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Scene understanding and decomposition is a crucial challenge for intelligent systems,

whether it is for object manipulation, navigation, or any other task. Although current

machine and deep learning approaches for object detection and classification obtain high

accuracy, they typically do not leverage interaction with the world and are limited to a set

of objects seen during training. Humans on the other hand learn to recognize and classify

different objects by actively engaging with them on first encounter. Moreover, recent

theories in neuroscience suggest that cortical columns in the neocortex play an important

role in this process, by building predictive models about objects in their reference frame.

In this article, we present an enactive embodied agent that implements such a generative

model for object interaction. For each object category, our system instantiates a deep

neural network, called Cortical Column Network (CCN), that represents the object in its

own reference frame by learning a generative model that predicts the expected transform

in pixel space, given an action. The model parameters are optimized through the active

inference paradigm, i.e., the minimization of variational free energy. When provided with

a visual observation, an ensemble of CCNs each vote on their belief of observing that

specific object category, yielding a potential object classification. In case the likelihood on

the selected category is too low, the object is detected as an unknown category, and the

agent has the ability to instantiate a novel CCN for this category. We validate our system

in an simulated environment, where it needs to learn to discern multiple objects from the

YCB dataset. We show that classification accuracy improves as an embodied agent can

gather more evidence, and that it is able to learn about novel, previously unseen objects.

Finally, we show that an agent driven through active inference can choose their actions

to reach a preferred observation.

Keywords: generative modeling, robotic perception, deep learning, active inference, representation learning

1. INTRODUCTION

Having a machine understand the world from pixels has been a long standing challenge defining
the field of computer vision (Hanson, 1978). In the last decade, we have witnessed a proliferation of
deep learning techniques in this domain, which started with the leap in performance obtained by a
convolutional neural network (CNN) on object classification (Krizhevsky et al., 2012). Besides the
exponential scaling of available compute resources, this progress is mainly fueled by the collection
of massive datasets like ImageNet (Deng et al., 2009). The main strength of these techniques is that
their classification accuracy typically improves as they are trained on more data, scaling to datasets
containing billions of images (Mahajan et al., 2018). However, this strength is also becoming a
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main point of critique, as an exponential increase in compute
(and energy) resources is required for marginal gains (Thompson
et al., 2021). Moreover, these classifiers are known to be
vulnerable to ambiguous and adversarial samples (Gilmer et al.,
2018), and are restricted to object categories known and seen
during training.

Humans on the other hand are embodied agents (Safron,
2021), allowing them to resolve ambiguity by actively sampling
the world (Mirza et al., 2018). They are also much better learners:
by the age of two, toddlers can recognize around 300 object
categories (Frank et al., 2016), and can generalize a newly
learned label to instances they have never seen before (Landau
et al., 1988). Moreover, toddlers actively engage with their
environment, visually exploring objects from various viewpoints
by looking at and playing with them (James et al., 2014). In
contrast to datasets collected for machine learning, which aim to
collect a large and diverse set of exemplars of each object category,
toddlers rather learn from a severely skewed data distribution,
where only a small set of object instances are pervasively present,
yet still we are able to generalize (Clerkin et al., 2017). Therefore,
we propose a more enactive method for object category learning,
in which an artificial agent can actively sample viewpoints.

Predictive coding is a paradigm based on the hypothesis of
the Bayesian brain (Rao and Ballard, 1999), which makes the
assumption that cortical circuits perform Bayesian inference to
find the hidden causes of the observed signals. According to this
paradigm, the brain entails a generative model and uses this to
encode the error on the predicted observation.

Active inference is a process theory of sentience, which states
that intelligent systems build a generative model of their world
and act by minimizing a bound on surprise, i.e., the variational
free energy (Friston et al., 2016). As such, active inference can
not only be used to build artificial agents (Çatal et al., 2020a),
but also to develop theories about functioning of the brain (Parr
and Friston, 2018). For instance, Parr et al. (2021) propose
an active inference account for human vision, which considers
perception as inferring a scene as a factorization of separate
(parts of) objects, their identity, scale and pose. Factorizing
object identify from their scale and pose is consistent with
the so called two stream hypothesis, which states that visual
information is processed by a dorsal (“where”) stream on the
one hand, representing where an object is in the space, and a
ventral (“what”) stream on the other hand, representing object
identity (Mishkin et al., 1983).

Similarly, Hawkins et al. (2017) hypothesize that cortical
columns in the neocortex build object-centric models, capturing
their pose in a local reference frame, encoded by cortical grid
cells. Also empirical evidence from cognitive psychology showed
that humans, given a single view of an object never seen before,
have strong expectations about rotated views of that object,
implying internal representations of three dimensional objects
rather than two dimensional views (Tse, 1999). Recent findings in
recordings of rhesus monkey brains provide evidence that indeed
3D shape is encoded in the inferior temporal cortex (Janssen et
al., 2000).

Drawing inspiration from all these findings, we present a
system for learning object-centric representations from pixel

data. Akin to how a toddler interacts with a toy, we devise
an artificial agent that can look at a 3D object from different
viewpoints in a simulated environment. Parallel to cortical
columns, our system learns separate models, which we call
Cortical Column Networks (CCN) for separate object categories,
which encode object pose and identity in two separate factors.
An ensemble of CCNs then forms the agent’s generative model,
which is optimized by minimizing free energy. By engaging in
active inference, our agent can realize preferred viewpoints for
certain objects, while also resolving ambiguity on object identity.

Building on previous work (Van de Maele et al., 2021a), we
now evaluate our agent on pixel data rendered from 33 objects
from the YCB benchmarking dataset (Calli et al., 2015). In this
article, we show that using object-specific models introduces the
ability to classify out-of-distribution objects through a two-stage
process that first aggregates the votes and then compares the
prediction error on the likelihood of the observation.We devise a
mechanism to aggregate information over multiple observations,
and show that an embodied, enactive agent outperforms a
static classifier for the object classification task. Moreover, we
provide qualitative insights on how the system resolves ambiguity
through the predictive model.

Additionally, we illustrate how the agent can be drawn to
preferred observations through the active inference paradigm,
which is crucial for object interactions such as grasping. We
investigate the behavior of the latent code representing the object
pose and show that the model maps similar observations to
the same latent, leveraging symmetrical properties of the object
structure to reduce the model complexity.

To summarize, the contributions of this article are threefold:

• We propose an object-centric model (CCN) that learns
separate identity and pose factors directly from pixel-based
observations through the minimization of free energy. The
ensemble of CCNs for known objects form the agents
generative model.
• We combine the learned identity latent representation with

the likelihood of a CCN to classify objects of both seen (exact
identity) and unseen (other class) categories.
• We show that through active inference, the agent can be

driven toward an expected observation. We find that the agent
reduces complexity in its internal model by mapping similar
observations to a similar latent code.

2. METHODS

In this section, we first discuss recent generative models for
human vision, and propose our generative model for object
recognition and perception. Second, we derive the free energy
functional to optimize such a generative model under active
inference. Finally, we present a particular instance of such a
model, using an ensemble of modular deep neural networks,
called Cortical Column Networks.

2.1. Generative Models for Vision
The Bayesian brain hypothesis finds its origin in the writings
of von Helmholtz (1977), and makes the assumption that the
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intelligent brain reasons about the world and its uncertainty
as a Bayesian process. This perspective is further formalized in
terms of active inference, which posits that the brain entertains
a generative model of how sensory data are generated, and
functions by maximizing a lower bound on Bayesian model
evidence through learning and action selection (Friston et al.,
2016). Perception then boils down to inverting this model and
finding the likely causes that generated the sensory data, i.e.,
using (approximate) Bayesian inference to compute posterior
probabilities over hidden causes.

In the context of vision, this calls for inferring the causes that
generate a retinal image in the case of a human, or an array
of camera pixels in the case of a machine. Such a generative
model should then be able to construct a scene and predict “what
would I see if I looked over there” (Mirza et al., 2016). Rao and
Ballard (1999) formalize a generative model for vision, through
the predictive coding paradigm, by applying the underlying
assumption that the external environment generates natural
signals in a hierarchical manner by interacting with hidden
physical causes such as object shape, texture or luminance. While
their generative model considers a factorization in separate latent
terms, it does not consider the influence of the observers pose and
does not explicitly factorize the scene in separate objects.

A detailed generative model of human vision is proposed
by Parr et al. (2021), as schematically represented in Figure 1.
To predict a retinal image, one needs to know the scene and its
constituent objects or entities, as well as the observer’s viewpoint
within that scene. This is depicted in Figure 1A: the observer’s
viewpoint vt at timestep t is determined by its location lt and
head direction ht in the scene s. What the observer sees are
the different entities ei that are described by their identity i

and their placement in an allocentric reference frame defined
by a translation ti and rotation ri. The retinal image ot is then
formed from the different entities ei, the observer’s viewpoint
vt together with the context c, e.g. the lighting conditions etc.
Importantly, the observer can take action at and move to another
location in the scene, rendering vision as an inherently active,
embodied process. The corresponding generative model is shown
in Figure 1B, which is simplified from Parr et al. (2021), in the
sense that Parr et al. (2021) also considers recursive definitions
of entities, i.e., objects can again be defined as their constituent
parts, and adopts a more fine grained factorization, e.g. also
taking into account eye direction as separate factors.

Similar generative models can be used for learning machine
vision using pixel observations (Eslami et al., 2018; Van de
Maele et al., 2021b). In this case, the system is trained to make
inferences about the scene s, given images ot and corresponding
absolute viewpoints vt . This requires massive datasets containing
many views of a large variety of scenes with a number of
constituent objects, typically limited to primitive shapes and
colors. However, this becomes unfeasible in the real world,
where the variety of objects and their arrangement in scenes
yields a combinatorial explosion, and where an accurate, absolute
viewpoint of the camera is often missing. Also, developmental
psychology suggests that toddlers don’t learn from scanning
scenes, but rather focus on a single dominating object that is close
to the sensors (Smith et al., 2010).

Therefore, we propose a different generative model, which
is more object-centric as opposed to scene-centric. We
draw inspiration from the Thousand Brains Theory of
Intelligence, focused on the computational principles of
the neocortex (Hawkins et al., 2019). First, we subscribe to
the principle of a repetitive functional unit, i.e., a cortical
column, which have basic similarity of internal design and
operation (Mountcastle, 1997). Second, each such functional
unit learns a model of complex objects (Hawkins et al., 2017),
inferring both “what” the object is as well as “where” it is located.
We model a single repetitive unit to have both the “what”
and “where” information streams, this in contrast to the brain
anatomy where the ventral and dorsal stream are present in
separate physical areas, resulting in separate cortical columns
for this function (Hawkins et al., 2019). Additionally, our model
only considers a single object per functional unit rather than the
numerous models a cortical column in the brain can contain.

Third, instead of inferring both the observer’s as well as the
object’s poses in a global reference frame, each model learns a
representation in an object-centric reference frame (Hawkins et
al., 2019). Again, the agent is enactive and can move around, but
instead of changing an absolute location and/or head direction,
actions are now encoded as relative displacements with respect
to the object at hand. This is depicted in Figure 2A: at timestep
t, the observer captures an observation ot of a certain object
with identity i, at a certain pose pt relative to the object. The
observer can move around by executing action at , which changes
the relative viewpoint to pt+1.

We can formalize such an object-centric generative model as a
Bayesian network, displayed in Figure 2B. We assume the agent
focuses on a single object with identity i, and can sample different
poses pt by moving around by taking actions at . At each timestep
t, the object identity i and current pose pt yield the observation
ot . The generative model up to the current timestep t can then be
factorized as:

P(i, p0 : t , o0 : t , a0 : t−1) =

P(i)P(p0)

t
∏

k=1

P(pk|pk−1, ak−1)
︸ ︷︷ ︸

Transition model

P(ok|pk, i)
︸ ︷︷ ︸

Likelihood model

P(ak−1). (1)

The generative model hence consists of a transition model,
which models how an action moves the agent to a new poses, a
likelihood model that predicts the observation of an object with a
given identity viewed from a given pose, and prior distributions
over identity, initial pose and actions.

Crucially, we will instantiate and learn such a separate model
for each and every object type. The identity variable i then
becomes a Bernoulli variable whether or not the object at hand
belongs to the object type this particular model is representing.
This is interesting from a computational perspective, as it allows
to train each model on a confined dataset consisting of mainly
views of a single object, which improves sample efficiency, and to
instantiate a new model when a new object type is “discovered”,
enabling continual learning without catastrophic forgetting. To
infer the object identity, we aggregate the outputs of the different
models as having them casting a “vote.”
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FIGURE 1 | (A) An observer’s view of the world is determined by its location lt and head direction ht at a timestep t, and the objects ei in the scene, their identity ii ,

and translation ti and rotation ri in the world coordinate frame. The observer can take action at to move to another location. (B) A generative model of vision, simplified

from Parr et al. (2021): starting from a scene s, we predict the objects or entities ei one might encounter, their identity ii and their placement in an allocentric reference

frame defined by a translation ti and rotation ri . Together with the context c, i.e., the lighting conditions, and the viewpoint vt of the observer the observation ot is

generated. Furthermore, the observer can change its viewpoint vt by taking actions at that move its location lt and/or head direction ht. Both actions and observations

are observed variables shown in blue, whereas the others are unobserved and shown in white.

FIGURE 2 | (A) Visual representation of the environment in which an object with identity i (in this case: sugar box) can be observed by a camera at a pose pt, relative

to the object. The agent can transform this viewpoint, provided it performs action at+1 to go to pose pt+1. At each pose, an observation ot is perceived. (B) The

Bayesian Network describing the generative model of the agent. The variable i represents the identity of the observed object, pt represents the latent representation of

the camera pose at timestep t. The variable ot represents the sensory observation and is dependent on the identity i and pose variable pt. The current camera pose pt
is dependent on the previous pose pt−1 and action at−1 of the agent. Again observed variables are shown in blue, while unobserved variables are shown in white.

In what follows, we derive the (expected) free energy
functional to infer actions for the agent to engage in active
inference, and to update the model in doing so. Next,
in Section 2.3, we provide more details on the actual
parameterization of the model, the training mechanism and the
voting scheme.

2.2. Active Inference
Active inference is a theoretical framework to describe the
behavior of intelligent agents in dynamic environments. This
theory postulates that all intelligent beings entail a generative
model of the world, and act and learn in order to minimize an
upper bound on the negative log evidence of their observations,
i.e., free energy (Friston et al., 2016).

In order to infer beliefs about the unobserved variables,
an agent needs to “invert” the generative model and calculate
the posterior, which is in general intractable. Therefore, the
agent resorts to variational inference, and approximates the true
posterior by some tractable, approximate posterior distribution.
In our case, we use an approximate posterior Q(i, p0 : t|o0 : t) that
factorizes as follows:

Q(i, p0 : t|o0 : t) = Q(i|o0 : t)

t
∏

k=0

Q(pk|i, ok). (2)

The variational free energy F is a quantity to describe Bayesian
surprise, i.e., how much the approximate posterior and the true
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joint distribution differ. Given the generative model defined in
Equation 1, the variational free energy F is then defined as:

F = EQ(i,p0 : t)[logQ(i, p0 : t|o0 : t)− log P(i, p0 : t , o0 : t , a0 : t−1)]

= DKL[Q(i|o0 : t)||P(i)]+
∑

t

DKL[Q(pt|i, ot)||P(pt|pt−1, at−1)]

︸ ︷︷ ︸

complexity

−
∑

t

EQ(i,p0 : t)[log P(ot|pt , i)]

︸ ︷︷ ︸

accuracy

(3)

Hence, minimizing free energy entails maximizing model
accuracy, while minimizing the model complexity, i.e., KL
divergence between the approximate posterior and prior
distributions. Also note that this is equivalent to maximizing
the Evidence Lower Bound (ELBO) as used in variational
autoencoders (Kingma and Welling, 2014; Rezende et al., 2014).

Crucially, in active inference, agents minimize the free energy
not only by updating their internal model, but also by performing
actions that they believe will minimize free energy in the future.
However, future observations are of course not yet available.
Therefore, the agent relies on its generative model to acquire

expected observations over future states, and uses these to
compute the expected free energy G for an action at :

G(at) = EQ(i,p0 : t+1 ,ot+1)
[logQ(i, p0 : t+1|o0 : t , at)

− logP(o0 : t+1, a0 : t−1, p0 : t+1, i|at)]

≈ −EQ(ot+1)
[logP(ot+1)]

︸ ︷︷ ︸

instrumental value

− EQ(i,p0 : t+1 ,ot+1)
[logQ(i|o0 : t+1, at)− logQ(i|o0 : t , at)]

︸ ︷︷ ︸

info gain on object identity

(4)

− EQ(i,p0 : t+1 ,ot+1)
[logQ(p0 : t+1|i, o0 : t+1, at)− logQ(p0 : t+1|i, o0 : t , at)]

︸ ︷︷ ︸

info gain on object pose

Here, we make two assumptions. First, we assume that the
prior P(o0 : t+1|at) ≈ P(ot+1). In active inference, the agent
is assumed to have prior expectations about preferred future
observations (Friston et al., 2016). Because this is a prior
expectation, we can leave out the conditioning on action, and
it only applies on future observations. Second, we assume
that the bound on the evidence is tight, and hence that the
approximate posterior distributions can be used in lieu of
the true posteriors, i.e., P(i|o0 : t+1, at) ≈ Q(i|o0 : t+1, at) and
P(p0 : t+1|i, o0 : t+1, at) ≈ Q(p0 : t+1|i, o0 : t+1, at).

FIGURE 3 | A Cortical Column Network (modeling a master chef can). In the top left, an observation o0 is provided to the encoder model qφ . This model predicts the

distribution over identity as Bernoulli variable to be either belonging to the dedicated object category (i.e., master chef can) or not. Secondly, a distribution over the

latent pose variable p0 is predicted. A sample p0 from this distribution is then decoded through the decoder pψ and provides the reconstruction ô0. Using the

transition model pχ , this pose sample is transitioned into a belief over the latent pose variable p1,transitioned, given action a1. A sample from this new belief over

p1,transitioned is also decoded into an expected view ô1,transitioned.
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The result can be decomposed into three terms. The first term
is the instrumental value, which values future outcomes that have
a high probability under the prior distribution over preferred
outcomes. Intuitively, this will yield a high value for expected
observations that are similar to the preferred observation. The
second term is an epistemic term that values information gain on
the object identity. This means that it will result in higher values
for actions that will provide more information, i.e., the expected
difference between prior and posterior distributions is large. The
third term is also an epistemic term that values information
gain on inferring the agent’s pose relative to the object. This
is similar to the second term, but this time in terms of the
pose latent.

2.3. Cortical Column Networks
In order to engage in active inference, an implementation
of the generative model is needed. We choose to model the
vision system as the generative model defined in Section 2.1.
We use the factorization shown in Equation (1). The priors
over identity, initial pose and actions are constant and are
therefore not explicitly modeled. The posterior distributions
of the likelihood model is defined as the distribution over
the observation, when the latent variables describing identity
and pose are provided. The transition model represents the
relation between the pose latent at the next timestep, provided
with the pose latent at the current timestep and the taken
action. Finally, we amortize the inference process that infers
the latent variables describing identity and pose, given an
observation by an encoder model. We call the combination
of a likelihood model, transition model, and encoder model
for a single object category a Cortical Column Network
(CCN) for this object category. In this context, amortization
simply means learning a mapping from sensory input to the
sufficient statistics of an approximate posterior, with a known
functional form. Knowing the functional form of the posterior
means the free energy objective functionals are well defined,
enabling the application of standard optimization techniques
(in this case Adam Kingma and Ba, 2015). This enables a
generic optimization of belief distributions that underwrite active
inference (Dayan et al., 1995), and can be thought of as learning
to infer.

For high-dimensional data, such as pixel-based observations,
designing a mapping to a latent distribution is infeasible by hand.
We thus resort to deep learning to learn the likelihood and
transition models directly from observation data. Additionally,
we amortize the inference process and learn the encoder
model jointly, similar to the approach applied in variational
autoencoders (Kingma and Welling, 2014; Rezende et al.,
2014).

2.3.1. Model
We propose the Cortical Column Network (CCN) as basic
building block of our architecture. Drawing inspiration from
the Thousand Brains Theory (Hawkins et al., 2017), which
promotes the modularity of cortical columns in the brain that

learn predictive models of observed objects, we instantiate a
separate CCN for each object type or identity. This results
in a dedicated CCN for each known object type, and can be
scaled to more objects by adding more CCNs. A CCN consists
of three neural networks: an encoder qφ , a decoder pψ , and
a transition model pχ , which parameterize the approximate
posterior, likelihood model and transition model introduced
in Equations (1) and (2). The encoder qφ has two heads that
map a pixel-based observation to both a pose latent space p,
which is modeled as a Normal distribution with a diagonal
covariance matrix, and an identity latent space i, modeled as a
Bernoulli variable. The decoder pψ learns the mapping from the
pose latent p to a distribution over the observation o, which is
modeled as a Normal distribution with fixed variance N (ô, I).
The transition model pχ learns to transform a sample from the
pose latent p to a belief over the transitioned pose in latent
space, also modeled as a Normal distribution with diagonal
covariance matrix.

The information flow of a single CCN is shown in Figure 3.
A single CCN is dedicated to model a single object type, in
this case a master chef can. An observation o0 is fed into the
encoder qφ , as depicted in the top left corner. The belief over the
identity of observation o0 is represented as a Bernoulli variable
marking whether or not the observation belongs to the CCN
object category. The encoder also outputs a distribution for the
pose latent, from which samples can be decoded into expected
observations using decoder pψ , as shown in the top right of the
figure. Finally, the bottom row illustrates the transitionmodel pχ ,
which computes a belief over the pose latent p1 after taking an
action a1, at current pose latent p0. Again, the decoder model pψ
can be used to estimate observation ô1 after action a1. This gives
the CCN the ability to imagine “what would this object look like
from here,” and to infer the best action, e.g. that minimizes the
expected free energy (Equation 4). Once an action is selected, the
agent moves to a new pose, obtains a novel observation o1, and
the process repeats.

2.3.2. Optimization
The encoder, decoder and transition neural networks for a single
object are optimized in an end-to-end manner from pixel-based
observations. For each object, we create a dataset Di from
which one can sample triplets (o0, a1, o1), i.e., two images o0
and o1 together with action a1 which is the relative transform
to move the camera from the initial to the next viewpoint.
All viewpoints are collected such that the target object is
centered in view.

The overall train procedure is given in Algorithm 1. When
training the CCN for object i, each iteration we sample a
triplet (o0, a1, o1) from Di, as well as an observation onegative
of a random other dataset Dj 6=i. We forward all observations
through the encoder model, and reconstruct ô0, ô1 from the pose
latents p0 and p1, as well as ô1,transitioned after transitioning from
pχ (p0, a1). To minimize the variational free energy as defined in
Equation (3), our loss function becomes:
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LFE = ||ô0 − o0||2 + ||ô1 − o1||2 + ||ô1,transitioned − o1||2
︸ ︷︷ ︸

Lreconstruction

+ DKL[qφ,p(o1)||pχ (p0, a1)]
︸ ︷︷ ︸

Lcomplexity

+ BCE(qφ,i(o0), 1)+ BCE(qφ,i(o1), 1)+ BCE(qφ,i(onegative), 0)
︸ ︷︷ ︸

Lclassification

(5)

Here, we represent the likelihood model as an isotropic Gaussian
on the reconstructed pixels ô, which yields a mean squared
reconstruction loss for the accuracy term in Equation 3, resulting
in the Lreconstruction term of the loss in Equation (4). Lcomplexity in
Equation (4) exactly represents the complexity term for the poses
as a KL divergence term between the encoded pose distribution
on the one hand, and the predicted transitioned pose distribution
on the other hand. For object identity, we assume a uniform
prior P(i) in Equation (3), which results in a binary cross entropy
(BCE) loss term for each CCN, and we use the other object
sample onegative to contrast. These terms form the Lclassification

of the loss in Equation (4). For further details on the training
procedure, we refer to the implementation details in Section 3.1.
Note that the distribution over the latent pose variable is modeled
as a Gaussian distribution with a diagonal covariance matrix
for which the parameters are learned through the optimization
process. Hence, these latent dimensions do not reflect the
translation and orientation parameters of an absolute pose in an
Euclidean reference frame, but encode the pose in an abstract,
object-local reference frame.

Algorithm 1 : CCN training.

1: for iteration = 1, 2, . . . do
2: (o0, a1, o1) ∼ Di ⊲ Sample observation-action pairs

from the dataset of object identity i
3: onegative ∼ Dj 6=i ⊲ Sample negative anchor
4: p0, i0 ∼ qφ(o0) ⊲ Encode the observations and

sample a pose and identity latent
5: p1, i1 ∼ qφ(o1)
6: p1,transitioned ∼ pχ (p0, a1) ⊲ Transition the pose latent
7: ô0 ← pψ (p0) ⊲ Reconstruct samples
8: ô1 ← pψ (p1)
9: ô1,transitioned ← pψ (p1,transitioned)

⊲ Compute the loss terms
10: Lreconstruction ← ||ô0 − o0||2 + ||ô1 − o1||2 +

||ô1,transitioned − o1||2
11: Lclassification ← BCE(qφ,i(o0), 1) + BCE(qφ,i(o1), 1) +

BCE(qφ,i(onegative), 0)
12: Lcomplexity ← DKL[qφ,p(o1)||pχ (p0, a1)]
13: L← Lreconstruction + Lclassification + Lcomplexity

14: φ,χ ,ψ ← Adam(L) ⊲ Update parameters

2.3.3. Voting Over Object Identity
After training a CCN for each of the N known objects, our
aim is to infer the object identity Q(i|o0 : t), as a categorical
distribution with N + 1 categories, one for each object type and
an “other” category. To this end, we use a Dirichlet distribution
with concentration parameters α0 :N as conjugate prior for
the categorical variable. At each timestep t, the concentration
parameters are updated as follows (Smith et al., 2022):

{

αi,t = αi,t−1 + η · qφ,i(ot) , for i < N

αN,t = αN,t−1 + 0.5
(6)

We initialize αi,0 as a constant vector with values 0.1. This can
be interpreted as the voting mechanism from the Thousand
Brains theory (Hawkins et al., 2017), where each CCN casts a
vote on whether the object in view belongs to the category it
was trained on. Over time, the different votes are aggregated
as collecting evidence for the different object categories. When
an unambiguous view is rendered from a known object, only a
single CCN, i.e., the one trained on that object category, will be
active and cast a vote. However, in the case the object category
cannot be distinguished from an observation, i.e., the top of a
cylindrical object could be both a master chef can or a chips can,
multiple votes will be cast on the different possible categories.
In this case, the embodied agent can query additional views, in
particular views that will provide information gain about object
identity and as such minimizing the expected free energy defined
in Equation 4.

In case of an unknown object, ideally none of the CCNs
is active. Therefore, we add a fixed vote of 0.5 for the
“other” category, which will prevail when none of the CCNs
is consistently active over time. However, in practice, we find
that unkown objects behave as out-of-distribution data for each
individual CCN, and the predictions from the learned model
are therefore unreliable. To mitigate this inherent limitation of
deep neural networks, we propose an additional likelihood-based
scheme for detecting the “other” category. Concretely, we look at
the reconstruction error of the likelihoodmodel to assess whether
the CCN is in effect correctly modeling the object at hand. When
the reconstruction error exceeds an object-specific threshold, the
votes cast by the CCNs are ignored, i.e., η = 0, and only a vote of
0.5 is cast for the “other” category.

Moreover, instead of calculating the total mean squared error,
we use a scaled reconstruction error. As scale factor, we choose
the reciprocal of the amount of pixels in the intersection between
the foreground masks of the prediction and the observation.
The foreground masks are obtained by thresholding the fixed
background color used in the renderings. This forces the original
observation and the reconstruction to have high overlap, and
increases the weight of foreground pixels for small objects.

When multiple timesteps are considered, the likelihood based
threshold also considers the transition with respect to the
previous observation. Concretely, when executing an action, we
predict the new observation by first inferring the new pose given
the previous pose and action, and reconstructing that one. Again,
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in order for the vote to be valid, the CCNmust now have a scaled
reconstruction error smaller than the thresholds for both cases.

In the case of embodied agent, the action selection process is
driven through the minimization of expected free energy G. To
infer the object identity, the prevalent term in the expected free
energy G is the information gain term on object identity. The
agent then chooses the action as follows:

at+1 =

argmin
at+1

−EQ(i,p0 : t+1,ot+1)[logQ(i|o0 : t+1, at)− logQ(i|o0 : t , at)]

(7)

In practice, we use a Monte Carlo approximation where we
evaluate this term for a number of randomly sampled actions,
and select the best one. Similarly, the expectation is approximated
by sampling from our models.

2.3.4. Moving Toward a Preferred Observation
Once the agent has inferred the object class and its pose with
respect to the object, it can also use the model to infer actions that
bring the agent toward a preferred observation opreferred. This can
be useful in use cases where the agent needs to inspect a particular
aspect of a certain object more closely, or when the agent needs
to manipulate the object and is provided with a (demonstration
of a) grasp pose.

To infer the action that brings the agent toward a preferred
observation, we can again evaluate the expected free energy G.
In this case, we assume the agent already correctly inferred the
object identity and pose, i.e., the information gain on these
variables is low, and the expected free energy G boils down
to maximizing the instrumental value in Equation (4), i.e., the
expected error between the predicted and preferred observation.
As our likelihoodmodel in pixel-space does not necessarily reflect
the perceptual difference between two images (Zhang et al.,
2012), we match instead the likelihood in the pose latent space.
We do this by first determining the preferred pose distribution
P(pt+1) by encoding the preferred observation opreferred, and then
minimizing the expected free energy with respect to the actions
to match this preferred distribution, essentially computing:

at+1 = argmin
at+1

EQ(pt+1|pt ,at+1)[− log(P(pt+1))] (8)

Again using a Monte Carlo approximation, we first sample
random actions, evaluate the expected free energy for all these
actions with respect to the preferred pose distribution, and select
the action with the lowest expected free energy. The preferred
pose distribution is computed by encoding the preferred
observation opreferred using the encoder model qφ,p, whereas
the expected pose distribution is acquired by transitioning the
current pose latent pt to an expected future pose latent using the
transition model pχ .

TABLE 1 | Ranges from which the absolute viewpoints are sampled in spherical

coordinates in the dataset creation process.

Variable min max

azimuth 0 2π

elevation − π
2

π
2

radius 0.10m 0.55m

θ 0 2π

3. RESULTS

In this section, we conduct and analyze a number of experiments
to evaluate our proposed approach. First we explicate the
experimental setup, dataset creation, model parameterization,
and training details. In a series of experiments the following
research questions are addressed:

• Can a collection of CCNs be used for object classification?
• Can the ensemble of CCNs be used for detecting which object

categories are out of distribution, essentially quantifying what
the model does not know?
• Does embodiment improve classification accuracy as the agent

can resolve ambiguity using multiple observations?
• Can a CCN for a given object category be used for object

pose estimation?

3.1. Experimental Setup
To train our ensemble of CCNs, a dataset of different objects is
required. To this end we select a subset of 33 objects from the
YCB dataset (Calli et al., 2015), for which high quality triangular
meshes were readily available. This set of objects is split in a
known and unknown category, consisting of 26 and 7 objects
respectively. For a full list of the used objects, the reader is
referred to the Supplementary Materials.

For each object category of the known category, we create
a dataset by rendering object meshes from this object on a
uniform background. The camera poses are sampled randomly
from a uniform distribution in spherical coordinates, for which
the ranges are provided in Table 1. The orientation is then
determined as the orientation to point the camera to the center
of the object’s bounding box, and randomly rotated with angle θ
around the axis pointing to the object. For each object, a dataset
of 10000 views is created, for which 90% is used as train data, 5%
as validation data and 5% for testing.

We base our encoder and decoder model on the variational
autoencoder architecture used in Ha and Schmidhuber (2018),
where an image is first processed through a convolutional
pipeline, after which a linear layer is used to transform
the extracted information into the parameters of a Gaussian
distribution with a diagonal covariance matrix. The decoder is
the inverse of this process, where the embedding is expanded
into the spatial dimensions. This result is then upscaled through
a deconvolution pipeline into an expected observation. For the
transition model, we simply use a multilayer perceptron network.

The encoder model qφ is instantiated as a convolutional
neural network that first processes a 64 by 64 RGB image with
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4 convolutional layers. Each layer has a 4x4 kernel and uses a
stride of 2. The layers output tensors with 8, 16, 32, and 64
channels, respectively after which they are activated through a
LeakyReLU activation function with a negative slope of 0.01. The
resulting representation is flattened to a 256-dimensional vector
after which it is processed by two separate heads, or in other
words, separate linear layers. The classification head is a linear
layer, followed by a sigmoid activation function that predicts the
Bernoulli variable directly. The second head predicts the mean
of the belief over the pose latent by a linear layer with 8 outputs,
while the variance is predicted as the softplus of the output of a
third linear layer with 8 outputs.

The decoder model pψ is designed as the inverse of the
encoder. The latent code is first expanded into a 64 dimensional
vector using a linear layer, followed by a LeakyReLU (0.01
negative slope). The result is now reshaped into an image tensor
that can be processed by convolutional layers. It is then processed
by 2 transposed convolution layers with kernel size 6 and stride
2, after which it is fed through 2 transposed convolutions with
kernel size 5 and stride 2. The output channels of these four layers
are 64, 64, 32 and 16 and are followed by LeakyReLU activations
with a negative slope of 0.01. Finally, a convolution layer with
kernel size 1x1 and stride 1 is used to compress the channels into
a 3-channel image, followed by a sigmoid to ensure the outputs
are in the [0, 1]-range.

The transition model pχ is parameterized as three linear
layers that are followed by a LeakyReLU activation function with
negative slope of 0.01. The first layer takes the concatenation of
the pose latent code, the translation vector of the selected action
and the orientation quaternion of the selected action as input,
and transforms it to a 128 dimensional vector. The following
two linear layers both have 256 outputs. This final output is then
passed through 2 separate linear layers with 8 outputs, of which
the first represents the mean of the transitioned belief and the
second is passed through a softmax, which then represents the
predicted variance of the belief over the transitioned pose.

The model is optimized in an end-to-end fashion using the
Adam optimizer (Kingma and Ba, 2015) with learning rate 10−4

on the loss described in Equation (4). The separate terms in this
loss function are scaled using Lagrangian multipliers (Rezende
and Viola, 2018), which are inversely proportional to the gradient
on the difference between the loss-term and a tolerance, to
avoid posterior collapse. The multipliers for each term have an
initial value and will be adapted within a specific range. The
tolerances start at a fixed, low value and are updated every 500
steps. If the threshold is not reached, the tolerance is relaxed by
multiplying it with a value of 1.10. This enforces the model to
focus first on producing good reconstructions, and later optimize
for classification and minimizing complexity. We also add a KL
loss for all Gaussian outputs to standard normal to improve
training stability. The values used in the optimization process are
shown in Table 2.

3.2. Classification
First, we investigate the classification performance of our
ensemble model consisting of 26 CCNs. These CCNs are each
trained on a single object category, while views from the other 25

TABLE 2 | Values used in the constrained optimization mechanism (Rezende and

Viola, 2018), used for training a CCN.

Parameter Initial value Range

λreconstruction 80 [0, 100]

λreconstruction_transition 40 [0, 100]

λclassification 500 [0, 1000]

reconstruction start tolerance 10 N/A

transitioned start reconstruction tolerance 10 N/A

classification start tolerance 0.01 N/A

tolerance adjust frequency 500 N/A

Reconstruction references direct reconstruction without transitioning the latent code. The

transitioned reconstruction references the reconstruction loss on the transitioned latent,

and the classification terms reference the binary cross entropy terms in the loss function

from Equation (4).

categories are used as negative anchors. The 26 object categories
are listed in the confusion matrix, shown in Figure 4. First,
we evaluate the performance of classifying a single observation,
followed by an experiment in which an embodied agent can query
multiple observations sequentially.

3.2.1. Static Agent Classification
To investigate the classification performance of a static agent,
we provide the agent with a single observation. We address
whether an ensemble of CCNs can be used for accurate object
classification. Additionally, we investigate to what extent our
approach can accurately detect when an object is out of
distribution, i.e., the object does not belong to a category
previously seen by the agent during training.

For each object category, 100 samples are randomly sampled
from the test for classification, and all unknown objects are
clustered in an “other” category. As described in Section 2.3,
each CCN votes for the known category it was trained on,
provided that the reconstruction likelihood is within a predefined
threshold. We empirically determine the threshold for each
category by looking at the reconstruction errors of train-set
observations, and scale the 95% quantile value by a factor 1.1, to
remove outliers. This results in a high classification performance
while still being able to detect more novel objects.

We show the confusion matrix for the static agent in Figure 4.
An average classification accuracy of 86.71% is achieved. The
confusion matrix shows that the main source of errors is due
to the CCNs not being confident enough on the reconstruction
and the “other” vote wins. We also see that in some cases there
is some confusion between similar shaped objects, i.e., between
“pudding box,” “cracker box,” and “gelatin box.” We hypothesize
(see Section 3.2.2) that querying more observations of the same
object will adjust the vote for the correct object category, and
after multiple observations the agent will resolve these issues.
We qualitatively investigate these difficult samples, as is shown
in Figure 5. This figure shows ambiguous observations that are
incorrectly classified by the ensemble of CCNs. It can be observed
that the reconstruction from both the (wrongly) chosen model
and the correct model are very similar. For example for the
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FIGURE 4 | Confusion matrix, using the max of a Dirichlet distribution and a likelihood based threshold over object beliefs as described in Section 2.3. 100 examples

are classified for each class of the 26 known and 7 unknown objects. Overall, an average classification accuracy of 86.71% is achieved.

strawberry and the apple, a large red circle is reconstructed. It
is thus difficult to accurately predict the object class.

Figure 5 also shows the expected next viewpoint that would
be encountered if an action minimizing expected free energy
G was performed. The latent code for both potential object
categories is acquired through both the correct and incorrectly
chosen transition models and an imagined view can be acquired
using the respective decoders. Clearly, these selected observations

are more easily distinguishable and thus enforce our hypothesis
that embodiment will aid in the correct classification of three
dimensional objects.

Alternatively, we could also train a single classifier using
the same amount of parameters as the ensemble of CCNs
which we expect to achieve similar classification accuracy to
the ensemble of CCNs. However, due to the inherent nature
of the model design, it would be unable to estimate when
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FIGURE 5 | Ambiguities found in the ensemble CCN classifier. From left to right: initial observation ot provided to the agent. The reconstruction ôt predicted using the

expected model. The reconstruction ôt predicted using the correct model. The chosen next observation ot+1 through the minimization of expected free energy G. The

expected observation ôt+1 using the selected model. The expected observation ôt+1 using the correct CCN model. (A) The gelatin box. (B) The pudding box. (C) The

strawberry. (D) The sugar box.

objects from an unseen category occur and this model would
not have the flexibility to add new modules when novel objects
are encountered.

3.2.2. Embodiment and Aggregating Votes
The previous section showed some clear disadvantages using a
static agent: ambiguities can not be resolved, nor can information
from previous observations be used to make a more confident,
and more reliable decision. In the following experiment, we
investigate whether classification accuracy improves as the agent
is embodied and can actively query novel viewpoints. At each
timestep, the agent randomly samples 100 action candidates
and evaluates the expected free energy, i.e., to maximize the
information gain on object identity as stated in Equation (4). This
action is then executed and a novel observation is provided to the
agent, which updates the Dirichlet concentration parameters and
the process repeats.

In Figure 6, the classification accuracy of an active inference
driven agent over time is shown for different datasets. When
testing the agent only on the known classes (dashed line), the
agent can immediately resolve ambiguities and the performance
reaches 100% after two steps. When only considering objects
from the 7 “other” categories (dotted line), the classification
accuracy starts at a lower value of around 70% (as can also be
seen in the confusion matrix in Figure 4), and over time reaches
an accuracy of 85%. Finally, the red line shows the classification
accuracy for all objects combined (26 known and 7 unknown
objects). The performance rises from 87 to 97% after nine steps.
The full confusion matrix for each different step can be found in
the Appendix.

It can be observed that the accuracy for the known classes
only increases. This is attributed to the Dirichlet information
aggregation scheme. As more information is acquired, the
votes and evidence for certain object categories becomes more
overwhelming. In contrast, accuracy for the other category clearly
gains information after a single timestep, but then fluctuates
between 80 and 90%. As described in Section 2.3, the other
category is mainly detected by the second reconstruction-based

phase of the classification pipeline. This phase considers the
current observation, and the transition given the previous
observation, the window of information is thus two timesteps,
and therefore no classification performance increase is found
after more than two steps.

As a comparison baseline, we evaluated the embodiment using
a random agent, i.e., the next viewpoint is randomly selected
instead of using free energy minimization. The accuracy this
random agent realizes, is indicated by the blue line in Figure 6.
The performance of the random agent is on par with the active
inference agent. We also observe that the ratio of informative
views with respect to ambiguous views is high. Recall from the
confusion matrix, the correct object identity can be inferred in
over 80% in the first step of the (randomly) sampled views.
Hence, it is to be expected that providing a random additional
view provides the necessary information to get the correct
classification, and the free energy agent has only a small margin to
improve upon. We expect the gap between the free energy agent
and a random agent to become larger in the case where more
ambiguous viewpoints are present, as the free energy agent will
avoid those as evidenced by Figure 5.

3.3. Pose Estimation
Next, we evaluate to what extent CCNs can be used for object
pose estimation, given a desired view. First, we qualitatively
evaluate the object pose estimation for different objects. At each
timestep, the agent samples 1,000 random actions and calculates
the instrumental term of expected free energy G as described in
Section 2.3.4. Again, the agent selects the action that minimizes
the expected free energy and queries a new observation.

In Figure 7, we plot the input and target views, as well
as the predicted viewpoints with the best (lowest) and worst
(highest) expected free energy G for master chef can, mustard
bottle, strawberry and windex bottle. Below each observation the
inferred or predicted latent code is shown. It is clear that the
latent code is similar for matching the observations, while having
the additional benefit that it does not suffer from the typical issues
with MSE such as the scaling issue for pixel-wise errors.
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FIGURE 6 | Classification accuracy over time for an embodied agent, driven through the active inference paradigm. The agent is provided with different objects in

random poses to classify, accuracy over a duration 10 steps is plotted. For each object category, 5 splits of 20 observations are classified and are used to visualize the

95% confidence bounds. The graph indicates classification accuracy over time for objects of the 26 known and 7 unknown objects. The red line represents the

accuracy for the free energy agent, while the blue line represents the accuracy for the random agent. For the active inference agent, the distinction is made between

the known and unknown objects: the dotted red line indicates the classification accuracy for objects of the 7 unknown object categories and the dashed line indicates

the classification accuracy for the 26 known objects.

FIGURE 7 | Qualitative results for object pose estimation for (A) master chef can, (B) mustard bottle, (C) strawberry, and (D) windex bottle. The first column shows

the input of the model with the mean latent code shown below. The second column shows the target observation along with its mean latent code. The third column

shows the imagined observation and the transitioned latent code for the action with the lowest expected free energy G, while the final column shows the imagined

observation and latent code for the action with the highest expected free energy G.

However, when we quantitatively evaluated the resulting
poses, we noticed that the absolute pose error in Euclidean space
was often way off, despite similar reconstructions. To further
inspect this, we plot the expected free energy landscape for
varying azimuth and elevation for the predicted target pose, as
well as the initial, target and selected pose.

In Figure 8, we show heatmaps of expected free energy G for
25 objects from the YCB dataset in the pose estimation scheme.
The exact pose can be represented by four degrees of freedom:

azimuth, elevation, radius and axis angle θ . We vary two of these
dimensions while keeping angle θ and radius fixed and plot the
expected free energy landscape for the agent to reach a target
observation, marked by the red cross. As indicated by the figure
legend, the lightly colored areas are more desired by an active
inference agent as they have a lower expected free energy. The red
cross marks the preferred state of the agent, and the black dots
show the initial observation and the point with lowest expected
free energy.
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FIGURE 8 | Heatmaps of the expected free energy G for reaching a target observation, marked by the red x. The pose parameters radius and angle θ around the

z-axis of the camera are kept in a fixed position, while varying the azimuth and elevation angle over their full range in 40 linearly spaced points in each dimension. The

initial point and the point with lowest expected free energy G are marked by black dots. The arrow head points at the point with lowest free energy, starting at the

pose of initial observation.

For some objects, such as banana and mug, there is a clear
global minimum in the expected free energy landscape, and the
pose estimation is quite accurate. However, for other objects,
such as sugar box, mustard bottle and bleach cleanser, there
are multiple local optima, or the landscape might even be
invariant to the azimuth axis, as is the case for a lot of the
can and box objects, the bowl and plate. These areas with
low free energy are aliased areas, where the symmetry of the

object surfaces. This shows how our model has actually learned
various object symmetries, and learns to map different aliases
with similar pixel observations onto the same point in pose
latent space.

This can be viewed more clearly for imaginations generated
while varying one dimension of these plots. Figure 9 shows
imaginations of a varying azimuth or elevations while keeping
the three other dimensions fixed. In the heatmap of the
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FIGURE 9 | Imaginations generated from CCN models of (A) master chef can, (B) strawberry, (C) windex bottle, and (D) plate. We vary a single dimension while

keeping the other three at a fixed position. The top row shows a varying elevation and the bottom row shows a varying azimuth, within the full range as defined in

Section 2.3.

master chef can, it can be observed that varying the azimuth
results in the same expected free energy, while this differs for
changing the elevation. Figure 9A shows this more clearly as
all reconstructions of a straight can are identical. The model
did not learn to reconstruct the exact contents of the can label,
but blurs this as an average of the whole can. Similarly for
Figure 9D, a different azimuth will show a horizontal plate, and
no difference can be found. In contrast, the strawberry has a fairly
localized expected free energy minima, which can be attributed
to the position of the green on the strawberry head. For this
reason, the different orientations can be differentiated. The same
can be found for the windex bottle, where the objects inherent
asymmetry results in a clearer loss landscape.

4. DISCUSSION

In this article, we proposed a method for learning object-centric
representations in an unsupervised manner from pixel data.
We draw inspiration from recent theories in neuroscience, in
particular an active inference account of human vision (Parr et al.,
2021) and the Thousand Brain Theory on intelligence (Hawkins
et al., 2017). This leads to a modular architecture, where each
model separately learns about an object category and a pose
in an object-centric reference frame. We called our modular
building block a Cortical Column Network, referring to the
cortical column structures in the neocortex which (Hawkins et al.,
2017) hypothesize also model objects in a local reference frame.
However, despite the similarities, it is important to note that
there are also important differences with how biological cortical
columns are supposed to work in the Thousand Brains theory.

For instance, each cortical column in the neocortex processes
a distinct, small sensory patch, whereas our CCNs all work on
the same, full resolution camera input. Moreover, each cortical
column is hypothesized to model and vote for a larger number
of object categories, which yields a more scalable processing
architecture and sparse object representations. Finally, we also
note that as the “what” and “where” information stream are
located at distinct areas in the brain, this information is
also processed through separate cortical columns. These and
other aspects are not treated in our current CCN architecture,
and it remains an exciting research direction to investigate
to what extent artificial agents should mimick biologically
plausible architectures and processing methods. For example, the
representation of multiple internal models, or hypothesis for the
sources of sensory information, has been explored in the context
of birdsong and social exchange in the auditory domain (Isomura
et al., 2019). Again, the basic idea is that multiple hypotheses are
entertained and the model with the highest evidence contributes
more to the posterior beliefs (i.e., Bayesian model average) about
latent states or codes. Embedding our CCNs within the active
inference framework enabled us to integrate both model learning
and action selection under a single optimization objective. It
would be interesting to investigate to what extent biological
cortical columns could also be modeled to engage in active
inference to produce motor commands.

Having a repertoire of object-specific cortical columns, who
can “vote” or “compete” to explain sensory input, can be
understood from a number of perspectives. The thousand
brains perspective is closely related to mixtures of experts, of
the kind found in MOSAIC architectures for motor control
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(Haruno et al., 2003). Perhaps most generally, it can be regarded
as a simple form of Bayesian model averaging (Hoeting et al.,
1999). In other words, each cortical column builds a posterior
belief about the attributes of an object, under the hypothesis
or model that the object belongs to a particular class. The
evidence for this model is then used to form a Bayesian model
average over object attributes. A Bayesian model average simply
marginalizes over the models by taking a mixture of posteriors
under each model, weighted by the evidence for the respective
models (usually, a softmax function of variational free energy).

Visual information is processed according to two major fiber
bundles in the brain. It is hypothesized that these two fibers
process separate aspects of the observed visual stimulus. The
observed object identity is processed through a ventral pathway,
and the objects location is processed through a specialized dorsal
pathway (Grobstein, 1983). We found that using a ensemble of
CCNs, a high accuracy classifier can be built combining both
a ventral (“what”) stream to infer object identity, and a dorsal
(“where”) stream inferring an object pose, and predicting other
viewpoints. Crucially, we showed that an enactive, embodiment
agent is required both to train such a system unsupervised, by
collecting a dataset of viewpoints of each object, as well as tomake
correct inferences, and resolve ambiguity in the observation. In
this work, we decoupled the data collection and the inference
phase, and trained on a dataset of a relatively large number of
randomly queried poses. Under active inference, one can also
model the inference process over model parameters (Friston
et al., 2016), and actively sample views that one expect to
maximize information gain for the training process. It is worth
investigating whether the model can be trained more efficiently,
by driving the agent to the most informative view using
the information gain on model parameters in the expected
free energy functional. Information gain on model parameters
is, in the active inference literature, called “novelty”, while
information gain on latent states or attributes is associated with
“salience” (Schwartenbeck et al., 2019).

We also investigated the pose estimation properties using the
dorsal (“where”)-stream of our model. We showed that we are
able drive the agent’s actions toward a preferred, target pose
by providing the corresponding observation. While we showed
that the agent is indeed able to find a viewpoint with a similar
observation, we also found that a lot of alias viewpoints exist in
the latent space, due to object symmetries on the one hand, and
the lack of sufficient visual details captured by the model, i.e.,
to disambiguate the front or back label of an object. However,
we argue that in the case of robotic manipulation, this level of
performance would already be sufficient for basic manipulation
tasks such as grasping or pushing. Nevertheless it remains an
important area of future work to find models that are able to
capture and encode the required level of (visual) detail.

In addition there are still a couple of limitations in our current
setup that might be addressed in future work. For example, our
models currently learn the representation for a single object
instance of an object category. In simulation, there is no variation
between multiple instances of the mustard bottle, however, in
real life the label can be attached crooked, or some markings can
be present on the object. The current CCNs do not generalize

to perturbations of the objects let alone other objects belonging
to the same category, i.e., a coffee mug with a different height
or color. It is worth investigating whether a single CCN can
contain representations of different instances of a more general
object category. Also note that our current CCN models are
trained from scratch for each novel object category. Hence, a
lot of overlapping information has to be relearned. Learning
to re-use information would yield CCNs that are closer to the
thousand brains theory as the cortical columns in the brain also
reuse information (Hawkins et al., 2019). In order to re-use
information learned by the CCNs, a potential extension would
be to share weights between all CCNs for part of the layers,
or devise a more hierarchical approach modeling part-whole
relationships (Hinton, 2021).

Finally, our CCN models only encode egocentric
representations in an object-local reference frame. In order
to model a whole scene or workspace, the agent will need to map
these egocentric poses into an allocentric reference frame (Parr
et al., 2021). This would enable the agent to build a cognitive map
of the workspace, inferring for each object an allocentric pose in
the workspace, and “navigate” from one object to another. This
would then give rise to a hierarchical generative model, mapping
the world and its constituent objects using the same priniciples
as simultaneuous localization and mapping (Safron et al., 2021).

Related Work
In previous work, we built an artificial agent that learned such a
generative model from pixel data, inferring beliefs about a latent
variable representing the scene s, given image observations ot
from absolute viewpoints vt (Van de Maele et al., 2021b). Similar
to a Generative Query Network (GQN) architecture (Eslami et
al., 2018), this approach requires a huge train set of different
scenes, with a limited set of constituent objects, in order to learn
valid scene representations. The representations from this model
encode all present objects and their relative pose with respect
to the global allocentric reference frame. As a result, this lacks
a factorization of different objects, and does not scale to a large
number of objects present in the scene.

Most object-centric representations stem from the seminal
work Attend Infer Repeat (AIR) by Eslami et al. (2016), where
an image of a scene is factorized as a collection of latent
variables separately describing the what and where parameters
of each object. These variables are recurrently predicted, and
can thus be scaled to an arbitrary amount of objects in the
scene. AIR considers a static observer looking at a single
observation. Burgess et al. (2019), proposedMONet, which learns
the decomposition in an unsupervised end-to-end fashion. They
also learn a structured representation describing each object.
IODINE (Greff et al., 2019) also learns a joint decomposition
and representation model but requires a fixed amount of slots
that can be filled in by separate objects. Other work focuses
on dynamic scenes by adding a temporal component (Kosiorek
et al., 2018). They do this by adding a propagation module for
objects from previous timesteps, and a discovery module that
detects novel aspects. Other follow-up works tackle the scalability
problem (Crawford and Pineau, 2020; Jiang et al., 2020) by
predicting segmentationmasks directly. Lin et al. (2020) combine
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the scalability and temporal works, and add multimodality in the
model through sampling inmultiple steps. More recent work also
considers three dimensional scenarios (Chen et al., 2021) with
primitive shapes such as cubes or spheres where a generative
query network (Eslami et al., 2018) is used as a rendering module
for objects separately.

Similar to these models, we also make the separation in a
what and where latent code. However, instead of forcing the
factorization in a single latent space, we factorize on a model
level, which results in a modular CCN model, where each
CCN can focus on a single object type. While all mentioned
models acquire impressive results on either static or dynamic
observation data, none of these models consider an embodied,
enactive agent to improve perception, which we believe to be
crucial for intelligence.

An upcoming type of models are the implicit representation
models that learn three dimensional structure explicitly in
the model weights (Mescheder et al., 2019; Park et al., 2019;
Mildenhall et al., 2020; Sitzmann et al., 2020). Neural Radiance
Fields (NeRF) (Mildenhall et al., 2020), can learn complex
object geometry by directly optimizing color and opacity values
when conditioned by the coordinate and orientation of a point
in the three dimensional space. This is optimized end-to-end
directly from observation by casting rays from the camera pose
and inferring sampled points on this ray. In follow-up work,
different ways to optimize these models real-time by selecting key
observations and strategic sampling of rays were found (Sucar
et al., 2021). Similar to the implicit representation models, we
learn to reconstruct object observations from a different set of
observations. While the reconstruction detail of these models is
impressive, these models lack an inverse model to infer poses or
object categories.

A popular brain-inspired paradigm for unsupervised
representation learning is predictive coding (Rao and Ballard,
1999). This mechanism works by hierarchically estimating the
input and only propagating the error. This way, the lower levels
of the hierarchy focus on smaller details of the observation. This
work has also been used to separate the “what” and “where”-
information streams (Rao and Ruderman, 1999). The predictive
coding paradigm can be recast as active inference when using
distributions over the predictions, rather than point estimates
and when actions can be inferred to lead the artificial agent to a
preferred goal state (Jiang and Rao, 2021).

The proposed approach in this article is also closely
related to the object pose estimation research domain. These
methods typically try to estimate the object pose directly as
a 6 dimensional vector representing both the translation and
orientation with respect to an absolute reference frame. Within
the taxonomy provided in the survey paper by Du et al.
(2021), our method could best be classified under the template-
based label: given an observation, the model tries to find
the pose that best matches one of the pre-defined labels. In
this case, a trained CCN amortizes the process of finding the
exact template through encoding the observation. The most
closely related approaches use convolutional neural networks
to directly estimate the object pose, and are pretrained on
a set of labeled data which can be considered the templates
(Do et al., 2018; Xiang et al., 2018; Liu et al., 2019).

While these approaches acquire high accuracy results, they
are trained supervised with a labeled dataset. In contrast, our
approach is trained unsupervised from sequences of observations
an enactive agent could perform, enabling our model to learn
in arbitrary environments. This also has the corollary that the
learned pose is in a non-interpretable latent space and can not
be decomposed in an explicit translation and orientation.

The active inference (Friston et al., 2016) framework has
also been previously adopted for describing generative models
for active vision (Parr et al., 2021). In prior work, this
framework has been shown to drive intelligent agents for
visual foraging (Mirza et al., 2016; Heins et al., 2020), or
for creating fovea-based attention maps to improve perception
accuracy (Dauc, 2018). However, these works typically work
with simpler, human engineered generative state space model,
whereas in our case, the models are learned end-to-end from
pixels. Different works also combine active inference with deep
learning for learning state spaces directly using pixel-based
observations (Çatal et al., 2020b; Fountas et al., 2020; Mazzaglia
et al., 2021), but focused more on pixel-based benchmarks for
reinforcement learning.

5. CONCLUSION

In this article, we proposed a novel method for learning object-
level representations, drawing inspiration from the functional
properties of the dorsal and ventral stream in the human
neocortex. We made a separation on an object level, and create
a basic building block for learning representations, which we
coin a Cortical Column Network or CCN. We first described a
generative model that casts vision as making inferences about
an object pose and identity. For this generative model, we
derived the (expected) free energy functional, which is used for
both optimizing the model parameters as well as driving the
agent actions toward desired poses or gaining information for
better inference.

We showed that an ensemble of CCNs can be used for accurate
object classification. By aggregating CCN predictions as “votes”
in a Dirichlet distribution, we are able to correctly identify all
known objects, while at the same time also being able to detect
never seen before objects as an “other” category. We showed
how an enactive, embodied agent improves the classification
accuracy over time, by actively sampling novel observations that
reduce ambiguity. We also investigated the ability of a CCN
for reaching a preferred pose, given a target observation. We
qualitatively evaluated how indeed the agent moves toward a
matching observation. In addition, we explored the expected free
energy landscape, showing that our models learn an abstract
latent space for encoding pose in an object-local reference frame,
exploiting object symmetries.

We believe that developing algorithms for learning in
enactive, embodied agents is key to build artificial intelligent
agents. To do so, we should rather inspire ourselves by the
domains that study such embodied agents, i.e., behavioral
psychology, biology and neuroscience, rather than only limit
ourselves to the domain of artificial intelligence. We hope this
work takes a small step in that direction.
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