundary, it is necessary to delete key points on
the boundary.

Strong edge response is the shortcoming that DOG operator
cannot overcome. In order to determine whether some key points
are at the image boundary, we can use the principal curvature to
judge. Hessian matrix H is a method to calculate the magnitude
of the principal curvature:

H =
[

Dxx Dxy

Dxy Dyy

]

(10)

Among them, we only need to find the ratio between the
eigenvalues and eigenvalues in the H matrix instead of figuring
out the eigenvalues one by one. The value of D can be obtained
by calculating the difference of the gray values of the surrounding
points. If we set the minimum eigenvalue of H as β = λmin and
the maximum eigenvalue as α = λmax, then the magnitude and
determinant of the trace of H can be expressed by α and β :

{

Tr(H) = Dxx + Dyy = α + β

Det(H) = DxxDyy − (Dyy)
2 = αβ

(11)

Let α = γβ , α isrepresentedbyβ and proportional coefficient γ :

Tr(H)2

Det(H)
= (α + β)2

αβ
= (γβ + β)2

γβ2
= (γ + 1)2

γ
(12)

From Equation (12), we can see that the equation depends only

on the ratio of α to β and not on their size. (γ+1)2
γ

decreases as

the ratio of α to β decreases. To minimize (γ+1)2
γ

, all you need is

alpha and beta to be equal. Therefore, we can determine whether
the principal curvature is less than the threshold γ through
Equation (13).

Tr(H)2

Det(H)
<

(γ + 1)2

γ
(13)

It works best when γ = 10. That is, we keep the key points where
the ratio of alpha to beta is<10, and eliminate the ones that don’t
meet the requirement.

SIFT Feature Point Description
When describing the key points, it is necessary to assign a main
direction to them one by one. The main purpose is to realize
the invariance of image rotation, and the main idea is based
on the gradient direction and magnitude nature of amplitude.
Difference is used to solve the magnitude and direction of the
gradient in a circle with a radius of 3 × 1.5σ at the center of the
key point:















m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y+ 1)− L(x, y− 1))2

θ(x, y) = tan−1((L(x,y+1)−L(x,y−1))
L(x+1,y)−L(x−1,y) )

(14)

The sampling is centered on feature points, and histogram
is used to describe the gradient and direction. L represents the
scale of feature points. The CVD has 36 CVD directions in the
histogram, so it ranges from 0 to 360◦. It is necessary to use
gaussian function to weight the magnitude of the modulus of the
gradient when calculating the direction of the histogram.

The direction of the gradient around the key point is
represented by the peak value of the histogram. In general, the
main direction of the key point is the highest in the histogram,
while the direction around the key point is distributed at the
rest of the peak value. In order to enhance the robustness of
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matching, usually there will be multiple auxiliary directions
of SIFT feature points, that is, when they are >80% of the
peak value, in order to make them have better robustness in
image alignment. Although only 15% of these key points may
have multiple auxiliary directions, the stability of key point
registration has been greatly improved.

Each key point contains three kinds of information: direction,
scale, and location. The key points are described so that they are
stable without interference from external factors, so that they
are invariant to changes in Angle or light. The uniqueness of
the descriptor is important in order to achieve higher accuracy
in key point matching. Generally, in order to make the key
point in a more appropriate scale, it is necessary to sample
the surrounding pixels, and then use the normalized correlation
algorithm to match the pixel gray. However, simple correlation is
very sensitive to affine, non-rigid deformation and 3D perspective
changes, which can lead to mismatching of samples.

Feature vectors can be obtained through the structural order
of key points. And the SIFT descriptor is a vector that has a
lot of dimensions because it computes the gradient histogram.
Descriptors need to be computed at the image scale because it
is directly related to the scale size. The neighborhood of the
key point is divided into 4 × 4 areas with side length of 3σ,
i.e., 16 small areas. σ represents the scale size. The key point’s
neighborhood needs to expand to 15

√
2σ because it needs to be

interpolated.We get the critical neighborhood and finally 15
√
2σ

because there’s a certain amount of rotation.
In order to make the key point invariant to light changes, the

feature vectors need to be uniformly processed, that is, divided
into the interval [0, 1]. When unifying key points, the values
below 0.2 remain unchanged, and those above 0.2 are fixed as 0.2.
In this way, key points are unique. Therefore, SIFT operator has
good robustness for noise interference and affine changes, with
invariance for image scale, light rotation changes.

In the case that the key point is centered, the direction of the
pixel gradient in the neighborhood of the key point is rotated by
an Angle θ . The main purpose is to make it invariant to rotation
change. Rotate the key point neighborhood to the main direction
and divide it into 4 × 4 small blocks of 3 sigma. Compute
eight directions in each small block, then sum the results of the
directions and get the seed points. The gradient histogram is
divided by each sub-block into eight directions with a size of 45◦,
which is different from the calculation of the main direction of
the key point at this point, so the gradient information of the
seed point has eight different directions. Since there is a seed
point containing eight directional gradients in each of the 16
sub-blocks, we can obtain the SIFT feature vectors with a total
dimension of 16 × 8 = 128, and use a Gaussian function with a
variance of 6σ to obtain the 128-dimensional feature vectors.

Feature Matching
The main idea of feature matching is to use distance function
to judge the similarity of feature description vector. Experts and
scholars have done a lot of research work in the search for
matching points, and many new algorithms have been proposed.
However, there is no algorithm that can detect all the registration
points of key points in multi-dimensional space. Because this
article gets a descriptor is a higher dimension feature vector,

use of Kd-Tree search algorithm is one of the best algorithms,
however, when more than 10 d Kd-Tree search algorithm
performance is poorer, therefore the BBF search algorithm based
on the approximation algorithm, this method improves the
search time, and you can find more matching points. In a word,
BBF is an optimization algorithm.

Kd-Tree Search Algorithm
Kd-Tree is a binary Tree structure. Kd-Tree algorithm has
many advantages: (1) since the segmentation superplane will
keep changing in the process of building KD tree, data points
of different clusters can be easily distinguished. (2) Since the
resolution of the image can be adjusted when cutting the KD
tree space, the height of the tree can be adjusted through the
distribution of data points. (3) The cutting surface of KD tree
can be adjusted according to different situations. In the process
of building KD tree, a data point can be calculated by using the
partition hypersurface equation, and the point can be judged to
be in the right subtree or the left subtree.

Best Bin First Algorithm
The core of BBF algorithm is to add the search priority part,
the rest of the process is similar to the standard KD tree. BBF
algorithm is a kind of nearest neighbor optimization algorithm,
which gives priority to the points with high matching possibility.
Either when all the nodes in the priority queue have been
searched or when the preset time runs out, it treats the optimal
point of the search as the registration point because of its timeout
setting. BBF algorithm can solve the problem that the nearest
neighbor cannot handle multidimensional vector after extending
KD tree. As a result, the speed of BBF searches is increased, but
the accuracy is greatly reduced. Therefore, the results obtained by
BBF are relatively good but not the best.

You can see the appropriate benefit of BBF for procedural
manipulation of query best-points. The search process can be
interrupted at any time through the construction of the priority
queue, which is very widely used in high-dimensional data search
due to its good results.

Because BBF spends a lot of time searching the nodes of
the priority queue, the number of nodes must be manipulated
properly. As the number of nodes increases, the search time
increases, so the purpose of setting the number of nodes to 200
in this article is to control the search time. In addition, the order
of searching leaf nodes depends on the structure of KD tree, so the
location of searching node may be ignored even if the location of
node storage is known. This problem can be solved by using the
distance between the node being searched and the current node
to query the node. If the Euclidean distance between the target
point and the query point is smaller than the distance between
the target point and the nearest matching point, then the nearest
matching point is the query point.

Improved Feature Point Pair Purification
Algorithm
To improve the efficiency, this paper proposes an improved
feature point pair purification algorithm. First, use the keypoint
matching algorithm based on K-nearest neighbors, that is,
two-way registration to initially determine the matching point
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pairs, then use RANSAC to delete the wrong matching
points and obtain the homography matrix between the
corresponding frames.

Feature Point Matching Algorithm Based on

K-Nearest Neighbor
Before using RANSAC to remove the external points to calculate
the transformation matrix parameters, a preliminary selection is
made through the distance ratio between the nearest neighbor
and the next nearest neighbor of the keypoint. This can reduce
the workload of RANSAC and improve the purity of the
matching point pairs using RANSAC. The K-nearest neighbor
algorithm used in this paper can avoid large amounts of
calculation caused by the exhaustive search method. The K value
is taken as 2. Finally, each keypoint will get two matching
points with the smallest and the next smallest distance. Let the
eigenvector of the key points p be Vp, the vector of the closest
matching point q in the first image is Vq and the vector of the
next closest matching point q̄ in the first image is Vq̄, then the
description matching pi(Vq,Vq̄), i = 1, 2, · · · can be used. n is the
number of key points extracted from the second image.

Assuming Vq̄ that are the adjacent key points Vq̄ in the first
image. To make p and q become a set of accurate registration
pairs, R needs to be smaller than the critical value TR. At this time,
it is represented by p ↔ q, and vice versa p ← | → q. Then the
distance ratio is expressed as follows.

R =
D(Vp,Vq)

D(Vp,Vq̄)
(15)

Vq = argmin
{

D(Vp,Vi)|Vi ∈ B, i = 1, · · · ,m
}

(16)

Vq̄ = argmin
{

D(Vp,Vj)|Vj ∈ B, j = 1, · · · ,m,Vj 6= Vq

}

(17)
{

p↔ q if R < TR

p← | → q otherwise
(18)

The experimental results show that when the critical value TR of
Equation (18) is 0.65, the accuracy and the matching logarithm
of keypoints can get better results. If the set A is used to
represent the final registration pair, then, A = {pi(Vq,Vq̄)|i =
1, 2, . . .m1}. m1 is the number of key point registration pairs in
the corresponding second frame of the first frame.

Then, in the second frame image, the nearest and next closest
registration points of all the key points matching in the first frame
image are searched. According to the above process, the error
points whose R larger than the threshold value TR are eliminated.
The final keypoint registration pair is represented by a set B, that
is, B =

{

qi(Vp,Vp̄)|i = 1, 2, · · ·m2

}

, m2 is the number of key
point registration pairs in the corresponding first frame of the
second frame image.

Finally, all the data are searched. For a certain registration pair
(pi, qj) in the set A, if a matching pair (qj, pi) can be found in
the set B, this point is accepted. The set C is used to store the
keypoint pairs obtained through bidirectional registration, where
C =

{

pi(Vq,Vq̄)|i = 1, 2, · · ·m3

}

. m3 is the number of keypoint
pairs obtained through bidirectional registration.

RANSAC Algorithm
RANSAC is a robust parameter estimation algorithm (Triggs
et al., 1999) proposed by Fischler and Bones. At first, people
used this algorithm to estimate camera motion, and now it is
widely used in parameter estimation. RANSAC can accurately
get the correct registration relationship and eliminate the wrong
matching points.

Firstly, the ratio of the nearest neighbor and the next nearest
neighbor is used to express the registration results. The purpose
of holography matrix detection is to find the most matching key
points and eliminate those that do not meet the requirements.
Therefore, we have the initial set of matching points.

For further purification of the key points after two-way
registration, RANSAC’s main approach is to assume a model
applicable to all the key points that are correctly registered. The
assumed interior points can be calculated from all the unknown
parameters. All the data points are randomly sampled, and some
points are set as interior points to form a random subset. Finally,
random sampling is carried out until we find a transformation
parameter model that can make the number of interior points
maximum. Therefore, we need to remove the interference caused
by mismatching points when we get interior points.

Generally, the transformation model with eight parameters is
mainly used in splicing, the matrix transformation with 8 degrees
of freedom. Because a pair of registration points can support
two equations to establish the relationship, four non-collinear
matching pairs are needed to calculate the parameters (Zhang
et al., 2021).

The steps of RANSAC are as follows:
Four pairs are randomly selected in the registration set to solve

the transformation matrix.
In solving the remaining registration pairs’ matrix

transformation, we need to use the transformation parameters
and calculate the coordinate distance between points and point
pairs. The inner point is the point within the error range, and
the other points are called the outer point. In the first random
sampling process, the maximum number of interior points is X,
and we set MAX as MAX = X in the first arbitrary sampling
process. If the ratio X is larger thanMAX, thenMAX = X.

This process is continued until the number of interior points
is no longer increased. And the point set larger than the preset
critical value of the number of interior points is regarded as the
largest interior point set. The matrix parameter model is solved
by using the least square method.

It is also necessary to set the maximum number of sampling,
the critical value of distance, and the minimum number
of points.

(1) The determination of the maximum sampling times.
If all the subsets are listed, it will lead to excessive

sampling and a heavy workload. Therefore, we need to set an
appropriate sampling number to ensure that the probability
of any selected four pairs of registration points to the subset
is large enough. Let the probability that all sampling points
are interior points is p. In order to ensure the accuracy of
the calculation, we make p as 99%. If the probability of
the registration point belonging to the interior point is p1,
then the probability of the registration point belonging to
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the outer point ε = 1 − p1. When calculating the matrix
parameters, let the minimum registration point pair bem. In
case of N samplings:

(1− pm1 )
N = 1− p (19)

Therefore, the sampling times are as follows:

N = log(1− p)

log(1− (1− ε)m)
(20)

(2) The determination of the critical value of the distance.
If the error of registration points satisfies a Gaussian

function, the standard deviation and mean value are 0. After
the projection transformation, the sum of the square of the
distance between the keypoints and the registration points is

d2v = d(xi
′
,Hxi). We set the significance m = 0.01 and the

χ2
m confidence level is 0.99.

Fm(k
2) =

k2
∫

0

χ2
m(ξ )dξ < k2 (21)

So, the critical distance is

t2 = F−1m (α)σ 2 (22)

σ 2 is the variance of the Gaussian function.
The following formulas are the judgment conditions of

the inner point and the outer point, respectively:

{

inner point d2v < t2

exterior point d2v ≥ t2
(23)

(3) The determination of the minimum number of
interior points.

If there are n matching pairs in the registration, we can get the
number of interior points is n(1 − ε). Generally, the number of
interior points will not change after some iterations.

Image Matching Relation and Transform
Matrix Estimation
In the process of image registration, there may be no overlap, or
there may be overlap. These situations will lead to an incorrect
registration relationship. The stitching error caused by this
situation will not be reminded, so whether the transformation
matrix between images is correct is crucial to the success of
stitching. However, the parameter model is not correct, which
will lead to an incorrect registration relationship. Therefore,
whether the transformation matrix between images is correct or
not is crucial to stitching success. Therefore, a probability model
is proposed to distinguish whether the registration is correct
or not.

In the process of image matching, nf represents the number
of initial registration pairs before purification. ni represents the
number of interior points after eliminating the error points. By

mathematical deduction, we can get that the number of interior
points satisfies a binomial distribution.

p1 represents the probability that the registration point is an
interior point under the condition of correct registration. p0
represents the probability that the registration point is an interior
point under the condition of wrong registration.

P(f (1 : nf )|m = 1) = B(ni, nf , p1) (24)

P(f (1 : nf )|m = 0) = B(ni, nf , p0) (25)

The number of internal points ni =
∑nf

i=1 f (i). f (1 : nf ) is the

set of registration variables
{

f (i), i = 1, 2, · · · , nf
}

and B(·) is

binomial distribution.

B(x, n, p) = n!

x!(n− x)!
px(1− p)n−x (26)

Therefore, the probability of image registration is obtained:

P(m = 1|f (1 : nf )) = P(f (1 : nf )|m = 1)P(m = 1)

P(f (1 : nf ))

= 1

1+ P(f
(1 : nf )|m=0)P(m=0)

P(f
(1 : nf )|m=1)P(m=1)

(27)

In this case of P(m = 1|f (1 : nf )) > Pmin, the image is correctly
registered. That is, if B(ni, nf , p1)P(m = 1) > 1

1
Pmin
−1 , then accept

this point as the interior point, otherwise refuse.
According to the experience, we can get P(m = 1) = 10−6,

Pmin = 0.999. To make the image registration correct, we need to
meet the following requirements:

ni > α + βnf (α = 8.0,β = 0.3) (28)

The mainly process of image alignment is to calculate the
transformation parameter matrix model. The parameter matrix
has been obtained in eliminating mismatched points by the
RANSAC algorithm. Here is a detailed description of the process.

Projection transformation is usually used in
image registration:

H =





h11 h12 h13
h21 h22 h23
h31 h32 1



 (29)

Where the degree of freedom of H is 8. If X(x
′
, y
′
) and

X(x, y) is a pair of registration points, then through projection
transformation, there are:





x
′

y
′

w



 =





h11 h12 h13
h21 h22 h23
h31 h32 1









x
y
1



 (30)

The matrix is abbreviated as:

X
′ = HX (31)
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Then, after the keypoints (X) in an image are transformed
through the transformation matrix H into the matching image

X
′
, Equations (25) and (26) can also be expressed as follows.

x
′ = h11x+ h12y+ h13

h31x+ h32y+ 1
(32)

y
′ = h21x+ h22y+ h23

h31x+ h32y+ 1
(33)

Since eight equations can calculate eight parameters. Only four
pairs of registration points that are not collinear are needed to
solve the parameters of the projection matrix, then Equation (30)
can be written as follows:





























x1 y1 1 0 0 0 −x1′x1 −x1′y1
0 0 0 x1 y1 1 −y1′x1 −y1′y1
x2 y2 1 0 0 0 −x2′x2 −x2′y2
0 0 0 x2 y2 1 −y2′x2 −y2′y2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
xn yn 1 0 0 0 −xn′xn −xn′yn
0 0 0 xn yn 1 −yn′xn −yn′yn





















































h11
h12
h13
h21
h22
h23
h31
h32

























=





























x1
′

y1
′

x2
′

y2
′

...

...
xn
′

yn
′





























(34)

Suppose the image gets the correct registration relationship. In
that case, the number of internal points n is generally much larger
than 4, so to ensure the best matrix parameters, the 2n system
equations are often used.

When calculating the specific parameters of the projection
matrix, it is necessary to minimize the back-projection error of
interior points.

Let

X =































x1 y1 1 0 0 0 −x1′x1 −x1′y1
0 0 0 x1 y1 1 −y1′x1 −y1′y1
x2 y2 1 0 0 0 −x2′x2 −x2′y2
0 0 0 x2 y2 1 −y2′x2 −y2′y2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

xn yn 1 0 0 0 −xn′xn −xn′yn
0 0 0 xn yn 1 −yn′xn −yn′yn































, h =











h11
h12
...

h32











, y =















x1
′

y1
′

...

xn
′

yn
′















The 2n ∗ 8 matrix form of the original equations is X · h = y.
The error of back projection is as follows

E =
∑n

i=1
(xi
′ − xi)

2 + (yi
′ − yi)

2
(35)

In combination with Equations (28) and (29):

E =
∑n

i=1
(x
′
i −

h11xi + h12yi + h1s

hs1xi + h32yi + 1
)
2

+ (yi
′ − h21xi + h22yi + h2s

hs1xi + hs2yi + 1
)
2

(36)

It is also equivalent to:

S(h) = ||Xh− y||2 (37)

The solution of the objective function is the solution of an interior
point matching pair with the minimum reverse error.

Then it is concluded that when h = h the minimum value
is S(h),

h = argmin(S(h)) (38)

The differential solution is as follows:

h = (XTX)
−1

XTy (39)

Endoscopic Image Fusion Results
After obtaining the optimal transformation matrix between the
images to be spliced, that is, after the image registration is
completed, image fusion needs to be used to merge the two
images into one image. However, due to uneven illumination
during shooting, the brightness of the overlapping parts of the
two images is very different. Or the image is deformed due to lens
distortion. These eventually lead to significant gaps in the stitched
image, which people generally call ghosts. In order to achieve the
consistency of human vision, we need to remove this trace. This
paper adopts the weighted fusion algorithm of gradual-in and
gradual-out, which can make the image transition smoothly and
avoid obvious boundary problems.

Suppose that the two images I1 and I2 are needed to be spliced,
and I is the fused image:

I(x, y) =







I1(x, y)
(d1I1(x,y)+d2I2(x,y))

2
I2(x, y)

(x, y) ∈ I1
(x, y) ∈ (I1 ∩ I2)
(x, y) ∈ I2

(40)

Where, d1 and d2 represent the weight values, and they are related
to the width of the coincidence part, i.e., d1 = 1

width
, where width

is the width of the coincidence part. d1 and d2 must also satisfy
the following requirements: d1 + d2 = 1,0 < d1 < 1,0 < d2 < 1.
In the process of fusion, the image d1 is gradually changed from
1 to 0 and d2 is gradually changed from 0 to 1 in the overlapped
part. Then, the image is slowly and smoothly transitioned from
I1 to I2 in the overlapping part.

EXPERIMENTAL RESULTS

The experimental materials used in the experiment are two
sets of three-dimensional images of the heart model and its
corresponding CT scan data and a set of actual three-dimensional
images of the soft tissue of the heart provided by Imperial College
London, which can be found on the public data website http://
hamlyn.doc.ic.ac.uk/vision/.

Two groups of experiments are carried out to verify the
accuracy of the improved algorithm proposed in this paper.
And the unpurified matching pair and directly use the RANSAC
purification algorithm are as comparison.

Experiment 1: 50 groups of registration experiments were
carried out on the images in endoscope image set (I), and the
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effect Figures 2–4 were shown, and 8 groups of data in the
experiment were randomly counted, as shown in Table 1.

As shown in Figure 2, it is the result of the initial matching
of the images in the endoscopic image set (I) using the Euclidean
distance. The two ends of the line in the figure are the matching
feature points of the two images to be registered. It can be seen
that the number of feature points is relatively dense. This article

uses lines with different colors to connect the key points in the
image to make them easier to distinguish. It can be seen from the
figure that there are more mismatched points because the lines
connecting the feature points are not very neat. This is because
there are more similar areas in the adjacent endoscopic images.

After the initial screening of the registration points using K
nearest neighbors, 127 pairs are obtained, as shown in Figure 3.

FIGURE 2 | The first matching result of feature points.

FIGURE 3 | Results of initial screening of matching pairs.

FIGURE 4 | The result after removing the mismatch.
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As shown in Figure 4, there are 113 registration pairs purified
by the RANSAC algorithm.

Experiment 2: Many registration experiments have been
carried out on the images in the endoscopic image set (II) to
verify the improved algorithm further. The results are shown in
Figures 5–7. Figure 5 is the initial matching results of feature

TABLE 1 | Comparison of purification algorithms for feature point matching.

Group

Matching number/

Correct number

Matching algorithm

Before

purification

RANSAC

purification

Improved

purification

algorithm

1 500/411 305/280 242/234

2 471/377 310/283 253/248

3 446/355 321/290 252/246

4 500/417 285/255 258/251

5 435/346 310/279 249/240

6 452/365 298/265 240/233

7 489/391 293/261 250/242

8 493/398 317/280 245/235

Average value 80.7% 89.9% 96.9%

points, and Figure 6 is the results after removing mismatches
by RANSAC directly. Figure 7 is the results after removing
mismatches by using the improved purification algorithm.
Similarly, eight groups of data in the experiment were randomly
counted, as shown in Table 2.

Figure 8 shows two adjacent endoscopic images with
overlapping areas called reference image and registration image.
Their sizes are both 500× 412. Figure 9 is the result of the fusion
based on the Improved SIFT image mosaic algorithm.

DISCUSSION

In this paper, the image Mosaic method based on SIF is used
to combine the two commonly used methods in feature point
purification. The experimental results show that the matching
of feature points is greatly improved. In addition, because there
is no complex structure such as neural network (Hang et al.,
2020), the method in this paper has the characteristics of simple
structure and short running time. Discussion

This experiment focuses on the endoscopic image mosaic
technology based on improved SIFT. After the experiment, we
can draw the following conclusions.

FIGURE 5 | Initial matching results of feature points.

FIGURE 6 | Result of RANSAC after removing mismatches.
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FIGURE 7 | The result of eliminating mismatches by improved purification algorithm.

TABLE 2 | Comparison of purification algorithms for feature point matching.

Group

Matching number/

Correct number

Matching algorithm

Before

purification

RANSAC

purification

Improved

purification

algorithm

1 305/244 153/137 98/94

2 308/249 151/133 100/97

3 312/251 156/139 103/99

4 300/241 147/131 95/91

5 315/253 158/142 107/104

6 299/239 149/134 99/95

7 303/242 152/135 102/99

8 307/248 151/132 101/96

Average value 80.3% 89.0% 96.2%

(1) As can be seen from Figure 3, after completing the initial
screening, the number of mismatching points is greatly
reduced. Although there are still some mismatching point
pairs, the accuracy rate has been significantly improved, and
the workload of RANSAC is greatly reduced. Comparing
Figure 3, we can see that the number of mismatching points
in Figure 4 is significantly reduced, and the matching lines
are also neat. It means that RANSAC algorithm is effective.

(2) It can be seen from Figures 6, 7 that the mosaic effect is
relatively good. There is no obvious splicing seam, and the
image transition is more natural. The experiment uses C++
and OpenCV library to simulate on vs. 2013. The algorithm’s
running time is 3,145Ms. The algorithm is time-consuming
and computationally heavy, which cannot meet the real-time
requirements of endoscopic image mosaic.

(3) From Tables 1, 2, we can see many mismatches in the

featurematching pairs obtained based on Euclidean distance.
After using the RANSAC purification algorithm directly,
the matching accuracy has been improved. However, there
are still mismatching pairs, which will greatly impact the
subsequent image mosaic. After the improved purification

algorithm, the mismatch pairs are eliminated, which is better
than using RANSAC directly. The RANSAC purification
algorithm is improved by about 7 percentage points, which
provides reliable data for subsequent applications, showing
that the improved purification algorithm in this paper is
effective for eliminating mismatches.

Experts and scholars have done a lot of research work in
image Mosaic. However, due to the particularity of minimally
invasive surgery environment, usually insufficient light and
soft tissue deformation, endoscope imaging is often disturbed
greatly (Luo et al., 2020). Therefore, there are not many
researches on endoscope image Mosaic technology in China.
The key problems of minimally invasive surgery endoscope
image Mosaic are still robustness and real-time. Although
this paper improves the robustness of endoscope image
Mosaic to a certain extent and achieves certain results,
there are still many problems to be studied and solved,
mainly including:

(1) The transformation matrix with 8 degrees of freedom is
adopted in image registration in this paper. The complex
transformationmodel can be further studied to obtain higher
registration accuracy. In this paper, image registration is
local registration, that is to solve the transform relationship
between the two images, image stitching also need to
consider the transformation between the two images, but this
can lead to cumulative error, caused the splicing image fuzzy,
therefore, the next step to research global registration, reduce
the cumulative error, improve accuracy of registration,
further improve the effect of stitching images.

(2) This paper is based on still images, but the future research
on dynamic images is also essential. Combining video
processing with image Mosaic technology, the panoramic
image obtained not only has wide field of view, high
resolution panoramic image, but also contains dynamic
elements in the image. In addition, the image Mosaic done
in this paper is two-dimensional, which can be extended to
three-dimensional imageMosaic in the future to obtainmore
intuitive endoscope images.
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FIGURE 8 | Two endoscopic images to be spliced. (A) Reference image; (B) image to be registered.

FIGURE 9 | The result of the improved SIFT algorithm.

(3) Since it is difficult to accurately evaluate the effect of spliced
images, this paper chooses the artificial observation method
to evaluate the effect of images. In the future, some criteria
for accurate evaluation of images can be proposed, and then
experimental verification can be carried out, so that the
effect of spliced images can be evaluated more objectively
and conveniently.

CONCLUSION

Because there are many similar regions in endoscopic images,
there are many matching errors, which will affect the final
stitching effect. An improved pair purification algorithm is
proposed to solve the problem. Firstly, the feature point
matching algorithm based on K-nearest neighbor bidirectional
matching is used for rough registration. Then RANSAC
is used to complete fine registration. In this way, the
mismatching rate is greatly reduced by combining the two

methods. Then, according to the exact matching point pairs,
the image matching relationship is determined. The image
transformation matrix is estimated. Finally, a gradual in
and out fusion is used to complete endoscopic images’
seamless stitching. The experimental results show that the
image’s effect is still good. However, because of the stitching
algorithm’s complexity, the stitching time is too long, which
does not meet the real-time requirements of endoscopic image
mosaic. Finally, several experiments are carried out to verify
the performance of the improved feature pair purification
algorithm. The experimental results show that the matching
rate of feature points is greatly improved, proving the
algorithm’s effectiveness.
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