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Multifingered robotic hands (usually referred to as dexterous hands) are designed to
achieve human-level or human-like manipulations for robots or as prostheses for the
disabled. The research dates back 30 years ago, yet, there remain great challenges to
effectively design and control them due to their high dimensionality of configuration,
frequently switched interaction modes, and various task generalization requirements.
This article aims to give a brief overview of multifingered robotic manipulation from
three aspects: a) the biological results, b) the structural evolvements, and c) the learning
methods, and discuss potential future directions. First, we investigate the structure and
principle of hand-centered visual sensing, tactile sensing, and motor control and related
behavioral results. Then, we review several typical multifingered dexterous hands from
task scenarios, actuation mechanisms, and in-hand sensors points. Third, we report the
recent progress of various learning-based multifingered manipulation methods, including
but not limited to reinforcement learning, imitation learning, and other sub-class methods.
The article concludes with open issues and our thoughts on future directions.

Keywords: multifingered hand, visual-motor control, multi-mode fusion, hand structural evolution, learning-based
manipulation

1. INTRODUCTION

Robotic grippers have been successfully applied in the manufacturing industry for many years,
showing an elevated level of precision and efficiency and enjoying a low cost. However, how to
make a robotic hand with the same dexterity and compliance as the human hand has attracted
much attention in recent years due to the urgent demand for robot applications in our daily life and
many unstructured complex environments, such as service robots for disabled people and rescue
robots for disasters, in which robotic or prosthetic hands need to interact with various targets.
There are still many challenges for the design, control, and application of multifingered robotic
dexterous hands. From the design aspect, designing a multifingered robotic hand in a limited
space, as well as integrating multimodal distributed sensors and high precision actuators are
difficult, not to mention satisfying the weight and payload requirements at the same time. From the
learning and control aspect, due to the high dimensionality of states and action spaces, frequently
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switched interaction modes between multifingered hands
and objects, making the direct using of typical analytic
methods and learning from scratch methods for two-fingered
grippers arduous. Moreover, from the application aspect,
the multifingered robotic hand and its algorithms are always
personalized, which will limit their transfer and adaptation
for widespread applications, as the "internal adaptation" for
the body, software, and perception variations, and "external
adaptation” for the environment, object, and task variations
are intractable (Cui and Trinkle, 2021). Along with the related
studies, benchmark experimental environments and tasks to
fairly and comprehensively compare and evaluate the various
properties, such as precision, efficiency, robustness, safety,
success rate, adaptation, are urgently needed.

Due to the development of neuroscience and information
science as well as new materials and sensors, a series of robotic
hands and their learning and control methods are designed
and proposed. Among them, on the one hand, mimicking the
perception, sensor-motor control and development structures,
mechanisms and materials of the human hand is a promising
way, such as flexible and stretchable skins, multimodal fusion,
and synergy control (Gerratt et al, 2014; Ficuciello et al,
2019; Su et al, 2021). On the other hand, deep learning
based representation learning, adaptive control concerning
uncertainties, learning-based manipulation methods, such as
deep convolutional neural network (CNN), reinforcement
learning, imitation learning, and meta-learning (Rajeswaran
et al, 2017; Yu et al.,, 2018; Li et al.,, 2019a; Nagabandi et al.,
2019; Su et al., 2020), show significant superiority for robotic
movement and manipulation learning and adaptation.

In this article, focusing on multifingered dexterous hands (no
less than three fingers are considered), the typical and novel
work in neuroscience and robotics from three aspects: a) the
biological results, b) the structural evolution, and c) the learning
methods are reviewed. By reviewing these correlative studies,
especially their cross-over studies, we hope to give some insights
into the design, learning, and control of multifingered dexterous
hands. Note that there are some reviews concerning the structure,
sensors of robotic hands, and control and learning for robotic
grasping, assembly, and manipulation (Bicchi, 2000; Yousef et al.,
2011; Mattar, 2013; Controzzi et al., 2014; Ozawa and Tahara,
2017; Bing et al., 2018; Billard and Kragic, 2019; Kroemer et al.,
2019; Li and Qiao, 2019; Mohammed et al., 2020; Cui and Trinkle,
2021; Qiao et al., 2021), while none of them unfold from these
three aspects for multifingered dexterous hands with no less than
three fingers (refer to Table 1).

A brief overview of the organization of this article is given
in Figure 1. First, the anatomical, physiological and ethological
studies of the hand of the primate, mainly humans, are
investigated (Section 2), including the pipeline, structure, and
function of multimodal perception and cognition, motor control,
and grasp taxonomy. Second, the structural evolvements of
hand are surveyed from three perspectives: the task scenario,
the actuation mechanism, and the in-hand sensors (Section 3).
Third, by distinguishing the availability and type of supervision
data, three types of learning-based grasp and manipulation
methods, learning from observation (LfO), imitation learning,

TABLE 1 | Comparisons of the existing reviews.

Literature Perspective

Bicchi (2000) reviews robotic hand designs in terms of human
operability, manipulation dexterity and grasp

robustness

Yousef et al. (2011) presents the SOTA tactile sensing techniques for
robotic hands
reveals the characteristics of the human hands during

in-hand manipulation

Mattar (2013) presents the SOTA on biomimetic based dexterous
hands
indicates the significance of bio-inspired thinking in

robotic hand design

Controzzi et al. presents the SOTA robotic hand designs in terms of

(2014) prosthetics and humanoid robotics
e focuses on the human hand function and its
inspiration to the design of robotic hands
Ozawa and Tahara * reviews the grasping and dexterous manipulation
(2017) studies from the perspective of control
Li and Qiao (2019) e reviews the works on high-precision robotic

manipulation from the aspects of
sensing-based/compliant-based/environmental
constraint-based/sensing-constraint hybrid/others

Qiao et al. (2021) reviews the brain-inspired models for robots in vision,

decision, motion control and musculoskeletal systems

Kroemer et al. describes a formalization of the robot manipulation

(2019) learning problem with a single coherent framework
Mohammed et al. e reviews the deep reinforcement learning based object
(2020) grasping methods

Bing et al. (2018)

surveys the bio-inspired spiking neural networks for
robotic control task

Billard and Kragic describes the trends and challenges in robot

(2019) manipulation

Cui and Trinkle e summarizes the types of variations for robot

(2021) manipulation and categorizes and contrasts learned
robot manipulation methods with adaptation

This work ¢ reviews the biological results of perception and motor

of hand manipulation

reports the SOTA designs of dexterous hands and
reviews the learning-based manipulation studies
focusing on multifingered robotic hands

and reinforcement learning are reviewed, and two sub-classes
containing the synergy-based methods and feedback-based
methods are also enrolled (Section 4). Finally, open issues are
discussed (Section 5). We believe that human-like multifingered
robotic hand design, control and manipulation learning methods
could promote the interdisciplinary development of robotics
and neuroscience.

2. BIOLOGICAL STUDIES

The hand is the most important interaction component of
humans. Even for normal hand manipulation in daily life,
various perception, cognition and motor control brain regions,
sensor units, and physical organs are necessarily required
and effectively cooperated. In this section, we review some
anatomical, physiological and ethological studies related to
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hand manipulation, hoping to provide some insights into the
algorithm research and the hardware design of multifingered
hands in the future.

2.1. Perception and Cognition

The human hand perceives environmental information
from the surroundings via the following three aspects:
a) mechanoreceptors and thermoreceptors in the skin, b)
proprioceptive inputs from the muscles and joints, and c)
centrally originating signals. For manipulation, the perception
of hands is frequently combined with vision. Specifically, visual
sense can provide the class, shape, position, pose, velocity,
affordance properties, etc. information of the target from
task planning (reaching process) until manipulation ends, while
tactile sense can provide real-time and dynamic contact and force
feedback during the grasping and non-prehensile manipulation
process, which is the key for compliant, robust and dexterous
manipulation. Tactile sensors become more important for
unknown objects and dark environments, as general knowledge
and visual sense may be partially unavailable.

2.1.1. Visual Sensing

Visual pathways: As shown in Figure 2, the primate visual cortex
has two pathways, the ventral pathway and the dorsal pathway.
In common knowledge, the ventral pathway is responsible for
object recognition and is simplified as what pathway; the dorsal

pathway is responsible for object localization and is simplified
as where pathway. Particularly for hand manipulation, the
dorsal pathway is also found to provide visual guidance for
the activities of human-object interaction, such as reaching and
grasping (Culham et al., 2003). For complex object-centered
hand movements, such as skilled grasp, the interaction between
the two pathways could enhance their functions iteratively. It
is hypothesized that the dorsal pathway needs to retrieve the
detailed identity properties saved in the ventral pathway for fine-
tuning grasps, while the ventral pathway may need to obtain the
latest grasp-related states from the dorsal pathway to refine the
object internal representation (van Polanen and Davare, 2015).

Hand-centered visual modulation: A  series of
neurophysiological and ethological studies suggest that visual
processing near the hand is altered, mainly reflected in visual
manipulation property selection and enhancement in accuracy
and effectiveness, such as preferred orientation selection of
objects in V2 (Perry et al., 2015), object elongation preference
in VI and pSPOC, selection of wrist orientation and visual
extraction of object affordances in aSPOC, and object shape and
number of digits encoding in aIPS (Fabbri et al., 2016; Perry
et al., 2016).

Neurons in the AIP area have been classified as “visual-
dominant”, “motor-dominant”, and “visual and motor” classes
(Taira et al., 1990). Moreover, there are two kinds of visual
dominant neurons: object-type neurons and non-object type
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FIGURE 2 | The visual and dorsal pathways of the primate visual cortex and their connected regions. Excepting retina and LGN in green, the yellow, red, and blue
blocks are areas that are in the occipital cortex, parietal cortex, and inferotemporal cortex, respectively. The gray blocks with dotted borders are areas in other
cortexes related to motor perception, learning, and control. The black texts with dot marks following each block explain the area’s functions from the manipulation

aspect (Goldman-Rakic and Rakic, 1991; Prevosto et al., 2009; Kruger et al., 2013).

neurons. Biologists suggest that the former represents the shape,
size, and/or orientation of 3D objects, and the latter represents
the shape of the handgrip, grip size, or hand orientation (Murata
et al., 2000). Meanwhile, V6A, as a part of the dorsolateral
stream, has a function similar to AIP. Their difference may be
the division of work, as AIP seems to be responsible for both
object recognition and visual monitoring of grasping, while V6A
seems to be mainly involved in the visual guidance of reach-to-
grasp. Another possibility is that AIP is more involved in slow,
finer control and V6A is more involved in fast, broad control
(Breveglieri et al., 2016).

2.1.2. Tactile Sensing

Human hands are sophisticated yet sensitive sensory systems,
which are more complicated than arms, owing to their
anatomical structure and nerve supply (Bensmaia and Tillery,

2014). Tactile sensing, as part of the haptic (touch) feedback
sensing system of human hands, is achieved relying on
skin stimulation.

Structure of tactile sensor distribution: Years of research
has recognized the anatomic structure of the hand skin. The
skin consists of three layers: the epidermis, the dermis, and the
subcutaneous layer, from the outer layer to the inner layer.

There are four types of sensory receptors underneath the
different layers of the skin of the human hands: slowly adapting
type 1 (SAL, Merkel Cells), slowly adapting type 2 (SA2, Ruffini
Corpuscle), rapidly adapting type 1 (RA1, Meissner’s Corpuscle),
and rapidly adapting type 2 (RA2, Pancinian Corpuscle).
Each of the types corresponds to different aspects of skin
deformation (Johnson, 2001). For instance, the SA1 unit has
small receptive fields (RFs) and produces a tonic response to
steady skin deformation. This type is sensitive to pressure. The
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RA1 unit also has small RFs but produces a phasic response
to skin deformation. It is rapidly adapting and sensitive to
flutters. The RA2 unit has large RFs and is sensitive to high-
frequency vibrations. The SA2 unit is sensitive to sustained skin
deformation. Both SA1 and SA2 produce a continuous response.
The four types of sensory receptors function differently for
manipulation (Dahiya et al., 2010). For instance, the SA1 unit is
heavily used in texture perception. The SA2 unit is used for skip
detection. The RA1 unit is used in motion detection. The RA2
unit is highly involved in tool use processes.

The fiber plexuses, which transmit either motor or sensory
neural electric signals, are embedded within the subcutaneous
layer. These fibers form a large, complicated network that
connects sensory receptors (or free nerve endings) to the
spinal cord or the central nervous system. Correspondingly,
there are a vast number of mechanoreceptors connected to
the fiber plexuses. A report shows that there are up to 500
mechanoreceptors per cubic centimeter of the human hand on
average, thus achieving a very sensitive touch reaction, with a
resolution for displacements of the skin as small as 10 nm (Jones
and Lederman, 2006; Pruszynski and Johansson, 2014).

Pathway, function, and mechanism: The sensory receptors
(or mechanoreceptors) and fiber plexuses in the skin transmit
signals to the spinal cord or brainstem via receptor neuron cells.
There are three major components of the cells (Nicholls et al.,
2012): a) A neuronal cell located in the dorsal root ganglion of
the spinal conus foramen. b) A central branch that converges to
the dorsal root and projects to the spinal cord. ¢) A peripheral
branch that converges with other nerve fibers to form a peripheral
nerve and terminates to form a specialized receptor complex.
These peripheral axons are usually long, and they generate action
potentials remarkably close to the nerve terminal and travel past
the ganglion cell cytosol into the spinal cord or brainstem.

Observation of the activity of tactile fibers by micro-nerve
recording reveals that most nerve fibers have little or no
spontaneous activity and discharge only when the skin is
stimulated. When the human hand touches an object, the cells
within the sensory receptors are squeezed, and the layers formed
by the cells are displaced, producing neural electric signals to
transmit through the fiber plexus to the spinal cord or the central
nervous system.

In addition, for hand manipulation, tactile RFs in the
somatosensory cortex are smaller than their counterparts in M1
and proprioceptive areas. As cutaneous sensors encode local
shape features, including curvature and edge orientation, at the
contact point (Bensmaia et al., 2008; Yau et al., 2013), smaller RFs
could represent elaborate tactile spatial information, while the
RFs of neurons in M1 and proprioceptive areas include several
joints spanning the entire hand (Saleh et al., 2012; Goodman
etal., 2019).

2.1.3. Visual-Tactile Fusion

Neurons activated by visual, tactile, and samatosensory stimuli
are found in multiple brain regions of the primate, such as
the VIP and premotor cortex (PMC) (Graziano and Gandhi,
2000; Avillac et al., 2005), and multisensory inputs are integrated
into linear (additive) or nonlinear (non-additive) manners

(Gentile et al., 2011). Non-additive integration could increase
the overall perception ability and movement performance both
in efficiency and sensitivity, with which weak and threshold
bellowed signals could be detected and the saliency of one
modality could be enhanced by another modality with attention
modulation. Meanwhile, enhancement is realized when the
signals are congruent in both spatial and temporal proximity for
the target event, which is explained as cross-modal stimuli falling
with the unified RFs of the same neurons (Stein and Stanford,
2008). If they are not synchronized, the activation of neurons may
even be lower than the single stimulus situation (der Burg et al.,
2009).

Specifically, for the hand reaching and grasping process,
multisensory (visual, tactile, and somatosensory) perceptions
are dynamically modulated, as tactile suppression is stronger
for hand reaching to facilitate the processing of somatosensory
signals and then weaker for fingers that are involved in the
grasping process (Gertz et al., 2018). In addition, visual hand
images could implicitly enhance visual and tactile integration,
making them hard to distinguish in the temporal domain (Ide
and Hidaka, 2013). Except for dominant modal switching when
other modalities are not available, some researchers try to find the
multisensory integration mode of the redundant positional and
size cues and suggest that haptic position cues, not haptic size,
are integrated with visual cues to achieve faster movements with
smaller grip apertures, which could then better scale visual size
(Camponogara and Volcic, 2020). Moreover, some researchers
investigate the difference between the right and left hands, which
indicates that the right hand prefers visually guided grasping for
fine motor movement, while the left hand specializes in haptically
guided object recognition and spatial arrangement (Morange-
Majoux, 2011; Stone and Gonzalez, 2015). From ethology and
statistics aspects, it is also found that by simply observing hand
exploration motion, humans or algorithms can coarsely estimate
the tactile properties of objects (Yokosaka et al., 2018).

2.2. Motor System

Motor control of mammals is organized in a hierarchical mode,
and various studies on motivation, planning, and motor pattern
generation have been explored. In this section, we first briefly
introduce the motor pathways and the sub-areas related to hand
motor planning and control. Then, the detailed skeleton-muscle-
tendon structure of the hand and its control modes, such as
population coding and multi-joint coordination for reaching and
grasping, are investigated.

2.2.1. Sensorimotor Pathway

A simplified diagram of the sensorimotor system is shown in
Figure 3. The association cortex mainly includes the posterior
parietal cortex (PPC) and dorsolateral prefrontal cortex (DLPFC)
and is involved in body part coordinate transformation, motor
planning, abstract reasoning, etc. (Kroger, 2002; Buneo and
Andersen, 2006; Kuang et al., 2015). Particularly, PPC integrates
various sensory information and acts as a sensorimotor interface
for motion planning and online control of visual guided arm-
hand movements (Buneo and Andersen, 2006). Then, there are
two discrete circuits for further motor planning. The external
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FIGURE 3 | Simplified diagram of the sensorimotor system. The green texts in each block explain the functions of the corresponding area. Note that various
cross-layer and inter-layer feedforward and feedback connections existed for sensorimotor modulation and adaptation, which are not shown in this figure for brevity

loop contains the PMC, cerebellum, and parietal cortex. As
this loop connects with multiple sensor regions, it may be
guided by external clues and support new skill learning. The
internal loop includes the supplementary motor area (SMA),
prefrontal cortex, and basal ganglia, which may be modulated
by intrinsic motivation and prefer old skill consolidation
and adaptation. Finally, all their outputs are sent to the
motor cortex for further muscle activation (Middleton, 2000;
Gazzaniga, 2014). In addition, the cerebellum could provide a
feedforward sensory prediction allowing for prediction control,
and the basal ganglia reinforce better action selection, which is
necessary for the early acquisition of novel sequential actions
(Shmuelof and Krakauer, 2011).

More specifically, in the homunculus map of the motor cortex
and somatosensory cortex, the hand acts as an effector that
projects to a large cortex region despite its small size on the
human body scale. This reflects its importance and prominent
level in control and sensing. Various areas in the premotor are
also involved in object-grasping control. For example, F5 receives
signals from both motor- and visual-dominant neurons in the
AIT area and realizes visual-motor transformation (Michaels and
Scherberger, 2018); sub-area F5a could extract 3D features of
objects and plan cue-dependent grasp activity. Area F6 controls
when and how (grip type) to grasp (Gerbella et al., 2017).

2.2.2. Skeleton-Muscle-Tendon Structure

Skeleton: The human arm is made up of three bones -
the upper arm bone (humerus) and two forearm bones (the
ulna and the radius), forming 6 joints (the sternoclavicular,
acromioclavicular, shoulder, elbow, radioulnar, and wrist joints)

and 7 degrees-of-freedom (DoFs) of movement. As a result, the
human hand has a far more complicated bone structure - i.e., 27
bones, forming 15 joints and 21 DoFs of movement, including
the wrist (Jones and Lederman, 2006).

It is worth mentioning that the skeletal structure of the
metacarpophalangeal (MCP) joint preserves excellent features
that allow the fingers to execute both adduction/abduction and
flexion/extension motions, thus, increasing the dexterity of the
overall system (Nanayakkara et al., 2017). Kontoudis et al. (2019)
designed a tendon-driven modular hand inspired by the MCP to
perform concurrent flexion/extension and adduction/abduction
with two actuators.

Musculotendon units: The muscles of the upper limb form
an overly complex system and can be divided into three classes:
a) muscles of the shoulder, b) muscles of the humerus that act
on the forearm, and c) muscles of the wrist and hand. Many
of the muscles are further recognized as extrinsic and intrinsic
musculotendon units. The extrinsic muscles, which contain long
flexors and extensors, are located on the forearm to control crude
movement; while intrinsic muscles are located within the hand
and are in charge of fine motor functions (Li et al., 2015).

For each hand, 38 extrinsic and intrinsic musculotendon units
are attached to the bones that control the movement of the
hands (Tubiana, 1981). One end of these extrinsic hand muscles
is fixed at the bones in the arm, and the muscles stretch all
along to the wrist and become tendons at the wrist. The intrinsic
muscles appear within the hands and are divided into four
groups: the thenar, hypothenar, interossei, and lumbrical muscles
(Dawson-Amoah and Varacallo, 2021). There are numerous
robotic systems that attempt to mimic the tendon structure of
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human hands and arms, from the structure to the power source.
Some of the successful systems include the Anatomically Correct
Testbed (ACT) hand (Rombokas et al, 2012), Myorobotics
(Jantsch et al., 2012, 2014), and Roboy (Martius et al., 2016;
Richter et al., 2016).

2.2.3. Control Mode

Hand reach-grasp manipulation is a continuous control process
composed of five phases. First, the hand is transported by the
arm, and the arm moves in a bell-shaped velocity (Fan et al,
2005). Second, hand pre-shapes to adapt to the target object,
which occurs in the last 30-40% of the reaching process (Hu et al.,
2005). Third, grasp is determined by form closure, force closure,
functional affordance, grasp stability, grasp security, etc. (Scano
et al., 2018). Fourth, the manipulation phase includes hand-arm
coordinated move and/or switched interaction modes between
object and hand. Finally, the release of the object and return of
the hand and arm are all categorized into five phases. During
the process, proprioceptive and M1 neurons show a strong
preference for time-varying hand postures during grasping, in
contrast to their intense preference for time-varying velocities
during reaching (Goodman et al., 2019).

Population vector is a popular motion coding mode that
could indicate the orientation of motion and has a successful
application in the brain-machine interface (BMI). For hand
manipulation task, acting as a motor pattern generator, M1
exhibit low-dimensional population-level linear dynamics during
reach and reach-to-grasp (Churchland et al.,, 2012; Rouse and
Schieber, 2018). However, for the grasp task, the dynamics seem
higher-dimensional or more nonlinear. One reason may be that
grasp is primarily driven by more afferent inputs rather than
intrinsic dynamics (Suresh et al., 2020) (as shown in Section 2.1).
The other reason could be that the activity of single neurons
in the motor cortex relates to the movements of more than
one finger (Valyi-Nagy et al., 1999), and one neuron can drive
the facilitation and suppression of several muscles (Hudson
et al.,, 2017). Thus, we could draw a conclusion that muscles of
the hand are controlled in a level of multi-joint coordination
pattern. Compared to the independent control method, this
control manner is a slightly higher abstraction and could benefit
generation, learning of new skills, and simplify planning (Merel
et al., 2019). Multi-joint coordination is also consistent with the
control mode found in the central nervous system (CNS), which
is commonly named muscle synergies (Taborri et al., 2018), it is
defined as the coherent activation of a group of muscles in space
and time. For hand grasp and manipulation, both spatial and
temporal muscle synergies are analyzed in the primate Overduin
et al. (2008), Jarrassé et al. (2014), by applying decomposition
method, such as PCA, control could be realized in the low
dimensional subspace of hand configuration, as 2-4 synergies
could account for 80-95% variance of hand motions.

The population vector is a popular motion coding mode
that can indicate the orientation of motion and has a
successful application in brain-machine interfaces (BMIs). For
the hand manipulation task, acting as a motor pattern generator,
M1 exhibits low-dimensional population-level linear dynamics
during reach and reach-to-grasp (Churchland et al., 2012; Rouse

and Schieber, 2018). However, for the grasp task, the dynamics
seem higher-dimensional or more nonlinear. One reason may be
that grasp is primarily driven by more afferent inputs rather than
intrinsic dynamics (Suresh et al., 2020) (as shown in Section 2.1).
The other reason could be that the activity of a single neuron
in the motor cortex relates to the movements of more than one
finger (Valyi-Nagy et al., 1999), and one neuron can drive the
facilitation and suppression of several muscles (Hudson et al.,
2017). Thus, we could conclude that muscles of the hand are
controlled at a level of multi-joint coordination. Compared to
the independent control method, this control method has slightly
higher abstraction and could benefit the generation and learning
of new skills as well as simplify planning (Merel et al., 2019).
Multi-joint coordination is also consistent with the control mode
found in the central nervous system (CNS), which is commonly
named muscle synergies (Taborri et al., 2018); it is defined as the
coherent activation of a group of muscles in space and time. For
hand grasp and manipulation, both spatial and temporal muscle
synergies are analyzed in the primate Overduin et al. (2008). By
applying decomposition methods, such as PCA, control could be
realized in the low-dimensional subspace of hand configuration,
as 2-4 synergies could account for 80-95% variance of hand
motions (Jarrassé et al., 2014).

In addition, concerning the hierarchical structure of motor
control, except complex connections and feedback between
different regions in Figure 3, which could be useful for best and
adaptive motion modulation, the regions also have some kind of
autonomy and amortized control ability. This is especially true
for low-level controllers and effectors, which can quickly generate
simple, repetitive, reusable motions without sensor and planning
inputs from high levels (Merel et al., 2019). This is evidenced
by experiments in which monkeys can walk, climb, and pick up
objects when their bilateral dorsal root ganglions (DRGs) are
damaged, and a patient without proprioception ability can shape
different gestures in a dark environment (Rothwell et al., 1982).

2.3. Grasp Taxonomy

Except for the aforementioned results and hypotheses,
ethological studies on grasp taxonomy concerning hand
kinematics, constraints of each grasp, and common use patterns
are meaningful for hand activity recognition, rehabilitation,
biomechanics, etc. (Feix et al., 2016; Gupta et al., 2016b).

By considering different grasp attributes, a series of studies
on grasp taxonomy are proposed. The pioneering study of
Schlesinger et al. divides human grasps into six categories—
cylindrical, tip, hook, palmar, spherical, and lateral—based on
object properties (Borchardt et al., 1919). Then, Niper’s landmark
work on power and precision grips takes the intention of activity
as an import control principle (Napier, 1956). For manufacturing
applications, Cutkosky builds a grasp taxonomy in a hierarchical
manner by taking the constraints of tasks, hands, and objects into
consideration, and an expert system and grasp quality measure
derived from analytical models are developed (Cutkosky, 1989).
Recently, by investigating a) the opposition type, b) the virtual
finger assignments, c) the type in terms of power, precision,
or intermediate grasp, and d) the position of the thumb, Feix
et al. (2016) divide hand grasps into 33 types, which could
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FIGURE 4 | Some of the current designs of dexterous hands.

be further reduced to 17 classes if the object shape/size is
ruled out. In addition to ethological studies, the effectiveness
of grasp attributes for fine-grained hand manipulation activity
recognition has also been proven in information science. A
simple encoding of known grasp type, opposition type, object,
grasp dimension, and motion constraints integrated with multi-
class classifiers has achieved an accuracy of 84% for 455 activity
classes (Gupta et al., 2016b).

3. STRUCTURAL EVOLVEMENTS

With nearly 40 years of development, much research on the
structural design of dexterous hands has been conducted. Some
of them have become well-known products, such as Shadow
Hand (Reichel, 2004; Kochan, 2005), BarrettHand (Townsend,
2000), DLR-Hand (Butterfass et al., 2001), and RightHand!.

There have been several reviews about dexterous hands in
recent years (Bicchi, 2000; Yousef et al., 2011; Mattar, 2013;
Controzzi et al., 2014; Ozawa and Tahara, 2017). Most of
the literature discusses the research in this area from the
aspects of a) kinematic architecture, b) actuation principles,
¢) actuation transmission, d) sensors, e€) materials, and f)
manufacturing methods. To avoid redundancy and focus on
dexterous manipulation, this survey will re-organize the works
from three perspectives: a) the task scenario, b) the actuation
mechanism, and c) the sensors for manipulation.

Thttps://www.righthandrobotics.com/

3.1. Task Scenarios

Dexterous hands are typically used as part of the prosthetic hand
for the disabled or as the end-effector of a manipulator for robots
(refer to Figure 4). For the former scenario, the goal is to design
a dexterous hand that is as close to a human hand as possible.
Most of the designs choose a five-fingered structure. Since the
last two decades, there have been a series of prosthetic hand
products - i-limb Quantum/Ultra by Touch Bionics?, BeBionic?
and Michelangelo? by Ottobock, and the Vincent hand® from
Vincent systems. Meanwhile, new designs and products continue
to appear, such as the DEKA/LUKE arm developed by DEKA
Integrated Solutions Corp. for US crew members with upper
limb loss from Iraq or Afghanistan (Resnik et al., 2014), and the
Hannes hand that mimics a series of key biological properties of
the human hand (Laffranchi et al., 2020).

For the latter scenario, there are massive variants of designs,
ranging from simplified three-fingered hands to five-fingered
hands, due to their specific applications, such as a) three-
fingered: TriFinger (Wuthrich et al, 2020), D’Claw (Ahn
et al., 2020), Shadow Modular Grasper (Pestell et al., 2019),
BarrettHand (Townsend, 2000); b) four-fingered: DLR-Hand
II (Butterfass et al., 2001), Allegro hand (Veiga et al., 2020),

Zhttps://www.ossur.com/en-us/prosthetics/arms/i-limb- quantum
3https://www.ottobockus.com/prosthetics/upper-limb- prosthetics/solution-
overview/bebionic-hand/
“https://www.ottobockus.com/prosthetics/upper-limb- prosthetics/solution-
overview/michelangelo- prosthetic-hand/
Shttps://www.vincentsystems.de/evolution4
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TABLE 2 | The technical details of the prosthetic hands.

Name No. Gripping Time from
fingers/ force/Payload full open
grip to full
patterns close

Weight

i-limb Ultra 5/18 Hand load limit: 0.432 -0.528
40 — 90kg kg
Finger load limit:

20 — 32kg

Hand load limit: 0.432 —0.558
40 — 90 kg kg
Finger load limit:

20 — 48 kg

Hand load limit: 0.402—-0.689 05—-1.0s
40 kg kg

Finger load limit:
25 kg

Gripping force:
70N/ 60N/ 15N
(Opposition
Mode/Lateral
Mode/Natural
Mode)

Hand load limit: 0.39 — 0.56
35 kg kg
Finger load limit:
12 kg
DEKA/LUKE arm 5/6 N/A

Hannes Hand 5/—

0.8s

i-Limb Quantum 5/36 0.8s

BeBionic 5/14

Michelangelo 5/7 0.52kg N/A

VINCENTevolution4 5/15 0.6s

1.4kg N/A
Gripping force 0.45kg 1s

150N

Shadow Dexterous Hand Lite; c) five-fingered: AR10 Robotic
Hand (Devine et al., 2016), A Gesture Based Anthropomorphic
Robotic Hand (Tian et al., 2021), The DEXMART hand (Palli
et al., 2014), Shadow Dexterous Hand (Reichel, 2004; Kochan,
2005), RBO Hand 2 (Deimel and Brock, 2013). Tables 2, 3 listed
some of the technical details of the robotic hands mentioned in
this article.

With the improvement of electronics and computational
resources, the designs of dexterous hand systems for prosthetics
and robotic manipulation are gradually evolving from less to
more DoFs, rigidity to flexibility, and no sensing to multi-
sensing fusion. In particular, distinctive design concepts have
been derived in terms of their sizes, input signals, etc.

The sizes of the dexterous hands vary in different scenarios.
The prosthetic hands are undoubtedly designed to be of the same
size as a human hand; the robot hands, however, differ in size due
to their research goals. For example, D’Claw (Ahn et al.,, 2020)
is proposed as a benchmark platform to evaluate learning-based
dexterous manipulation algorithms. The size of the “fingers” is in
fact too large to be treated as “fingers”. However, such a design
reduces the cost of motors and mechanics while maintaining
dexterity in DoFs.

The input signals for robotic hands also vary in different
scenarios. The prosthetic hands usually involve the acquisition of
bioelectrical signals (EMG, electromyography, or the myoelectric
signal), enabling the mapping of the human EMG to the

joint variables of the fingers or the grasping patterns of the
hand (Furui et al., 2019). Furthermore, to make the disabled
grasp better, much work has been done in recent years to
close the above “EMG-control” open-loop system by providing
electric or vibration stimuli to the arm (Tyler, 2016; George
et al., 2019). Such closed-loop systems guarantee the disabled
to perform force-sensitive tasks such as grasping a blueberry
without breaking. The robot hands, however, get their control
values directly from the defined tasks. The control values are
calculated in real time from the sensor input. In recent years,
to improve the generalization of dexterous manipulation, these
control values have often been extracted through a deep neural
network with inputs of visual information (Fang et al., 2020).

3.2. Actuation Mechanisms

Unlike humans, muscle-like actuators do not exist for robotic
hands. Due to the differences in the power source, the dexterous
hands can be classified into pneumatic-powered hands and
electric-powered hands. The pneumatic-powered hands appear
earlier, but the large, noisy pumps made them inapplicable
for non-factory scenarios (Jacobsen et al., 1985). In recent
studies, many soft-fingered robotic hands have been actuated by
pneumatic devices (Hubbard et al., 2021). On the other hand, due
to advances in electric engineering, DC motors make it possible
to build a robotic hand that is comparable to a human hand
in size.

In terms of the number of actuators, the dexterous hands
can be divided into two categories: a) fully-actuated, if the
number of actuators equals the number of joints, and b) under-
actuated, if the number of actuators is less than the number
of joints (which means some of the joints are controlled by
a shared actuator). Many early prototypes adopted under-
actuated design since a fully-actuated dexterous hand usually
has more than 20 actuators (Kochan, 2005), which brings great
difficulty in finding a suitable controller. Meanwhile, evidence
also shows that human hands are under-actuated. With the recent
development of computer science, some neural networks have
been built to solve the controller problem of fully-actuated hands
(Andrychowicz et al., 2019).

The joints of the dexterous hands are actuated in two ways: a)
each joint is actuated by an actuator at the position of the joint,
and b) each joint is actuated by an actuator, which transmits its
power from elsewhere. The former are usually seen by the fully-
actuated hands, while the latter are under-actuated. Similar to
human hands, which use tendons to transmit power from the
muscles, many under-actuated hands use nylon or steel strings
to simulate tendons and muscles and, therefore, create tendon-
driven dexterous hands.

3.3. In-hand Sensors for Manipulation

The human hand has thermoreceptors, mechanoreceptors, and
nociceptors, which ensure that the person can manipulate objects
within a comfortable range and that he or she does not suffer
serious injury (Nicholls et al., 2012). Unlike the human hand, the
sensors deployed on the palm or finger surface of the dexterous
hand are designed to be more task-oriented, ensuring that the
task can be completed primarily. For this purpose, the in-hand
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TABLE 3 | The technical details of the robotic dexterous hands.

Literature Name No. fingers/ Dimensions Weight Payload Year of Comment
joints/DoFs appearance
Wauthrich et al. (2020) TriFinger 3/9/9 350 x 350 x 600 mm N/A N/A 2021 An open-source robotic platform
intended to support research in
dexterous manipulation
Ahn et al. (2019) D’Claw 3/9/9 127 x 127 x 226 mm N/A N/A 2019 A platform for exploring
learning-based techniques in
dexterous manipulation
Townsend (2000) BarrettHand 3/9/4 335 x 89 x 102 mm 0.98kg 6.0kg 2000 The long-established, flexible
robotic hand
Pestell et al. (2019) Shadow Modular Grasper 3/9/9 210 x 210 x 244 mm  2.7kg 2.0kg 2019 The modular design for industrial
and research applications
Butterfass et al. (2001) ~ DLR-Hand Il 4/13/13 150 x 160 x 300 mm  1.8kg 30N 2001 The fully actuated multi-sensory
hand for space robot
/ Shadow Dexterous Hand Lite 4/16/13 135 x 135 x 448 mm  2.4kg Upto 4.0kg 2015 A streamlined version of the
shadow dexterous hand
/ Allegro hand 4/16/16 65 x 135 x 239 mm 1.09kg Upto 5.0kg 2016 Lightweight and portable
anthropomorphic design robotic
hand
Jacobsen et al. (1986) Utah/MIT Hand 4/16/38  Comparable to a human N/A N/A 1986 The first cable-driven robotic
hand but with a huge hand
cable driver
Bridgwater et al. (2012)  Robonaut 2 Hand 5/14/14 127 x 127 x 304 mm N/A  More than 9kg 2011 The fully actuated dexterous
hand for space manipulation
Ruehl et al. (2014) SVH Hand 5/20/9 92 x 90 x 242 mm 1.3kg N/A 2014 The first robot gripper approved
by the German Social Accident
Insurance (DGUV) for
collaborative operation
/ AR10 Humanoid Robot Hand 5/10/10  Comparable to a human N/A N/A 2016 A standard servo actuated
hand humanoid hand design
Kochan (2005) Shadow Dexterous Hand 5/24/20 135 x 136 x 448 mm  4.3kg Upto4.0kg 2005 An anthropomorphic design
robotic hand that is comparable
to the human hand in terms of
size and structure
Palli et al. (2014) The DEXMART hand 5/20/24  Comparable to a human  N/A 2.7kg 2014 A recreated design in reference
hand but with a big of human hand as design and
cable driver behavioral model
Deimel and Brock (2013) RBO Hand 2 5/00/7 80 x 80 x 130 mm 0.178kg Up to 0.5kg 2013 A soft, pneumatic, compliant

robotic hand

sensors of the dexterous hand consist of visual sensors and haptic
sensors. Vision sensors are used to obtain local visual information
during operation - this sensor is mostly used in autonomous
dexterity tasks; haptic sensors are used to obtain information
about the contact force between the robot and the object during
operation and can be further divided into tactile sensors and force
sensors. The tactile sensors are more inclined to the details of the
fingertips and palms of the hand, and the force sensors, on the
other hand, are laid out at the finger joint locations and are used
to sense more macroscopic force information.

In-hand vision: In-hand vision is a setup in which vision
sensors are integrated into the robot hand and move with it. Eye-
in-hand is not a human-like or human-inspired representation.
However, due to the lack of flexibility of robot vision compared
to that of humans, eye-in-hand is widely used in vision-
related robotic system setups to help robots obtain local visual
information between objects in contact with them during

operation, thus enabling a variety of fine-tuned manipulation-
oriented adjustments to be made.

In-hand vision is often combined with to-hand vision (or
referred to as eye-to-hand) to obtain more comprehensive visual
features for robotic manipulation (Flandin et al., 2000). With
advances in depth vision sensors, such cameras (e.g., Kinect,
RealSense) have become miniaturized and can be more easily
integrated into the end-effector of a manipulator. Using such
in-hand sensors, object-oriented 3D surface models can be
constructed, thus providing better results for more dexterous
grasping of 3D objects.

In-hand haptic: For humans, haptic feedback is divided into
two different classes: tactile and kinesthetic. The former refers
to the sense one feels in his/her fingertips or on the surface.
The related tissue has many different sensors embedded in and
underneath the skin. They allow the human brain to feel things
such as vibration, pressure, touch, and texture. The latter refers
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to the sense one feels from sensors in his/her muscles, joints,
tendons, such as weight, stretch, or joint angles of the arm, hand,
wrist, and fingers.

For the dexterous hand, researchers have put earnest effort
into realizing such a sensitive tactile sensor as a human
fingertip. A variety of physics and material science principles
have been applied to design tactile sensors of varying sizes,
measuring ranges and sensitivities, forming resistive sensors,
capacitive sensors, piezoelectric sensors, and optical sensors
(Yousef et al., 2011).

In recent years, vision-based tactile sensors have drawn
massive attention due to their easy development and economic
maintenance (Shah et al.,, 2021). Such sensors use cameras to
recognize the textures, features, or markers on a sensing skin and
then compare their difference in task space with (or without) an
illumination system to reconstruct the skin deformation, so as to
acquire contact force information on the surface.

4. LEARNING-BASED MANIPULATION
METHODS

From the manipulation methods aspect, there are analytic
methods and data-driven methods/learning-based methods. The
analytic methods typically analyze the physical characteristics
of objects to achieve dexterity, stability, equilibrium, and
dynamic behaviors (Shimoga, 1996; Kleeberger et al., 2020).
However, it is difficult to obtain complete modeling of
objects, thus could not adapt to complicated and volatile
environments. While learning-based methods have attracted
much attention in robotic manipulation as well as computer
games and autonomous vehicles due to their high data efficiency,
empirically evaluation manner, and good generation ability
(Kroemer et al., 2019; Vinyals et al., 2019; Kiran et al., 2021).
However, compared to common arm-gripper manipulation
and autonomous vehicle, learning based manipulation of
multifingered hand has new challenges: a) higher dimensionality
of states and action spaces, such as the dimensionality of
action vector is 30 for URI0 with Shadowhand; b) more
complex and various tasks and environments, such as frequently
switched interaction modes for in-hand manipulation task;
¢) more difficulties in direct kinematics teaching and cross-
hardware/internal adaptation due to the big differences in
structure, actuator, and DOF of each multifingered hand, etc,
which make direct application of the common learning-based
methods difficult.

In this section, by distinguishing the availability and type of
supervision data, we try to classify and review the current studies
in learning-based multifingered robotic hand manipulation
methods for various tasks. In particular, only robotic dexterous
hands with no less than three fingers are investigated. Note that
classification according to various tasks, such as grasping, non-
prehension manipulation, in hand manipulation, handover, etc
could also be meaningful, as different task requirements influence
the design of learning-based methods, which will not be specially
discussed in this article.

4.1. Learning From Observation

Due to the high-dimensional state and action spaces of
multifingered robotic hands, learning from human hand
demonstration is a direct method. There are four crucial
issues in this situation: a) 6-DoF object pose detection, b)
human hand skeleton/pose/grasp type recognition, c) interaction
mode perception between object and hand, and d) human-
robot hand pose retargeting and manipulation learning. Various
robotic systems and algorithms have been proposed to record
demonstrations properly and solve issues partly or fully.

For LfO, we mainly consider the situation in which
demonstrations are conducted by different subjects or from
different aspects, in which action labels are not available and the
state values are also barely known. Hand manipulation prediction
and learning from demonstration with the same robotic/human
hand will be reviewed in Section 4.2.

4.1.1. Human-Robot Hand Pose Retargeting

For the four-fingered Allegro hand with 20 joint angles, DexPilot
(Handa et al, 2020) defines and obtains 20 joint angles of
the human hand in a multistage pipeline, which includes pre-
perception of the hand mask and pose with a color glove,
human pose detection and refinement based on PointNet++,
and joint angle mapping based on an MLP net. However,
due to the substantial difference in joint axes and positions,
a cost function for kinematic retargeting concerning fingertip
task-space metrics is proposed. Finally, complex vision-based
teleoperation tasks such as extracting money from a wallet and
opening a tea drawer are realized in a real robotic system.
Taking human hand depth images as inputs, Antotsiou et al.
(2019) use a hand pose estimator (HPE) to achieve hand skeleton
extraction and then combine inverse kinematics and the hybrid
PSO method to retarget to a hand model with 23 actuators,
which is taken as ground truth for further Generative Adversarial
Imitation Learning (GAIL). In contrast, Garcia-Hernando et al.
(2020) realize retargeting in a similar way, which is taken as
noisy mapping requiring further correction. Different from the
multistage methods, Li et al. (2019a) adopt a BioIK solver to
construct a dataset with 400K pairwise depth images of the
human hand, the Shadow Hand, and its joint angles first. Then,
a teacher-student network with joint angle, consistency, and
physical loss is trained to directly give angle joints of the Shadow
Hand with only human hand depth input. Su et al. (2021)
propose multi-leap motion controllers and a Kalman filter-based
adaptive fusion framework to achieve real-time control of an
under-actuated bionic hand according to the bending angles
of human fingers. After solving the retargeting problem, the
recorded teleoperation data could be used as supervision data for
imitation learning in Section 4.2.

4.1.2. Human-Robot Correspondence Learning

In addition to the mapping methods above, some researchers
directly utilize human demonstration data for reinforcement
learning. Mandikal and Grauman (2020) first employ
thermal images to learn affordance regions by human grasp
demonstration and then take object-centric RGB, depth,
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affordance images/maps, and hand motor signals as inputs to a
deep network with an Actor-Critic architecture to learn grasp
policies. Garcia-Hernando et al. (2020) construct human hand
depth images to robotic hands mapping dataset and adopt GAIL
for end-to-end correspondence learning. The generator cascades
a typical retarget module producing noisy poses and a residual RL
agent to recorrect the action, which receives feedback from both
the simulator and the discriminator. Moreover, the structure and
control of soft robotic hands are much different from those of
traditional robotic hands, which makes kinematic demonstration
impossible. By leveraging object centric trajectories without
hand-specific information as demonstrations, Gupta et al.
(2016a) propose a Guided Policy Search (GPS) framework that
could select feasible demonstrations to track and generalize to
new initial conditions with nonlinear neural network policies.

4.2. Imitation Learning

For complex, sequential multifingered manipulation tasks with
sparse, abstract rewards and high-dimensional, constrained state-
action spaces, imitation learning is a promising way to achieve
efficient learning. Note that in this section, demonstration
recording and learning are executed in the same robotic hand.

4.2.1. Hand Grasping Prediction

There are many analytic and data-driven methods tackling grasp
points/boxes/cages estimation for simple two- or four-fingered
grippers (Mahler et al., 2017; Fang et al., 2020), which is out of the
scope of this article, as we focus on grasp affordance prediction
for multifingered dexterous hands. GanHand (Corona et al,
2020) is a landmark model that can give a natural human grasp
manner for each object in a cluttered environment by taking a
single RGB image input of the scene. The detailed predictions
for each object include its 3D model, all naturally possible hand
grasp types defined in Feix et al. (2016) and the corresponding
refined 51-DoF 3D hand models by minimizing a graspability
loss. Generative Deep Dexterous Grasping in Clutter (DDGC)
method (Lundell et al., 2021) has a similar structure as GANhand,
but it adds depth channel and directly.

4.2.2. Learning From Demonstration

To tackle the distributional shift of simple behavior cloning (BC),
Demo Augmented Policy Gradient (DAPG) Rajeswaran et al.
(2017), a model-free on policy method without reward shaping,
first adopts BC for policy initialization and then integrates a
gradually decreased weighted BC term into the original policy
gradient term for further policy updates. A brief diagram of
DAPG is given in Figure 5A. The sparse reward demonstration,
learning, and verification of four tasks (object relocation, in-
hand manipulation, door opening, tool us) are all conducted in
a simulation environment with the Shadow Hand. Subsequent
experiments in low-cost hand hardware, including Dynamixel
claw and Allegro hand, also demonstrate the effectiveness of
DAPG (Zhu et al,, 2019). GAIL is also adopted for 29-DoF hand
grasp learning (Antotsiou et al., 2019), in which the generator
is trained with BC and Trust Region Policy Optimization
(TRPO) sequentially; however, GAIL shows a low generalization
for unseen initial conditions. Jeong et al. (2020) construct

suboptimal experts by waypoint tracking controllers for 7-DoF
bimanual robotic arms and learn primitives for 20-DoF robotic
hands, and a general policy iteration method, Relative Entropy
Q-Learning (REQ), is proposed to take advantage of the mixed
data distribution of the suboptimal experts and current policies.
As many data only have state information but no action labels,
such as internet videos, Radosavovic et al. (2020) propose a
state-only imitation learning method that interactively learns an
inverse dynamics model and performs policy gradient. Osa et al.
(2017) adopt initialized policy and create a dataset with contact
information by human demonstration in simulation, and develop
a hierarchical RL method for dexterous grasp with point cloud
inputs, the upper-level policy selects the grasp types and grasp
locations, and based on these, the lower-level policy generates the
final grasp motions.

4.2.3. Reward Shaping

Inverse reinforcement learning (IRL) is also a promising way to
utilize demonstration data, however, there is rare work for its
application in multi-fingered dexterous hands. Compromisingly,
some researchers try to learn elaborate reward functions
from demonstrations, which could work in combination with
the standard RL method. Christen et al. (2019) propose
a parameterizable multi-objective reward function including
imitation reward and final state reward, in which position,
angle, contact, and control terms are considered. By integrating
with Deep Deterministic Policy Gradient (DDPG), policies
are produced for five-fingered hand interaction tasks like a
handshake, hand clap, and finger touch.

4.3. Reinforcement Learning

In this section, we investigate a) model-free and b) model-based
reinforcement learning (RL) methods that learn from scratch for
multifingered manipulation. Model-free methods are flexible, as
they do not need to learn the model but require a large amount
of trial and error. Model-based methods could use the model to
guide exploration and policy search, which support re-planning
and learning online and enjoy a high data efficiency.

4.3.1. Model-Free Method

Different from Rajeswaran et al. (2017) that assume object and
hand state values are known, Andrychowicz et al. (2019) use
a hardware system with 16 tracking cameras to track hand
fingertip location and 3 RGB cameras to estimate object pose
based on multiview CNN. A distributed RL system based on Long
Short-Term Memory (LSTM) and Proximal Policy Optimization
(PPO) is proposed. By randomizing physical properties in
different simulation environments, the learned discrete policies
can easily be transferred to the physical Shadow Hand for in-
hand manipulation tasks. For learning to be safe, Srinivasan et al.
(2020) propose safety Q-functions for reinforcement learning
(SQRL), in which safe policies could be learned during fine-
tuning constrained by a learned safety critic obtained in the
pre-training phase. Plappert et al. (2018) evaluate DDPG with
and without Hindsight Experience Replay (HER) for in-hand
manipulation and prove that DDPG integrating HER has a
better performance with sparse rewards. To address reaching,
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grasping, and re-grasping in a unified way, Hu et al. (2020)
deploy various quantified rewards and different initial states in
training to experience failures that the robot could encounter,
and a PPO and Proportional-Derivative (PD) controller are
organized in a hierarchical way for dynamic grasping. Haarnoja
et al. (2018) adopt Soft Actor-Critic (SAC), in which the
actor aims to simultaneously maximize expected return and

entropy, and the valve rotation task is estimated in an end-
to-end DRL framework. Charlesworth and Montana (2020)
introduce a trajectory optimization to generate sub-optimal
demonstrations, which is combined with HER iteratively to
solve precise dexterous manipulation tasks such as hand over
and underarm catch. Rombokas et al. (2013) apply the policy
search method, Policy Improvement with Path Integrals (PI2) to
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knob-turning task with a tendon-driven ACT hand and extend it
to control in synergy-based reduced-dimensional space.

4.3.2. Model-Based Method

Online planning with deep dynamics (PDDM) (Nagabandi et al.,
2019) is a model-based method that iteratively trains a dynamic
model with ensemble learning and selects actions with model
predictive control (MPC). A brief diagram of PDDM is given
in Figure 5B. For the Shadow Hand, by learning from scratch
in simulation for 1-2 h or in real hardware for 2-4 h, the model
could realize complex tasks such as handwriting and rotating two
Baoding balls. By assuming a known accurate dynamics model,
(Lowrey et al., 2019) propose a plan online and learn offline
method (POLO), which utilizes local MPC to help accelerate and
stabilize global value function learning and achieve direct and
effective exploration.

4.4. Other Methods

In this section, we mainly review synergy-based methods and
feedback-based methods. Other classical control methods will
not be included.

4.4.1. Synergy-Based Methods

Inspired by muscle synergies in neuroscience in Section 2.2.2,
its modeling in robotic hand control with properties such as
robustness, compliance, and energy efliciency is investigated by
some researchers. Ficuciello et al. (2014) apply PCA to a reference
set of 36 hand configurations and the first three principal
components of each hand configuration are saved as the synergy
components. Values of the synergy coefficients are computed
with matrix manipulation and linear interpolation between the
mean hand position configuration, the open hand, and the target
hand configuration. A grasp quality index based on the force
closure property is proposed as a feedback correction term
(Ficuciello, 2019), which also acts as a reward function for Policy
Improvement with Path Integrals (PI2)-based policy search of
synergy coefficients (Ficuciello et al., 2016). Experiments are
conducted with five-fingered under-actuated anthropomorphic
hands, the DEXMART Hand and the SCHUNK S5FH, to achieve
compliant grasps. However, this method requires the human
operator to first place the object inside the opened hand in the
except position. By further integrating human demonstration
for initialization and neural network based object recognition,
Ficuciello et al. (2019) proposed an arm-hand RL method for
unknown objects in a synergy-based control framework. Geng
et al. (2011) take the object position and pose information as
input and adopt a three-layer MLP to output synergy coefficients
for approaching and grasping respectively for the three-fingered
Schunk robotic hand. In addition, soft adaptive synergies and
synergy level impedance control methods are also implemented
by researchers (Wimbock et al, 2011; Catalano et al., 2014).
Katyara et al. (2021) expand synergies based methods to the
whole precision grasp and dexterous manipulation process.
First, Gaussian Mixture Model - Gaussian Mixture Regression
(GMM-GMR) is applied to generate a synergistic trajectory
that reproduces the taught postures, and kernelized movement

primitives (KMP) are used to parameterize the subspaces of
postural synergies for unknown conditions adaptation. For hand
manipulation tasks with some fixed fingers, such as pen-knocking
and spray, Higashi et al. (2020) construct a low dimensionality
functionally divided manipulation synergy method and a synergy
switching framework.

Moreover, Chai and Hayashibe (2020) try to analyze the
emergence process of synergy control in RL methods, including
Soft Actor-Critic (SAC) and Twin Delayed Deep Deterministic
(TD3) methods. Three synergy-related metrics, Delta Surface
Area (DSA), Final Surface Area (FSA), and Absolute Surface
Area (ASA), are defined, and the results indicate that SAC has
a better synergy level than TD3, which is reflected in higher
energy efficiency.

4.4.2. Feedback-Based Methods

Feedback-based methods could overcome insufficient and
inaccurate perceptions in certain conditions and adjust control
signals/policies online to recover from failures. Arruda et al.
(2016) propose a multistage active vision grasping method for
novel objects, grasp candidates are generated in a single view
first and then grasp contact points and trajectory safety of reach-
to-grasp are continually refined with switched gazes. Ganguly
et al. (2020) use classical control formulations for closed-loop
compliant grasping with only tactile feedback of the BioTac
tactile sensors in the Shadow Hand. Additionally, for novel
object grasping without seeing, Murali et al. (2020) first propose
a localization method based on touch scanning and particle
filtering and establish an initial grasp, and haptic features are
learned with a conditional autoencoder, which is fed into a
re-grasp model to refine the initial grasp. Zito et al. (2019)
apply hypothesis-based belief planning for expected contacts
even though the objects are non-convex and partially observable;
if unexpected contact occurs, such information could be used to
refine pose distribution and trigger re-planing.

Though we classify manipulation methods as the
aforementioned concise categories. It is obvious that
different methods could be flexibly combined to achieve better
performance due to various task scenarios. For example, Li et al.
(2019b) propose a hierarchical deep RL method for planning
and manipulation separately. For rubik’s cube playing task, the
model based Iterative Deepening A* (IDA*) search algorithm
is adopted to find the optimal move sequence, and the model
free Hindsight Experience Replay (HER) method is taken as the
operator to learn from sparse rewards. Human-robot hand poses
retargeting is used to collect BC data in simulation for further
imitation learning with DAPG (Rajeswaran et al., 2017). Some
synergy-based methods also utilize RL methods such as policy
search for synergy coeflicients learning (Ficuciello et al., 2016).

5. DISCUSSION AND OPEN ISSUES

According to the previous review, the related discussions, open
issues, and potential future directions of multifingered hands are
discussed in this section.
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5.1. Hardware Design and Simulation
Modeling

Hardware design: As shown in Section 3, there are various
dexterous hands designed for the disabled and robotic
manipulation. However, there are still challenges in low
cost, small size, arm-hand integration design, especially with
the requirements of multimodal high-resolution sensory
fusions (vision, force, touch, temperature, etc.) and object and
task variations adaptation (size, shape, weight, material, and
surface properties).

With the rapid development of manufacturing and
processing technology, new materials and electronic, mechanical,
electrophysiological components are emerging, which could
provide new structures, actuators, and sensors for multifingered
hand design. Moreover, the related biological findings (as
shown in Section 2), such as the four types of tactile sensory
receptors and the coupled, redundant musculoskeletal structure
of human hands, could also further inspire the application of
these new materials and components in robotic hands. Human
hand-like or more general bioinspired robotic multifingered
hands with high compliance and safety, low energy and cost,
and various perception and manipulation abilities will be one
promising direction.

From the structure aspect, artificial muscles such as
contracting fibers with coiling-and-pulling functions and soft
fingers with special actuators such as shape memory alloys and
fluidic elastomer actuators (FEAs) could be further investigated
for compliant, safe manipulation. Except for the manual grippers
of humans, grippers of other creatures such as the spinal
grippers of the snake body and the muscular hydrostat of the
octopus arm (Langowski et al., 2020) could also inspired new
structure of the dexterous hand. From the sensor aspect, soft
skins with distributed tactile and temperature sensors in the
finger tips as well as in the palm and all other regions that
may contact objects could provide real-time, high-resolution
interaction states between the hand and object and a cue of
material properties of the object. Moreover, by taking into
account the muscle and sensor structures of the human/animal
hands and various evaluation metrics, handware and control
co-optimization, which is an automatic learning of the optimal
number and organization of the muscles and sensors as well as
their control methods could also be meaningful for new hand
prototypes compared to handcraft designs Chen et al. (2021).
Some structure optimization works of musculoskeletal robots are
highly related, such as the convex hull vertex selection-based
structure redundancy reduction method (Zhong et al., 2020) and
the structure transforming optimization method for constraint
force field construction (Zhong et al., 2021).

Simulation modeling: Current simulation platforms such
as Mujoco®, Gazebo’, and Webots® provide authentic physical
engines for demonstration data collection and training and
verification of algorithms, which are efficient, low cost, and safe
compared to direct learning in the hardware. However, two

Chttps://mujoco.org/
7http://gazebosim.org/
8https://www.cyberbotics.com/

critical issues need further investigation: a) the modeling of new
components and sensors, such as distributed tactile sensors, soft
and deformable actuators, and materials, and b) decreasing the
reality gap between simulation and real for seamless sim2real
transferring and real-world applications.

5.2. Manipulation Control and Learning

The main challenges of multifingered hand manipulation
control and learning include the high dimensional state and
action spaces, frequently switched interaction, sparse hard-
defined reward, and adaptation of various ‘internal" and
"external” variations.

Perception and cognition of state information: Multimodal
inputs such as RGB, depth, infrared images, cloud points and
tactile senses of the object, hand and environments, and position,
velocity, and acceleration of joints in robotic arm and hand are
investigated by studies, some methods in Section 4 recognize the
position, pose of object and hand (the demonstration hand) and
the affordances explicitly, other methods encode the information
in an end-to-end way directly for policy learning.

There is not a general framework for state information
acquisition. A higher-level state represents abstract knowledge,
while a low-level state includes more details. Thus, how to select
proper types of sensors and design different levels of states
for various tasks as inputs and supporting reward evaluation
are worthy of further study. Meanwhile, related biological
studies find various hand-centered visual modulation and visual-
tactile fusion characteristics, such as the interaction between
two visual pathways, object and non-object type neurons, as
listed in Section 2.1. Building bio-inspired visual perception
and cognition computational models for hand manipulation is
also meaningful. In addition, EMG signals are also important
inputs for prosthetic hand and human-robot skill transferring
applications, in which, portable and sensitive EMG collected
hardware design and elaborate signals and motor patterns
recognition are also very important.

Action synergy and advanced control: Most learning-based
methods take joints as independent components, which results
in a high-dimensional action space that is difficult to learn
(Rajeswaran et al., 2017; Nagabandi et al., 2019). These methods
neglect the common knowledge in grasping taxonomy and the
muscle synergies in the human hands, as given in Sections 2.2.3
and 2.3, which could be helpful for fast, compliant, robust,
and energy efficient manipulation. Although there are some
hand motor synergy studies, their modeling and task scenarios
are limited (Section 4.4.1). Thus, learning the components and
coefficients of synergies for the whole dynamic manipulation
process remains challenging, and a new model structure and
reward functions with synergy metrics may be needed. In
addition, compared to common position control, with the new
structure and actuators discussed above, flexible force control,
impedance control and stiftness varying control for multifingered
hands could introduce more compliance and robustness, and
their fusion with RL will also be interesting. Some researchers
have investigated the time-varying phasic and tonic muscle
synergies for the musculoskeletal system, which is highly related
and inspiring (Chen and Qiao, 2021).
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Model-based vs. model-free RL: According to their pros
and cons discussed in Section 4.3 and the related biological
results of two discrete circuits for motor planing (Figure 3)
given in Section 2.2. Design model-based and model-free
fusion methods will also be an interesting research direction.
Specifically, researchers need to model external clue-guided, goal-
oriented model-based methods at a high level and habitual
behavior- or instinct motivation-modulated model-free methods
at alow level. Meanwhile, mechanisms for dynamically switching
or fusing these two models should also be designed, and elements
such as novelty and emotion could be considered. Some emotion-
modulated robotic decision learning systems for reaching and
navigation tasks have obtained promising results (Huang et al.,
2018, 2021a,b).

Learning from demonstration and imitation learning: As
continuous kinematics demonstration is exceedingly difficult for
multifingered hands, how to collect and utilize the demonstration
data is the key issue. If both state and action data are needed, a
retargeting method is needed to transfer easily handled teachers,
such as naked human hands or those with wearable apparatuses
(gloves, makers, etc.), to the robotic hand, as reviewed in
Section 4.1.1. During this process, both accurate pose recognition
of hands with occlusion and appropriate mapping overcoming
the structural discrepancies between different teachers and
different robotic hands are challenging. Thus, on the one hand,
designing a robust and adaptive retargeting method is necessary,
in which a series of general mapping metrics may be critical.
On the other hand, when suboptimal demonstration data are
inevitable, which may also be generated much easier without
elaborate design, learning from suboptimal or noisy data is
worth further investigation. For under-actuated and soft robotic
hands, retargeting is very difficult, perhaps only state data can be
considered. IRL is a promising direction, which is rarely applied
in multifingered hands, especially for multistage manipulation
tasks in which it is difficult to define a value function. In addition,
for portable and accurate body-arm-hand integrated movement
recognition, other trackers and devices, such as the HTC Vive
tracker and smart phone, should also be added (Qi et al., 2020).

Moreover, there are plenty of accumulated hand manipulation
data in our daily lives, such as video data in YouTube, recorded
data of monitoring systems in buildings, and vision systems of
partner robots. Except for heterogeneous hand structures, this
kind of “demonstration” always has different viewpoints, single
modal (RGB and/or infrared) and includes complex multistage
tasks; thus, how to utilize these data to supervise multifingered
hand grasp and manipulation learning in its whole lifetime is
a critical problem, and analyzing the mechanisms of mirror
neurons may give some inspirations.

Learning with adaptation: Though the discussed methods
in Section 4 could achieve learning-based manipulation to
some extent, they lack the adaptation ability beyond common
generalization. We believe the online correction, abstract task
representation, transfer and evolution ability of manipulation
skills are also important topics along with robotic applications in
complex non-structured environments and human-cooperated
situations. Specifically, for novel objects and environments with
different arrangements or new obstacles, how to transfer the

common manipulating characteristics and sub-models, adjust the
actions in real time rather than reset from the beginning, achieve
fast model updating by few-shot learning and avoid catastrophic
forgetting are promising directions. Biological structures and
mechanisms such as the hierarchical structure of motor control,
and autonomy and amortized control ability of sub-regions
in Section 2.2.3 may give some inspiration. We hypothesize
that hierarchical RL and curriculum learning are potential
frameworks (Zhou et al., 2021). Cloud robotics with shared
memory and meta learning are also very related topics.

6. CONCLUSION

In this article, we investigate multifingered robotic manipulation
from the aspects of biological results, structure evolution, and
learning methods. First, biological and ethological studies of
the various sensor-motor structures, pathways, mechanisms,
and functions forcing the hand manipulation process (reach,
grasp, manipulate, and release) are carefully investigated. Second,
various multifingered dexterous hands are discussed from
a new perspective: task scenario, actuation mechanism, and
sensors for manipulation. Third, due to high the dimensionality
state, and action spaces, frequently switched interaction modes
and task generation demand for multifingered dexterous
manipulation, learning-based manipulation methods consisting
of LfO, learning by imitation, and RL are discussed. In addition,
synergy- and feedback-based methods that are bioinspired and
may benefit robust, efficient, and compliant control are also
analyzed. Finally, considering the related biological studies
and the shortcomings of current hardware and algorithms
of multifingered dexterous hands, we discuss future research
directions and open issues. We believe that biological structure,
mechanism, and behaviors inspired multifingered dexterous
hands and their learning and control methods will have
prosperous outcomes in the future.

AUTHOR CONTRIBUTIONS

PW designed the direction, structure and content of the
manuscript and wrote the abstract, introduction, and conclusion.
YL investigated and wrote the related biological studies of
visual sensing, the motor pathway of Section Biological Studies,
and the manipulation learning method (Section Learning-Based
Manipulation Methods). RL surveyed and wrote the biological
studies of tactile sensing, the skeleton-muscle-tendon structure
of Section Biological Studies, and their structural evolvements
(Section Structural Evolvements). MT reviewed and wrote the
biological studies of visual-tactile fusion and control mode of
Section Biological Studies. ZL finished the discussion and open
issues. HQ edited and revised the manuscript, and provided
theoretical guidance. All the authors read and approved the
submitted manuscript.

FUNDING

This work is partly supported by the National Key Research
and Development Plan of China (grant no. 2020AAA0108902),

Frontiers in Neurorobotics | www.frontiersin.org

16

April 2022 | Volume 16 | Article 843267


https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Lietal

Survey of Multifingered Robotic Manipulation

the National Natural Science Foundation of China (grant
no. 62003059 and 61702516), the China Postdoctoral Science
Foundation (grant no. 2020M673136), the Open Fund of Science
and Technology on Thermal Energy and Power Laboratory,

REFERENCES

Ahn, M., Zhu, H., Hartikainen, K., Ponte, H., Gupta, A., Levine, S., et al.
(2019). “Robel: robotics benchmarks for learning with low-cost robots,” in 2019
Conference on Robot Learning (Osaka).

Ahn, M., Zhu, H., Hartikainen, K., Ponte, H., Gupta, A., Levine, S., et al.
(2020). “ROBEL: robotics benchmarks for learning with low-cost robots,” in
Proceedings of the Conference on Robot Learning, Vol. PMLR 100 (Cambridge,
MA), 1300-1313.

Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pachocki,
J., et al. (2019). Learning dexterous in-hand manipulation. Int. J. Rob. Res. 39,
3-20. doi: 10.1177/0278364919887447

Antotsiou, D., Garcia-Hernando, G., and Kim, T.-K. (2019). “Task-oriented hand
motion retargeting for dexterous manipulation imitation,” in Lecture Notes in
Computer Science (Munich: Springer International Publishing), 287-301.

Arruda, E., Wyatt, J., and Kopicki, M. (2016). “Active vision for dexterous grasping
of novel objects,” in 2016 IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS) (Daejeon: IEEE).

Avillac, M., Deneve, S., Olivier, E., Pouget, A., and Duhamel, J.-R. (2005). Reference
frames for representing visual and tactile locations in parietal cortex. Nat.
Neurosci. 8, 941-949. doi: 10.1038/nn1480

Bensmaia, S., and Tillery, S. I. H. (2014). “Tactile feedback from the hand,” in The
Human Hand as an Inspiration for Robot Hand Development. Springer Tracts
in Advanced Robotics, Vol 95, eds R. Balasubramanian and V. Santos (Cham:
Springer). doi: 10.1007/978-3-319-03017-3_7

Bensmaia, S. J., Denchev, P. V., Dammann, J. F., Craig, J. C., and Hsiao, S. S. (2008).
The representation of stimulus orientation in the early stages of somatosensory
processing. J. Neurosci. 28, 776-786. doi: 10.1523/JNEUROSCI.4162-07.2008

Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: a
difficult road toward simplicity. IEEE Trans. Rob. Automat. 16, 652-662.
doi: 10.1109/70.897777

Billard, A., and Kragic, D. (2019). Trends and challenges in robot manipulation.
Science 364, 8414. doi: 10.1126/science.aat8414

Bing, Z., Meschede, C., Réhrbein, F., Huang, K., and Knoll, A. C. (2018). A survey
of robotics control based on learning-inspired spiking neural networks. Front.
Neurorobot. 12, 35. doi: 10.3389/fnbot.2018.00035

Borchardt, M., Hartmann, K., Leymann, R., and Schlesinger, S. (1919).
Ersatzglieder und Arbeitshilfen. Berlin; Heidelberg: Springer Berlin Heidelberg.

Breveglieri, R., Bosco, A., Galletti, C., Passarelli, L., and Fattori, P. (2016). Neural
activity in the medial parietal area v6a while grasping with or without visual
feedback. Sci. Rep. 6, 28893. doi: 10.1038/srep28893

Bridgwater, L. B, Thrke, C. A., Diftler, M. A., Abdallah, M. E., Radford, N. A,,
Rogers, J. M., et al. (2012). “The robonaut 2 hand - designed to do work
with tools,” in 2012 IEEE International Conference on Robotics and Automation
(Saint Paul, MN: IEEE).

Buneo, C. A, and Andersen, R. A. (2006). The posterior parietal
cortex: sensorimotor interface for the planning and online control
of visually guided movements. Neuropsychologia 44, 2594-2606.
doi: 10.1016/j.neuropsychologia.2005.10.011

Butterfass, J., Grebenstein, M., Liu, H., and Hirzinger, G. (2001). “DLR-hand II:
next generation of a dextrous robot hand,” in Proceedings 2001 ICRA. IEEE
International Conference on Robotics and Automation (Cat. No.01CH37164)
(Seoul: IEEE).

Camponogara, I, and Volcic, R. (2020). Integration of haptics and vision in human
multisensory grasping. Cortex. 135, 173-185. doi: 10.1016/j.cortex.2020.11.012

Catalano, M., Grioli, G., Farnioli, E., Serio, A., Piazza, C., and Bicchi, A. (2014).
Adaptive synergies for the design and control of the pisa/IIT SoftHand. Int. J.
Rob. Res. 33, 768-782. doi: 10.1177/0278364913518998

Wuhan 2nd Ship Design and Research Institute, Wuhan,
P.R. China (grant no. TPL2020C02), the Strategic Priority
Research Program of Chinese Academy of Science (grant no.
XDB32050100), and the InnoHK.

Chai, J., and Hayashibe, M. (2020). Motor synergy development in high-
performing deep reinforcement learning algorithms. IEEE Rob. Automat. Lett.
5,1271-1278. doi: 10.1109/LRA.2020.2968067

Charlesworth, H., and Montana, G. (2020). Solving challenging dexterous
manipulation tasks with trajectory optimisation and reinforcement learning.
arXiv [Preprint]. arXiv: 2009.05104. doi: 10.48550/arXiv.2009.05104

Chen, J., and Qiao, H. (2021). Muscle-synergies-based neuromuscular control for
motion learning and generalization of a musculoskeletal system. IEEE Trans.
Syst. Man Cybern. Syst. 51, 3993-4006. doi: 10.1109/TSMC.2020.2966818

Chen, T., He, Z., and Ciocarlie, M. (2021). Co-designing hardware and control for
robot hands. Sci. Rob. 6, 2133. doi: 10.1126/scirobotics.abg2133

Christen, S., Stevsic, S., and Hilliges, O. (2019). “Demonstration-guided deep
reinforcement learning of control policies for dexterous human-robot
interaction,” in 2019 IEEE International Conference on Robotics and Automation
(ICRA) (Montreal, QC: IEEE).

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian,
P.,Ryu, S. L, et al. (2012). Neural population dynamics during reaching. Nature
487, 51-56. doi: 10.1038/nature11129

Controzzi, M., Cipriani, C., and Carrozza, M. C. (2014). “Design of artificial hands:
areview,” in The Human Hand as an Inspiration for Robot Hand Development,
Springer Tracts in Advanced Robotics, eds R. Balasubramanian and V. J. Santos
(Cham: Springer International Publishing), 219-246.

Corona, E., Pumarola, A., Alenya, G., Moreno-Noguer, F., and Rogez, G. (2020).
“GanHand: Predicting human grasp affordances in multi-object scenes,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(Seattle, WA: IEEE).

Cui, J., and Trinkle, J. (2021). Toward next-generation learned robot manipulation.
Sci. Rob. 6,9461. doi: 10.1126/scirobotics.abd9461

Culham, J. C., Danckert, S. L., Souza, J. F. X. D., Gati, J. S., Menon, R. S., and
Goodale, M. A. (2003). Visually guided grasping produces fMRI activation
in dorsal but not ventral stream brain areas. Exp. Brain Res. 153, 180-189.
doi: 10.1007/500221-003-1591-5

Cutkosky, M. (1989). On grasp choice, grasp models, and the design of
hands for manufacturing tasks. IEEE Trans. Rob. Automat. 5, 269-279.
doi: 10.1109/70.34763

Dahiya, R., Metta, G., Valle, M,
sensing-from humans to humanoids.
doi: 10.1109/TRO.2009.2033627

Dawson-Amoah, K., and Varacallo, M. (2021). Anatomy, Shoulder and Upper Limb,
Hand Intrinsic Muscles. Treasure Island, FL: Pearls Publishing.

Deimel, R., and Brock, O. (2013). “A compliant hand based on a novel pneumatic
actuator;” in 2013 IEEE International Conference on Robotics and Automation
(ICRA) (Karlsruhe: IEEE).

der Burg, E. V., Olivers, C. N., Bronkhorst, A. W., and Theeuwes, J. (2009). Poke
and pop: tactile-visual synchrony increases visual saliency. Neurosc.i Lett. 450,
60-64. doi: 10.1016/j.neulet.2008.11.002

Devine, S., Rafferty, K., and Ferguson, S. (2016). “Real time robotic arm control
using hand gestures with multiple end effectors,” in 2016 UKACC 1I1th
International Conference on Control (CONTROL) (Belfast: IEEE).

Fabbri, S., Stubbs, K. M., Cusack, R., and Culham, J. C. (2016). Disentangling
representations of object and grasp properties in the human brain. J. Neurosci.
36, 7648-7662. doi: 10.1523/JNEUROSCI.0313-16.2016

Fan, J., He, J., and Tillery, S. I. H. (2005). Control of hand orientation and
arm movement during reach and grasp. Exp. Brain Res. 171, 283-296.
doi: 10.1007/500221-005-0277-6

Fang, H.-S., Wang, C., Gou, M., and Lu, C. (2020). “GraspNet-1billion: a large-
scale benchmark for general object grasping,” in 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) (Seattle, WA: IEEE).

Tactile
1-20.

and Sandini, G.
IEEE Trans.

(2010).
Rob. 26,

Frontiers in Neurorobotics | www.frontiersin.org

April 2022 | Volume 16 | Article 843267


https://doi.org/10.1177/0278364919887447
https://doi.org/10.1038/nn1480
https://doi.org/10.1007/978-3-319-03017-3_7
https://doi.org/10.1523/JNEUROSCI.4162-07.2008
https://doi.org/10.1109/70.897777
https://doi.org/10.1126/science.aat8414
https://doi.org/10.3389/fnbot.2018.00035
https://doi.org/10.1038/srep28893
https://doi.org/10.1016/j.neuropsychologia.2005.10.011
https://doi.org/10.1016/j.cortex.2020.11.012
https://doi.org/10.1177/0278364913518998
https://doi.org/10.1109/LRA.2020.2968067
https://doi.org/10.48550/arXiv.2009.05104
https://doi.org/10.1109/TSMC.2020.2966818
https://doi.org/10.1126/scirobotics.abg2133
https://doi.org/10.1038/nature11129
https://doi.org/10.1126/scirobotics.abd9461
https://doi.org/10.1007/s00221-003-1591-5
https://doi.org/10.1109/70.34763
https://doi.org/10.1109/TRO.2009.2033627
https://doi.org/10.1016/j.neulet.2008.11.002
https://doi.org/10.1523/JNEUROSCI.0313-16.2016
https://doi.org/10.1007/s00221-005-0277-6
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Lietal

Survey of Multifingered Robotic Manipulation

Feix, T., Romero, J., Schmiedmayer, H.-B., Dollar, A. M., and Kragic, D. (2016).
The GRASP taxonomy of human grasp types. IEEE Trans. Hum. Mach. Syst.
46, 66-77. doi: 10.1109/THMS.2015.2470657

Ficuciello, F. (2019). Synergy-based control of underactuated anthropomorphic
hands. IEEE Trans. Ind. Inform. 15, 1144-1152. doi: 10.1109/TI1.2018.28
41043

Ficuciello, F., Migliozzi, A., Laudante, G., Falco, P., and Siciliano, B. (2019). Vision-
based grasp learning of an anthropomorphic hand-arm system in a synergy-
based control framework. Sci. Rob. 4, 4900. doi: 10.1126/scirobotics.aa04900

Ficuciello, F., Palli, G., Melchiorri, C., and Siciliano, B. (2014). Postural synergies
of the UB hand IV for human-like grasping. Rob. Auton. Syst. 62, 515-527.
doi: 10.1016/j.robot.2013.12.008

Ficuciello, F., Zaccara, D., and Siciliano, B. (2016). “Synergy-based policy
improvement with path integrals for anthropomorphic hands, in 2016
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS)
(Daejeon: IEEE).

Flandin, G., Chaumette, F., and Marchand, E. (2000). “Eye-in-hand/eye-to-hand
cooperation for visual servoing in 2000 IEEE International Conference on
Robotics and Automation (ICRA) (San Francisco, CA: IEEE).

Furui, A, Eto, S., Nakagaki, K., Shimada, K., Nakamura, G., Masuda, A., et al.
(2019). A myoelectric prosthetic hand with muscle synergy-based motion
determination and impedance model-based biomimetic control. Sci. Rob. 4,
6339. doi: 10.1126/scirobotics.aaw6339

Ganguly, K., Sadrfaridpour, B., Kidambi, K. B., Fermiiller, C., and Aloimonos,
Y. (2020). Grasping in the dark: Compliant grasping using shadow
dexterous hand and biotac tactile sensor. arXiv [Preprint]. arXiv: 2011.00712.
doi: 10.48550/arXiv.2011.00712

Garcia-Hernando, G., Johns, E., and Kim, T.-K. (2020). “Physics-based dexterous
manipulations with estimated hand poses and residual reinforcement learning,”
in 2020 IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS) (Las Vegas, NV: IEEE).

Gazzaniga, M. (2014). Cognitive Neuroscience: The Biology of the Mind. New York,
NY: W.W. Norton & Company, Inc.

Geng, T., Lee, M., and Hiilse, M. (2011). Transferring human grasping synergies to
a robot. Mechatronics 21, 272-284. doi: 10.1016/j.mechatronics.2010.11.003
Gentile, G., Petkova, V. I, and Ehrsson, H. H. (2011). Integration of visual
and tactile signals from the hand in the human brain: an fMRI study. J.

Neurophysiol. 105, 910-922. doi: 10.1152/jn.00840.2010

George, J. A., Kluger, D. T., Davis, T. S., Wendelken, S. M., Okorokova, E.
V., He, Q. et al. (2019). Biomimetic sensory feedback through peripheral
nerve stimulation improves dexterous use of a bionic hand. Sci. Rob. 4, 2352.
doi: 10.1126/scirobotics.aax2352

Gerbella, M., Rozzi, S., and Rizzolatti, G. (2017). The extended object-grasping
network. Exp. Brain Res. 235, 2903-2916. doi: 10.1007/s00221-017-5007-3

Gerratt, A. P., Sommer, N., Lacour, S. P., and Billard, A. (2014). “Stretchable
capacitive tactile skin on humanoid robot fingers-first experiments and results,”
in 2014 IEEE-RAS International Conference on Humanoid Robots (Madrid:

IEEE).
Gertz, H., Fiehler, K., and Voudouris, D. (2018). The role of visual
processing on tactile suppression. PLoS ONE 13, e0195396.

doi: 10.1371/journal.pone.0195396

Goldman-Rakic, P. S., and Rakic, P. (1991). Preface: cerebral cortex has come of
age. Cereb. Cortex 1, 1-1. doi: 10.1093/cercor/1.1.1-a

Goodman, J. M. Tabot, G. A, Lee, A. S, Suresh, A. K, Rajan, A.
T., Hatsopoulos, N. G., et al. (2019). Postural representations of the
hand in the primate sensorimotor cortex. Neuron 104, 1000.e7-1009.e7.
doi: 10.1016/j.neuron.2019.09.004

Graziano, M. S. A, and Gandhi, S. (2000). Location of the polysensory zone in
the precentral gyrus of anesthetized monkeys. Exp. Brain Res. 135, 259-266.
doi: 10.1007/5002210000518

Gupta, A., Eppner, C., Levine, S., and Abbeel, P. (2016a). “Learning dexterous
manipulation for a soft robotic hand from human demonstrations,” in 2016
IEEE/RS] International Conference on Intelligent Robots and Systems (IROS)
(Daejeon: IEEE).

Gupta, K., Burschka, D., and Bhavsar, A. (2016b). “Effectiveness of grasp attributes
and motion-constraints for fine-grained recognition of object manipulation
actions,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW) (Las Vegas, NV: IEEE).

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: off-policy
maximum entropy deep reinforcement learning with a stochastic actor. arXiv
[Preprint]. arXiv: 1801.01290. doi: 10.48550/arXiv.1801.01290

Handa, A., Wyk, K. V., Yang, W, Liang, J., Chao, Y.-W., Wan, Q,, et al. (2020).
“DexPilot: vision-based teleoperation of dexterous robotic hand-arm system,”
in 2020 IEEE International Conference on Robotics and Automation (ICRA)
(Paris: IEEE).

Higashi, K., Koyama, K., Ozawa, R., Nagata, K., Wan, W., and Harada, K. (2020).
“Functionally divided manipulation synergy for controlling multi-fingered
hands,” in 2020 IEEE/RS] International Conference on Intelligent Robots and
Systems (Las Vegas, NV: IEEE).

Hu, W, Yang, C,, Yuan, K,, and Li, Z. (2020). Reaching, grasping and re-grasping:
Learning multimode grasping skills. arXiv [Preprint]. arXiv: 2002.04498.
doi: 10.48550/arXiv.2002.04498

Hu, Y., Osu, R, Okada, M., Goodale, M. A., and Kawato, M. (2005). A model of the
coupling between grip aperture and hand transport during human prehension.
Exp. Brain Res. 167, 301-304. doi: 10.1007/s00221-005-0111-1

Huang, X., Wu, W., and Qiao, H. (2021a). Computational modeling of emotion-
motivated decisions for continuous control of mobile robots. IEEE Trans.
Cognit. Dev. Syst. 13, 31-44. doi: 10.1109/TCDS.2019.2963545

Huang, X., Wu, W., and Qiao, H. (2021b). Connecting model-based and model-
free control with emotion modulation in learning systems. IEEE Trans. Syst.
Man Cybern. Syst. 51, 4624-4638. doi: 10.1109/TSMC.2019.2933152

Huang, X., Wu, W., Qiao, H., and Ji, Y. (2018). Brain-inspired motion learning in
recurrent neural network with emotion modulation. IEEE Trans. Cognit. Dev.
Syst. 10, 1153-1164. doi: 10.1109/TCDS.2018.2843563

Hubbard, J. D., Acevedo, R., Edwards, K. M., Alsharhan, A. T., Wen, Z., Landry, J.,
et al. (2021). Fully 3d-printed soft robots with integrated fluidic circuitry. Sci.
Adv. 7,5257. doi: 10.1126/sciadv.abe5257

Hudson, H. M., Park, M. C., Belhaj-Saif, A., and Cheney, P. D. (2017).
Representation of individual forelimb muscles in primary motor cortex. J.
Neurophysiol. 118, 47-63. doi: 10.1152/jn.01070.2015

Ide, M., and Hidaka, S. (2013). Visual presentation of hand image modulates
visuo-tactile temporal order judgment. Exp. Brain Res. 228, 43-50.
doi: 10.1007/500221-013-3535-2

Jacobsen, S., Iversen, E., Knutti, D., Johnson, R., and Biggers, K. (1986). “Design
of the utah/m.i.t. dextrous hand,” in 1986 IEEE International Conference on
Robotics and Automation (ICRA) (San Francisco, CA: Institute of Electrical and
Electronics Engineers).

Jacobsen, S. C., Knutti, D. F., Biggers, K. B., Iversen, E. K., and Wood, J. E.
(1985). “An electropneumatic actuation system for the utah/MIT dextrous
hand,” in Theory and Practice of Robots and Manipulators (Springer US),
271-279. Jacobsen, S. C., Knutti, D. F., Biggers, K. B., Iversen, E. K,
and Wood, J. E. (1985). “An electropneumatic actuation system for the
utah/mit dextrous hand,” in Theory and Practice of Robots and Manipulators,
eds A. Morecki, G. Bianchi, and K. Kedzior (Boston, MA: Springer).
doi: 10.1007/978-1-4615-9882-4_30

Jantsch, M., Wittmeier, S., Dalamagkidis, K., Herrmann, G., and Knoll, A. (2014).
“Adaptive neural network dynamic surface control for musculoskeletal robots,”
in 2014 IEEE Conference on Decision and Control (CDC) (Seattle, WA: IEEE).

Jantsch, M., Wittmeier, S., Dalamagkidis, K., and Knoll, A. (2012). “Computed
muscle control for an anthropomimetic elbow joint, in 2012 IEEE/RS]
International Conference on Intelligent Robots and Systems (IROS) (Vilamoura-
Algarve: IEEE).

Jarrassé, N., Ribeiro, A., Sahbani, A., Bachta, W., and Roby-Brami, A. (2014).
Analysis of hand synergies in healthy subjects during bimanual manipulation of
various objects. J. Neuroeng. Rehabil. 11, 1-11. doi: 10.1186/1743-0003-11-113

Jeong, R., Springenberg, J. T., Kay, J., Zheng, D., Zhou, Y., Galashov, A., et
al. (2020). Learning dexterous manipulation from suboptimal experts. arXiv
[Preprint]. arXiv: 2010.08587. doi: 10.48550/arXiv.2010.08587

Johnson, K. (2001). The roles and functions of cutaneous mechanoreceptors. Curr.
Opin. Neurobiol. 11, 455-461. doi: 10.1016/50959-4388(00)00234-8

Jones, L. A., and Lederman, S. J. (2006). Human Hand Function. Oxford University
Press. doi: 10.1093/acprof:0s0/9780195173154.001.0001

Katyara, S., Ficuciello, F., Caldwell, D. G., Siciliano, B., and Chen, F.
(2021). Leveraging kernelized synergies on shared subspace for precision
grasping and dexterous manipulation. IEEE Trans. Cognit. Dev. Syst.
doi: 10.1109/TCDS.2021.3110406

Frontiers in Neurorobotics | www.frontiersin.org

18

April 2022 | Volume 16 | Article 843267


https://doi.org/10.1109/THMS.2015.2470657
https://doi.org/10.1109/TII.2018.2841043
https://doi.org/10.1126/scirobotics.aao4900
https://doi.org/10.1016/j.robot.2013.12.008
https://doi.org/10.1126/scirobotics.aaw6339
https://doi.org/10.48550/arXiv.2011.00712
https://doi.org/10.1016/j.mechatronics.2010.11.003
https://doi.org/10.1152/jn.00840.2010
https://doi.org/10.1126/scirobotics.aax2352
https://doi.org/10.1007/s00221-017-5007-3
https://doi.org/10.1371/journal.pone.0195396
https://doi.org/10.1093/cercor/1.1.1-a
https://doi.org/10.1016/j.neuron.2019.09.004
https://doi.org/10.1007/s002210000518
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.2002.04498
https://doi.org/10.1007/s00221-005-0111-1
https://doi.org/10.1109/TCDS.2019.2963545
https://doi.org/10.1109/TSMC.2019.2933152
https://doi.org/10.1109/TCDS.2018.2843563
https://doi.org/10.1126/sciadv.abe5257
https://doi.org/10.1152/jn.01070.2015
https://doi.org/10.1007/s00221-013-3535-z
https://doi.org/10.1007/978-1-4615-9882-4_30
https://doi.org/10.1186/1743-0003-11-113
https://doi.org/10.48550/arXiv.2010.08587
https://doi.org/10.1016/S0959-4388(00)00234-8
https://doi.org/10.1093/acprof:oso/9780195173154.001.0001
https://doi.org/10.1109/TCDS.2021.3110406
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Lietal

Survey of Multifingered Robotic Manipulation

Kiran, B. R,, Sobh, I, Talpaert, V., Mannion, P., Sallab, A. A. A., Yogamani, S., et al.
(2021). Deep reinforcement learning for autonomous driving: a survey. IEEE
Trans. Intell. Transport. Syst. 1-18.

Kleeberger, K., Bormann, R., Kraus, W., and Huber, M. F. (2020). A
survey on learning-based robotic grasping. Curr. Rob. Rep. 1, 239-249.
doi: 10.1007/s43154-020-00021-6

Kochan, A. (2005). Shadow delivers first hand. Ind. Rob. 32,
doi: 10.1108/01439910510573237

Kontoudis, G. P., Liarokapis, M., Vamvoudakis, K. G., and Furukawa, T. (2019). An
adaptive actuation mechanism for anthropomorphic robot hands. Front. Rob.
AI 6, 47. doi: 10.3389/frobt.2019.00047

Kroemer, O., Niekum, S., and Konidaris, G. (2019). A review of robot learning for
manipulation: challenges, representations, and algorithms. J. Mach. Learn. Res.
22,1-82.

Kroger, J. K. (2002). Recruitment of anterior dorsolateral prefrontal cortex in

15-16.

human reasoning: a parametric study of relational complexity. Cereb. Cortex
12, 477-485. doi: 10.1093/cercor/12.5.477

Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., et al.
(2013). Deep hierarchies in the primate visual cortex: what can we learn
for computer vision? IEEE Trans. Pattern. Anal. Mach. Intell. 35, 1847-1871.
doi: 10.1109/TPAMI.2012.272

Kuang, S., Morel, P., and Gail, A. (2015). Planning movements in visual and
physical space in monkey posterior parietal cortex. Cereb. Cortex 26, 731-747.
doi: 10.1093/cercor/bhu312

Laffranchi, M., Boccardo, N., Traverso, S., Lombardi, L., Canepa, M., Lince, A.,
etal. (2020). The hannes hand prosthesis replicates the key biological properties
of the human hand. Sci. Rob. 5, eabb0467. doi: 10.1126/scirobotics.abb0467

Langowski, J. K. A., Sharma, P., and Shoushtari, A. L. (2020). In the soft grip of
nature. Sci. Rob. 5, 9120. doi: 10.1126/scirobotics.abd9120

Li, R., and Qiao, H. (2019). A survey of methods and strategies for high-precision
robotic grasping and assembly tasks-some new trends. IEEE/ASME Trans.
Mechatron. 24, 2718-2732. doi: 10.1109/TMECH.2019.2945135

Li, R, Wu, W, and Qiao, H. (2015). The compliance of robotic hands
—from functionality to mechanism. Assembly Automat. 35, 281-286.
doi: 10.1108/AA-06-2015-054

Li, S., Ma, X,, Liang, H., Gorner, M., Ruppel, P., Fang, B., et al. (2019a). “Vision-
based teleoperation of shadow dexterous hand using end-to-end deep neural
network,” in 2019 IEEE International Conference on Robotics and Automation
(ICRA) (Montreal, QC: IEEE).

Li, T., Xi, W., Fang, M., Xu, J., and Meng, M. Q.-H. (2019b). “Learning to solve a
rubik’s cube with a dexterous hand,” in 2019 IEEE International Conference on
Robotics and Biomimetics (ROBIO) (Dali: IEEE).

Lowrey, K., Rajeswaran, A., Kakade, S., Todorov, E., and Mordatch, I. (2019). “Plan
online, learn offline: efficient learning and exploration via model based control,”
in 2019 International Conference on Learning Representations (New Orleans,
LA).

Lundell, J., Verdoja, F., and Kyrki, V. (2021). DDGC: generative deep
dexterous grasping in clutter. IEEE Rob. Automat. Lett. 6, 6899-6906.
doi: 10.1109/LRA.2021.3096239

Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan, R., Liu, X, et al. (2017). “Dex
net 2.0: deep learning to plan robust grasps with synthetic point clouds and
analytic grasp metrics,” in Robotics: Science and Systems XIII. Robotics: Science
and Systems Foundation (Massachusetts, MA).

Mandikal, P.,, and (2020).
grasping with  object-centric  visual affordances.
doi: 10.1109/ICRA48506.2021.9561802

Martius, G., Hostettler, R., Knoll, A., and Der, R. (2016). “Compliant control for
soft robots: emergent behavior of a tendon driven anthropomorphic arm,”
in 2016 IEEE/RS] International Conference on Intelligent Robots and Systems
(IROS) (Daejeon: IEEE).

Mattar, E. (2013). A survey of bio-inspired robotics hands implementation:
new directions in dexterous manipulation. Rob. Auton. Syst. 61, 517-544.
doi: 10.1016/j.robot.2012.12.005

Merel, J., Botvinick, M., and Wayne, G. (2019).
control in mammals and machines. Nat. Commun. 10,
doi: 10.1038/s41467-019-13239-6

dexterous
[Preprint].

Grauman, K. Learning

ArXiv

Hierarchical motor
5489.

Michaels, J. A., and Scherberger, H. (2018). Population coding of grasp and
laterality-related information in the macaque fronto-parietal network. Sci. Rep.
8, 1710. doi: 10.1038/s41598-018-20051-7

Middleton, F. (2000). Basal ganglia and cerebellar loops: motor and cognitive
circuits. Brain Res Rev. 31, 236-250. doi: 10.1016/S0165-0173(99)00040-5

Mohammed, M. Q., Chung, K. L., and Chyi, C. S. (2020). Review of
deep reinforcement learning-based object grasping: techniques, open
challenges, and recommendations. I[EEE Access 8, 178450-178481.
doi: 10.1109/ACCESS.2020.3027923

Morange-Majoux, F. (2011). Manual exploration of consistency (soft vs hard)
and handedness in infants from 4 to 6 months old. Laterality 16, 292-312.
doi: 10.1080/13576500903553689

Murali, A., Li, Y., Gandhi, D., and Gupta, A. (2020). “Learning to grasp without
seeing,” in Proceedings of the 2018 International Symposium on Experimental
Robotics, eds J. Xiao, T. Kroger, and Q. Khatib (Cham: Springer International
Publishing), 375-386.

Murata, A., Gallese, V., Luppino, G., Kaseda, M., and Sakata, H. (2000).
Selectivity for the shape, size, and orientation of objects for grasping in
neurons of monkey parietal area AIP. J. Neurophysiol. 83, 2580-2601.
doi: 10.1152/jn.2000.83.5.2580

Nagabandi, A., Konoglie, K., Levine, S., and Kumar, V. (2019). Deep
dynamics models for learning dexterous manipulation. arXiv [Preprint]. arXiv:
1909.11652. doi: 10.48550/arXiv.1909.11652

Nanayakkara, V. K., Cotugno, G., Vitzilaios, N., Venetsanos, D., Nanayakkara,
T., and Sahinkaya, M. N. (2017). The role of morphology of the
thumb in anthropomorphic grasping: a review. Front. Mech. Eng. 3, 5.
doi: 10.3389/fmech.2017.00005

Napier, J. R. (1956). The prehensile movements of the human hand. J. Bone Joint.
Surg. Br. 38-B, 902-913. doi: 10.1302/0301-620X.38B4.902

Nicholls, J., Martin, A. R., Wallace, B. G., and Fuchs, P. A. (2012). From neuron to
Brain. Sunderland, MA: Sinauer Associates Inc.

Osa, T., Peters, J., and Neumann, G. (2017). “Experiments with hierarchical
reinforcement learning of multiple grasping policies,” in Springer Proceedings
in Advanced Robotics (Nagasaki: Springer International Publishing), 160-172.

Overduin, S. A., d’Avella, A., Roh, J., and Bizzi, E. (2008). Modulation of
muscle synergy recruitment in primate grasping. J. Neurosci. 28, 880-892.
doi: 10.1523/JNEUROSCI.2869-07.2008

Ozawa, R., and Tahara, K. (2017). Grasp and dexterous manipulation of multi-
fingered robotic hands: a review from a control view point. Adv. Rob. 31,
1030-1050. doi: 10.1080/01691864.2017.1365011

Palli, G., Melchiorri, C., Vassura, G., Scarcia, U., Moriello, L., Berselli, G., et al.
(2014). The DEXMART hand: mechatronic design and experimental evaluation
of synergy-based control for human-like grasping. Int. J. Rob. Res. 33, 799-824.
doi: 10.1177/0278364913519897

Perry, C. J., Amarasooriya, P., and Fallah, M. (2016). An eye in the palm of your
hand: alterations in visual processing near the hand, a mini-review. Front.
Comput. Neurosci. 10, 37. doi: 10.3389/fncom.2016.00037

Perry, C. J., Sergio, L. E., Crawford, J. D., and Fallah, M. (2015). Hand placement
near the visual stimulus improves orientation selectivity in v2 neurons. J.
Neurophysiol. 113, 2859-2870. doi: 10.1152/jn.00919.2013

Pestell, N., Cramphorn, L., Papadopoulos, F., and Lepora, N. F. (2019). A sense of
touch for the shadow modular grasper. IEEE Rob. Automat. Lett. 4, 2220-2226.
doi: 10.1109/LRA.2019.2902434

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell,
G., et al.(2018). Multi-goal reinforcement learning: Challenging robotics
environments and request for research. arXiv [Preprint]. arXiv: 1802.09464.
doi: 10.48550/arXiv.1802.09464

Prevosto, V., Graf, W., and Ugolini, G. (2009). Cerebellar inputs to intraparietal
cortex areas LIP and MIP: functional frameworks for adaptive control of
eye movements, reaching, and arm/eye/head movement coordination. Cereb.
Cortex 20, 214-228. doi: 10.1093/cercor/bhp091

Pruszynski, J. A., and Johansson, R. S. (2014). Edge-orientation processing in
first-order tactile neurons. Nat. Neurosci. 17, 1404-1409. doi: 10.1038/nn.3804

Qi, W, Su, H., and Aliverti, A. (2020). A smartphone-based adaptive recognition
and real-time monitoring system for human activities. IEEE Trans. Hum. Mach.
Syst. 50, 414-423. doi: 10.1109/THMS.2020.2984181

Frontiers in Neurorobotics | www.frontiersin.org

April 2022 | Volume 16 | Article 843267


https://doi.org/10.1007/s43154-020-00021-6
https://doi.org/10.1108/01439910510573237
https://doi.org/10.3389/frobt.2019.00047
https://doi.org/10.1093/cercor/12.5.477
https://doi.org/10.1109/TPAMI.2012.272
https://doi.org/10.1093/cercor/bhu312
https://doi.org/10.1126/scirobotics.abb0467
https://doi.org/10.1126/scirobotics.abd9120
https://doi.org/10.1109/TMECH.2019.2945135
https://doi.org/10.1108/AA-06-2015-054
https://doi.org/10.1109/LRA.2021.3096239
https://doi.org/10.1109/ICRA48506.2021.9561802
https://doi.org/10.1016/j.robot.2012.12.005
https://doi.org/10.1038/s41467-019-13239-6
https://doi.org/10.1038/s41598-018-20051-7
https://doi.org/10.1016/S0165-0173(99)00040-5
https://doi.org/10.1109/ACCESS.2020.3027923
https://doi.org/10.1080/13576500903553689
https://doi.org/10.1152/jn.2000.83.5.2580
https://doi.org/10.48550/arXiv.1909.11652
https://doi.org/10.3389/fmech.2017.00005
https://doi.org/10.1302/0301-620X.38B4.902
https://doi.org/10.1523/JNEUROSCI.2869-07.2008
https://doi.org/10.1080/01691864.2017.1365011
https://doi.org/10.1177/0278364913519897
https://doi.org/10.3389/fncom.2016.00037
https://doi.org/10.1152/jn.00919.2013
https://doi.org/10.1109/LRA.2019.2902434
https://doi.org/10.48550/arXiv.1802.09464
https://doi.org/10.1093/cercor/bhp091
https://doi.org/10.1038/nn.3804
https://doi.org/10.1109/THMS.2020.2984181
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Lietal

Survey of Multifingered Robotic Manipulation

Qiao, H., Chen, J., and Huang, X. (2021). A survey of brain-inspired intelligent
robots: integration of vision, decision, motion control, and musculoskeletal
systems. IEEE Trans. Cybern. 1-14. doi: 10.1109/TCYB.2021.3071312

Radosavovic, I, Wang, X, Pinto, L, and Malik, J. (2020). State-only
imitation learning for dexterous manipulation. ArXiv  [Preprint].
doi: 10.1109/IROS51168.2021.9636557

Rajeswaran, A., Kumar, V., Gupta, A., Vezzani, G., Schulman, J., Todorov,
E., (2017). Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations. ArXiv [Preprint].
doi: 10.15607/RSS.2018.X1V.049

Reichel, M. (2004). “Transformation of shadow dexterous hand and shadow finger
test unit from prototype to product for intelligent manipulation and grasping,”
in International Conference on Intelligent Manipulation and Grasping (Genova),
123-124.

Resnik, L., Klinger, S. L., and Etter, K. (2014). The DEKA arm. Prosthet. Orthot. Int.
38, 492-504. doi: 10.1177/0309364613506913

Richter, C., Jentzsch, S., Hostettler, R., Garrido, J. A., Ros, E., Knoll, A., etal. (2016).
Musculoskeletal robots: scalability in neural control. IEEE Rob. Automat. Mag.
23, 128-137. doi: 10.1109/MRA.2016.2535081

Rombokas, E., Malhotra, M., Theodorou, E., Matsuoka, Y.,
Todorov, E. (2012). “Tendon-driven variable impedance control
using reinforcement learning, in Robotics: Science and Systems VIII
(Sydney, SW).

et al

and

Rombokas, E., Malhotra, M., Theodorou, E. A, Todorov, E., and
Matsuoka, Y. (2013). Reinforcement learning and synergistic control
of the ACT hand. I[EEE/ASME Trans. Mechatron. 18, 569-577.

doi: 10.1109/TMECH.2012.2219880

Rothwell, J. C., Traub, M. M., Day, B. L., Obeso, J. A., Thomas, P. K., and Marsden,
C. D. (1982). Manual motor performance in a deafferented man. Brain 105,
515-542. doi: 10.1093/brain/105.3.515

Rouse, A. G., and Schieber, M. H. (2018). Condition-dependent neural dimensions
progressively shift during reach to grasp. Cell Rep. 25, 3158.e3-3168.e3.
doi: 10.1016/j.celrep.2018.11.057

Ruehl, S. W., Parlitz, C., Heppner, G., Hermann, A., Roennau, A., and Dillmann,
R. (2014). “Experimental evaluation of the schunk 5-finger gripping hand
for grasping tasks,” in 2014 IEEE International Conference on Robotics and
Biomimetics (ROBIO 2014) (Bali: IEEE).

Saleh, M., Takahashi, K., and Hatsopoulos, N. G. (2012). Encoding of coordinated
reach and grasp trajectories in primary motor cortex. J. Neurosci. 32,
1220-1232. doi: 10.1523/JNEUROSCI.2438-11.2012

Scano, A., Chiavenna, A., Tosatti, L. M., Miiller, H., and Atzori, M. (2018).
Muscle synergy analysis of a hand-grasp dataset: a limited subset of motor
modules may underlie a large variety of grasps. Front. Neurorobot. 12, 57.
doi: 10.3389/fnbot.2018.00057

Shah, U. H., Muthusamy, R., Gan, D., Zweiri, Y., and Seneviratne, L. (2021). On
the design and development of vision-based tactile sensors. J. Intell. Rob. Syst.
102, 82. doi: 10.1007/s10846-021-01431-0

Shimoga, K. (1996). Robot grasp synthesis algorithms: A survey. Int ] Rob Res. 15,
230-266. doi: 10.1177/027836499601500302

Shmuelof, L., and Krakauer, ]. W. (2011). Are we ready for a natural history of
motor learning? Neuron 72, 469-476. doi: 10.1016/j.neuron.2011.10.017

Srinivasan, K., Eysenbach, B., Ha, S., Tan, J., and Finn, C. (2020). Learning
to be safe: Deep rl with a safety critic. arXiv [Preprint]. arXiv: 2010.14603.
doi: 10.48550/arXiv.2010.14603

Stein, B. E., and Stanford, T. R. (2008). Multisensory integration: current issues
from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255-266.
doi: 10.1038/nrn2331

Stone, K. D., and Gonzalez, C. L. R. (2015). The contributions of vision and haptics
to reaching and grasping. Front. Psychol. 6, 1403. doi: 10.3389/fpsyg.2015.
01403

Su, H.,, Hu, Y., Karimi, H. R., Knoll, A., Ferrigno, G., and Momi, E. D. (2020).
Improved recurrent neural network-based manipulator control with remote
center of motion constraints: experimental results. Neural Netw. 131, 291-299.
doi: 10.1016/j.neunet.2020.07.033

Su, H., Zhang, J., Fu, J., Ovur, S. E., Qi, W, Li, G, et al. (2021). “Sensor fusion-
based anthropomorphic control of under-actuated bionic hand in dynamic
environment,” in 2021 IEEE/RS] International Conference on Intelligent Robots
and Systems (IROS) (Prague: IEEE).

Suresh, A. K., Goodman, J. M., Okorokova, E. V., Kaufman, M., Hatsopoulos,
N. G., and Bensmaia, S. J. (2020). Neural population dynamics in motor
cortex are different for reach and grasp. eLife 9, e58848. doi: 10.7554/eLife.588
48.5a2

Taborri, J., Agostini, V., Artemiadis, P. K. Ghislieri, M., Jacobs, D. A,
Roh, J., et al. (2018). Feasibility of muscle synergy outcomes in clinics,
robotics, and sports: a systematic review. Appl. Bionics Biomech. 2018, 1-19.
doi: 10.1155/2018/3934698

Taira, M., Mine, S., Georgopoulos, A., Murata, A., and Sakata, H. (1990). Parietal
cortex neurons of the monkey related to the visual guidance of hand movement.
Exp. Brain Res. 83, 29-36. doi: 10.1007/BF00232190

Tian, L., Li, H, Wang, Q. Du, X,, Tao, J., Chong, J. S, et al. (2021).
Towards complex and continuous manipulation: a gesture based
anthropomorphic robotic hand design. IEEE Rob. Automat. Lett. 6, 5461-5468.
doi: 10.1109/LRA.2021.3076960

Townsend, W. (2000). The
flexible part handling and
doi: 10.1108/01439910010371597

Tubiana, R. (1981). The Hand. Philadelphia, PA: Saunders

Tyler, D. J. (2016). Restoring the human touch: prosthetics
with haptics give their wearers fine motor control and a sense of

IEEE  Spectrum 53, 28-33. doi: 10.1109/MSPEC.2016.74

BarrettHand  grasper-programmably
assembly. Ind. Robot 27, 181-188.

imbued

connection.
59116

Valyi-Nagy, T., Sidell, K. R., Marnett, L. J., Roberts, L. J., Dermody, T. S., Morrow,
J. D, et al. (1999). Divergence of brain prostaglandin h synthase activity and
oxidative damage in mice with encephalitis. J. Neuropathol. Exp. Neurol. 58,
1269-1275. doi: 10.1097/00005072-199912000-00008

van Polanen, V., and Davare, M. (2015). Interactions between dorsal and
ventral streams for controlling skilled grasp. Neuropsychologia 79, 186-191.
doi: 10.1016/j.neuropsychologia.2015.07.010

Veiga, F., Akrour, R,, and Peters, J. (2020). Hierarchical tactile-based control
decomposition of dexterous in-hand manipulation tasks. Front. Rob. AI 7,
521448. doi: 10.3389/frobt.2020.521448

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J.,
etal. (2019). Grandmaster level in StarCraft IT using multi-agent reinforcement
learning. Nature 575, 350-354. doi: 10.1038/541586-019-1724-z

Wimbock, T., Jahn, B., and Hirzinger, G. (2011). “Synergy level impedance
control for multifingered hands,” in 2011 IEEE/RS] International Conference on
Intelligent Robots and Systems (IROS) (San Francisco, CA: IEEE).

Wauthrich, M., Widmaier, F., Grimminger, F., Joshi, S., Agrawal, V., Hammoud,
B., et al. (2020). “Trifinger: an open-source robot for learning dexterity,” in
Conference on Robot Learning (Cambridge, MA).

Yau, J. M., Connor, C. E., and Hsiao, S. S. (2013). Representation of tactile
curvature in macaque somatosensory area 2. J. Neurophysiol. 109, 2999-3012.
doi: 10.1152/jn.00804.2012

Yokosaka, T., Kuroki, S., Watanabe, J., and Nishida, S. (2018). Estimating tactile
perception by observing explorative hand motion of others. IEEE Trans. Haptics
11, 192-203. doi: 10.1109/TOH.2017.2775631

Yousef, H., Boukallel, M., and Althoefer, K. (2011). Tactile sensing for dexterous in-
hand manipulation in robotics—review. Sens. Actuators A Phys. 167, 171-187.
doi: 10.1016/j.sna.2011.02.038

Yu, T, Finn, C., Xie, A, Dasari, S., Zhang, T., Abbeel, P., et al. (2018).
One-shot imitation from observing humans via domain-adaptive meta-
learning. arXiv [Preprint]. arXiv: 1802.01557. doi: 10.48550/arXiv.1802.
01557

Zhong, S., Chen, J., Niu, X., Fu, H., and Qiao, H. (2020). Reducing redundancy of
musculoskeletal robot with convex hull vertexes selection. IEEE Trans. Cognit.
Dev. Syst. 12, 601-617. doi: 10.1109/TCDS.2019.2953642

Zhong, S., Chen, Z. and Zhou, J. (2021). Structure transforming for
constructing constraint force field in musculoskeletal robot. Assembly Automat.
doi: 10.1108/AA-07-2021-0093

Zhou, J., Zhong, S., and Wu, W. (2021). Hierarchical motion learning for goal-
oriented movements with speed-accuracy tradeoff of a musculoskeletal system.
IEEE Trans. Cybern. 1-14. doi: 10.1109/TCYB.2021.3109021

Zhu, H., Gupta, A., Rajeswaran, A., Levine, S., and Kumar, V. (2019). “Dexterous
manipulation with deep reinforcement learning: efficient, general, and low-
cost, in 2019 IEEE International Conference on Robotics and Automation
(ICRA) (Montreal, QC: IEEE).

Frontiers in Neurorobotics | www.frontiersin.org

20

April 2022 | Volume 16 | Article 843267


https://doi.org/10.1109/TCYB.2021.3071312
https://doi.org/10.1109/IROS51168.2021.9636557
https://doi.org/10.15607/RSS.2018.XIV.049
https://doi.org/10.1177/0309364613506913
https://doi.org/10.1109/MRA.2016.2535081
https://doi.org/10.1109/TMECH.2012.2219880
https://doi.org/10.1093/brain/105.3.515
https://doi.org/10.1016/j.celrep.2018.11.057
https://doi.org/10.1523/JNEUROSCI.2438-11.2012
https://doi.org/10.3389/fnbot.2018.00057
https://doi.org/10.1007/s10846-021-01431-0
https://doi.org/10.1177/027836499601500302
https://doi.org/10.1016/j.neuron.2011.10.017
https://doi.org/10.48550/arXiv.2010.14603
https://doi.org/10.1038/nrn2331
https://doi.org/10.3389/fpsyg.2015.01403
https://doi.org/10.1016/j.neunet.2020.07.033
https://doi.org/10.7554/eLife.58848.sa2
https://doi.org/10.1155/2018/3934698
https://doi.org/10.1007/BF00232190
https://doi.org/10.1109/LRA.2021.3076960
https://doi.org/10.1108/01439910010371597
https://doi.org/10.1109/MSPEC.2016.7459116
https://doi.org/10.1097/00005072-199912000-00008
https://doi.org/10.1016/j.neuropsychologia.2015.07.010
https://doi.org/10.3389/frobt.2020.521448
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1152/jn.00804.2012
https://doi.org/10.1109/TOH.2017.2775631
https://doi.org/10.1016/j.sna.2011.02.038
https://doi.org/10.48550/arXiv.1802.01557
https://doi.org/10.1109/TCDS.2019.2953642
https://doi.org/10.1108/AA-07-2021-0093
https://doi.org/10.1109/TCYB.2021.3109021
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Lietal

Survey of Multifingered Robotic Manipulation

Zito, C., Ortenzi, V., Adjigble, M., Kopicki, M., Stolkin, R., and Wyatt, J. L. (2019).
Hypothesis-based belief planning for dexterous grasping. arXiv [Preprint].
arXiv: 1903.05517. doi: 10.48550/arXiv.1903.05517

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Wang, Li, Tao, Liu and Qiao. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Neurorobotics | www.frontiersin.org

21

April 2022 | Volume 16 | Article 843267


https://doi.org/10.48550/arXiv.1903.05517
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	A Survey of Multifingered Robotic Manipulation: Biological Results, Structural Evolvements, and Learning Methods
	1. Introduction
	2. Biological Studies
	2.1. Perception and Cognition
	2.1.1. Visual Sensing
	2.1.2. Tactile Sensing
	2.1.3. Visual-Tactile Fusion

	2.2. Motor System
	2.2.1. Sensorimotor Pathway
	2.2.2. Skeleton-Muscle-Tendon Structure
	2.2.3. Control Mode

	2.3. Grasp Taxonomy

	3. Structural Evolvements
	3.1. Task Scenarios
	3.2. Actuation Mechanisms
	3.3. In-hand Sensors for Manipulation

	4. Learning-Based Manipulation Methods
	4.1. Learning From Observation
	4.1.1. Human-Robot Hand Pose Retargeting
	4.1.2. Human-Robot Correspondence Learning

	4.2. Imitation Learning
	4.2.1. Hand Grasping Prediction
	4.2.2. Learning From Demonstration
	4.2.3. Reward Shaping

	4.3. Reinforcement Learning
	4.3.1. Model-Free Method
	4.3.2. Model-Based Method

	4.4. Other Methods
	4.4.1. Synergy-Based Methods
	4.4.2. Feedback-Based Methods


	5. Discussion and Open Issues
	5.1. Hardware Design and Simulation Modeling
	5.2. Manipulation Control and Learning

	6. Conclusion
	Author Contributions
	Funding
	References


