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Artificial Intelligence (AI) methods need to be evaluated thoroughly to ensure reliable

behavior. In applications like autonomous driving, a complex environment with an

uncountable number of different situations and conditions needs to be handled by a

method whose behavior needs to be predictable. To accomplish this, simulations can

be used as a first step. However, the physical world behaves differently, as the example

of autonomous driving shows. There, erroneous behavior has been found in test drives

that was not noticed in simulations. Errors were caused by conditions or situations that

were not covered by the simulations (e.g., specific lighting conditions or other vehicle’s

behavior). However, the problem with real world testing of autonomous driving features

is that critical conditions or situations occur very rarely—while the test effort is high. A

solution can be the combination of physical world tests and simulations—and miniature

vehicles as an intermediate step between both. With model cars (in a sufficiently complex

model environment) advantages of both can be combined: (1) low test effort and a

repeatable variation of conditions/situations as an advantage like in simulations and (2)

(limited) physical world testing with unspecified and potentially unknown properties as

an advantage like in real-world tests. Additionally, such physical tests can be carried

out in less stable cases like already in the early stages of AI method testing and/or in

approaches using online learning. Now, we propose to use a) miniature vehicles at a

small scale of 1:87 and b) use sensors and computational power only on the vehicle itself.

By this limitation, a further consequence is expected: Here, autonomy methods need to

be optimized drastically or even redesigned from scratch. The resulting methods are

supposed to be less complex—and, thus, again less error-prone. We call this approach

“Miniature Autonomy” and apply it to the road, water, and aerial vehicles. In this article,

we briefly describe a small test area we built (3 sqm.), a large test area used alternatively

(1,545 sqm.), two last generation autonomous miniature vehicles (one road, one aerial

vehicle), and an autonomous driving demo case demonstrating the application.
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1. INTRODUCTION

One application field with a very high demand for trust and
reliability on the one hand and a frequently chosen application
of AI methods, on the other hand, is the field of advanced
driver assistance systems (ADAS) and autonomous driving (AD).
Usually, complex AI-based solutions are expected to be used (and
proposed) for tasks in this area.

Machine learning (ML) based ADAS/AD solutions need to
be evaluated thoroughly and usually with more effort than other
methods since their correctness is more difficult to show (at least
for approaches that do not follow the paradigm of “explainable
AI (XAI)”). What needs to be verified is, first, the fulfillment of
the specification and, second, the correctness of the specification.
Mistakes can be made in the selection and collection of training
and test data and the ML design (e.g., net architecture or training
method).

Incorporating simulations can be a first step in evaluating
ML-based ADAS/AD solutions. However, the physical world
behaves differently, as the example of autonomous driving shows,
where there are often unrecognized properties, conditions,
circumstances, or situations that can lead to an erroneous
behavior. Accidents of autonomous vehicles (AVs) have been
analyzed in many studies, including comparisons between
incidents caused by AV and such caused by humans (Wang
et al., 2020; Ren et al., 2021). When taking a closer look at the
accidents caused by AV, cases can be found where the actual
error can be easily identified and fixed (e.g., misperception
of a truck in camera data and/or a false action consequence
when contradicting radar and camera perceptions are sensed).
However, as long as the developers are not aware of the causing
situation and conditions it might not be part of the simulation
and, thus, it can not be identified in simulations. One main
problem is the intersection of errors in the simulation test setup
and the unknown unknowns (Hejase et al., 2020). In real-world
tests, the possibility to introduce such errors in the test design is
much more limited.

Now, evaluations in the real world usually require a lot
of effort in setup and execution and, therefore, can only be
carried out in a much more limited way than simulations. This
contradicts the point that specific conditions, circumstances, and
situations do usually occur only rarely (Tiedemann et al., 2019).

As a solution, we propose a method that we call “Miniature
Autonomy” which is, first, a reduction of the physical model tests
to a 1:87 scale and, second, a different design approach. We use a
scale of 1:87 to be able to use (a) existing model train areas (refer
to Section 2.1.2) and (b) off-the-shelf components for test areas
and vehicles. The use of downscaled model vehicles is a common
approach (Paull et al., 2017; Gerstmair et al., 2021), including
competitions (Zug et al., 2014; Kuhnt et al., 2016; Carolo-Cup,
2021).

It reduces the effort required to set up and operate test areas,
enables the variation of lighting conditions, environments, and
traffic situations, allows testing around the clock, and reduces the
risks of damage. The latter enables the application of early-stage
designs and, in particular, unusual (e.g., complex biologically

or cognitively inspired), online learning, end-to-end learning
approaches, and dangerous, i.e., near-crash edge cases that are
too risky to test in real traffic. Therefore, it is not important
to mimic all real-world scenarios and driving conditions in the
miniature model world but to be sufficiently complex to force the
development of methods that can later be applied to real-world
setups as well. Compared to simulation-only tests a reduction of
needed real-world test miles is one goal. Another goal is to have a
qualitative difference in mixed tests i.e., simulation and physical
(model) tests (compared to simulation-only tests).

A further field of applications is autonomous aerial vehicles
(e.g., drones) that are dangerous to test in real world
environments. As a disadvantage, one might argue now that the
model behaves differently than real 1:1 vehicles. Therefore, model
car tests do not replace real traffic tests but could possibly reduce
the number of test miles with real vehicles.

Furthermore, by the term “Miniature Autonomy” we propose
a different approach to ADAS/AD solution design. For our
1:87 scale vehicles, autonomy covers energy consumption,
actuation, sensors, and data processing including the whole
autonomy under test. That is, the vehicles perform the sensor
measurements, environment modeling, decision making, and the
execution itself. To accomplish this, as expected, new solutions
need to be found. In order to find a solution for the miniature
vehicle, a new, much simpler solution must be developed
which in turn should be less error-prone. It is not just scaling
down existing approaches. The new solution is supposed to be
transferable to a real 1:1 vehicle (Pareigis et al., 2019, 2021;
Tiedemann et al., 2019).

Presented and briefly described are a small test area, the
properties of a large test area, two vehicles (one road vehicle,
one aerial vehicle), and a demo case for the application of the
proposed AD design approach of “miniature autonomy.”

2. MATERIALS AND EQUIPMENT

The description of the proposed “miniature autonomy” design
method is divided into two parts. First, the general model test
approach is described, which consists of the model test areas used
in our projects and two of the vehicles developed so far. Other
vehicles that we have designed and implemented were a compact
sedan car, other trucks, and a ship (Burau et al., 2019; Tiedemann
et al., 2019). The second part describes the “miniature autonomy”
design approach itself in Section 3 followed by a first demo
case in Sections 4.2 and following. This first demo case is used
as an “algorithm under test (AUT)” to evaluate the “miniature
autonomy” approach.

2.1. Miniature Model World
Two different model environments are used for the miniature
autonomy projects. The Miniatur Wunderland in Hamburg is a
large model railroad for commercial purposes. It serves as a role
model for our smallerMicro-Wunderland. The two environments
are described in the following sections.
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2.1.1. Small Test Area
The small test area, or Micro-Wunderland, is a 1:87 sized
model city with roads for model cars. The area of the model
city is approximately 2 × 1.5 m2. The Micro-Wunderland was
built in our autosys research lab to create a realistic model
environment for miniature autonomous vehicles. The roads
have an integrated magnetic wire, which allows (automated but
non-autonomous) model cars to drive along the wire, e.g., to
generate environmental traffic. Switches under the roadway allow
automated traffic to be rerouted. The model city has traffic lights,
street lamps, and traffic signs that can be used by miniature
autonomous vehicles in various ways. The houses and other
objects are attached with magnets to allow a quick reconstruction
of the environment. The road surface has different colors and
varying road markings to better match the complexity of a real
environment. Lighting conditions can be changed. The total cost
of the Micro-Wunderland is in the order of 3,000 Euro. A top
view is shown in Figure 1.

Two different localization methods were set up on the small
test area (to serve as ground truth and to mimic GNSS-based
localization): 1. a fixed camera in top-view position, combined
e.g., with markers at the vehicles, and 2. ultra wide band (UWB)
based radio localization, e.g., with trilateration. The small test

area Micro-Wunderland is located in our research lab and is,
therefore, easily accessible to allow easy generation of different
kinds of data, especially training data for machine learning
algorithms.

2.1.2. Large Test Area
As the testing environment for longer test runs, the commercial
1:87 scale model railroadMiniaturWunderland (1,545 m2 layout
size, refer to Figure 2) is used (Wunderland, 2021). In the
Miniatur Wunderland, different countries (with different kinds
of traffic signs and roadmarkings) aremodeled. Furthermore, the
lighting conditions can be changed to a night mode with street
lamps and vehicle headlights switched on. So far we just collected
data in a German street style area.

2.2. Miniature Road Vehicle
The current version of a model car that has sufficient computing
resources for autonomous driving is based on our earlier
versions, including a very compact sedan car, refer to Tiedemann
et al. (2019). The TinyCar CM4 (refer to Figure 3) is the latest
development of H0 scale (1:87) vehicles for autonomous driving
in a miniature world. It is built around a powerful Raspberry
Pi Compute Module 4 (CM4) as the main computing unit,

FIGURE 1 | Bird’s view of the small test area. Houses, trees, etc. are held with magnets to be easily movable. The image shows a typical placement of these objects

as it was used for the first tests. Roadway surfaces and road markings have intentionally varying colors and quality.
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FIGURE 2 | Sample view on the Miniatur Wunderland model railroad on a scale of 1:87. Parts of the 1,545 m2 layout are used for tests (Tiedemann, 2019;

Wunderland, 2021, under CC-BY 4.0).

with a custom PCB with two Coral Tensor Processing Units
(TPU) providing up to 8 TOPS of machine learning power. Up
to two cameras can be attached, with one front-facing, high-
resolution ultra-wide-angle camera currently in use. An onboard
IMU (BNO055) and an absolute encoder on the rear axle provide
odometry data to supplement the localization information from
an onboard ultra-wideband (UWB) indoor positioning system. A
3,500 mAh 18,650 Li-Ion battery provides power for a runtime of
up to 3 h. All parts are on a 3D printed chassis. The total cost of a
single vehicle is around 500 Euro.

All computational tasks are performed locally on the vehicle
within a Robot Operating System (ROS) stack, making the vehicle
truly autonomous and not reliant on any external hardware.
With available local machine learning accelerators, even complex
tasks such as image segmentation are computed directly on
the vehicle. Using a robotic framework such as ROS improves
the development and testing process a lot. The framework
Rock/OROCOS fromDFKI Germany / KU Leuven was discussed
as an alternative but rejected because of the larger community
of ROS.

The TinyCar CM4 is intended to be used in our own Micro-
Wunderland and Hamburg’s Miniatur Wunderland. The small
scale makes it an ideal vehicle for autonomous driving education
and research, as it poses no risks to researchers and their
surroundings.

2.3. Miniature Aircraft
After a miniature ship and road vehicle, a micro air vehicle
(MAV) was built to test and develop autonomous algorithms
combined with visual object detection (refer to Figure 4). Our
MAV is about 100 g and has a 3D-printed frame (10 × 10 cm).
It has a flight time of 3–4 min. The hardware cost of one
air vehicle is about 300 EUR. The platform uses a flight
controller (Matek H743 Mini) and an AI Board (Sipeed Maix
BIT) which can communicate by MAVLink protocol. An
optical flow sensor is used for movement estimation over
the ground. The optical flow is only stable in the short
term, and the data will drift after some time. One option
to correct this data over the long term is to use visual
object detection.
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FIGURE 3 | Left: Current version of the truck/van chassis used for the ADAS/AD algorithm design described in Section 4.3. Right: Two vehicles of the current van

chassis design at the Miniatur Wunderland (backside of the part shown in Figure 2).

FIGURE 4 | The micro air vehicle is flying over our small test area.

To do this, a downward-facing camera will be attached to the
MAV and connected to the AI board. An artificial neural network
method can be applied to detect and classify markers such as
cars, buildings, and roads in the environment. The goal is to have
the MAV autonomously take off, fly, and land in the test area.
Currently, the software is still under development, but flight and
functionality tests were performed using a simple PID controller
and a complementary filter for IMU data.

3. METHOD

3.1. Miniature Autonomy
The platforms described in the previous sections share a severe
limitation in terms of space and weight. This leads to limitations
in computing power and in the range of sensor devices that
can be deployed. In order to find a solution for ADAS/AD
tasks, we expect that at least in some cases down-scaling of
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existing solutions is not possible and new approaches have to be
developed.

In the search for such new approaches, we must follow these
three rules:

• All calculations (pre-processing of sensor data, environmental
modeling and analysis, decision-making and control) must be
performed on the vehicle itself. Data transfer to other systems
is not permitted, except for remote control before/after testing
or for emergency braking. This applies to the recall/inference
phase of ADAS/AD solutions. For example, ML method
training—when online learning is not part of the solution—
may be conducted on other systems outside the vehicle. In
cases where online learning is required as part of the solution
on the later vehicle, this needs to be performed on the model
vehicle, too.

• Only the sensors installed on the vehicle can be used.
• Only the power available on the vehicle can be used. However,

we consider test runs to be successful when they last for a
couple of minutes.

4. RESULTS

The evaluation needs to be distinguished between a) the design of
the hardware and software framework (thematerials) i.e., the 1:87
scale platform, and b) the ADAS/AD design process that uses this
platform and the results obtained in the application of this design
process. We call the latter “algorithm under test (AUT)” and its
design and results. The evaluation of the former is described at
first.

4.1. Basic Function Tests
Basic functional tests were performed with both vehicles
presented (truck chassis and MAV). For both, a simple direct
remote control was tested first, in which setpoints were specified
for all degrees of freedom and simple control methods (PID,
complementary filter) ran locally on the vehicle. For the truck
chassis, a special focus is placed on the wheel encoder. Due to the
small space available, a new solution had to be developed (refer
to Section 3). An evaluation of the small magnetic encoder could
be performed by attaching a (larger) reference encoder to the
wheel (as ground truth) and comparing both encoder readings.
A diagram of the comparison is shown in Figure 5.

The analysis of the data shows an average angular error of 6.9◦.
With a wheel circumference of 1.2 cm, this is an error of 0.23 mm
per turn and 19.2mmper drivenmeter. This can be improved but
is sufficient for speed control and a rough odometry estimation.

Another set of basic function tests examines the three
localization methods. They have been developed for the small
test area to serve as ground truth and to mimic GNSS-based
localization. Localization is one central point in several ADAS
and AD tasks, in lateral and longitudinal control. A comparison
plot is given in Figure 6. Both UWB methods have parts with
strong deviations from the camera localization (used as ground
truth). The average error of the particle filter is 28.9 cm, and the
average error of the trilateration method is 15.4 cm.

4.2. Miniature Autonomy Design Process:
Scenario
To evaluate the miniature autonomy approach, a single typical
autonomous driving (AD) task was selected as “algorithm under
test (AUT)”: A road detection and tracking method was to be
developed. Odometry, IMU, and onboard camera could be used
as sensors.

4.3. Miniature Autonomy Design Process:
Procedure
In developing the AUT, we initially started with the traditional
approach. This consists of image processing to transform and
filter the camera images and a CNN-based classification of
the road segments in the images. During the design, several
parameters needed to be adapted to the limited hardware (refer
to below). Other constraints were imposed by the hardware
and remained without any adjustments (e.g., the camera image
resolution was 400× 400 pixels at 8-bit gray values and 10 fps).

A diagram of the system architecture developed with the
“miniature autonomy” constraints (the AUT) is shown in
Figure 7. The nodes from left to right: The global cost map
is generated with a static map. The global path is generated
using a dwa_global_planner ROS node (move_base plugin). The
local path planner is a slightly modified ROS teb_local_planner.
The “TinyCar Controller” receives the planner’s commands and
generates steering and velocity control commands. It reads
the wheel encoder data and generates the odometry. The
localization is a ROS robot_localization. An extended Kalman
Filter fuses odometry, UWB localization, and the IMU data. The
road detection is done using a bilateral network with guided
aggregation for real-time semantic segmentation (BiSeNet V2,
Yu et al., 2020; Fan et al., 2021). In the “costmap generation” the
detected road is transformed into a bird’s view and written to the
local map.

Road detection is central to the AUT and of particular interest
for an evaluation of the “miniature autonomy” design approach.
It is based on a BiSeNet V2 (Yu et al., 2020; Fan et al., 2021).
However, to be computable on the EdgeTPU in the vehicle, the
inference needs to be runwith 8-bit unsigned integer values. Also,
the TensorFlow Lite framework must be used if not all operations
of the regular Tensorflow framework are available. The training
was performed with standard floating point numbers. Then,
the floating point numbers were quantized to uint8. Finally,
since images of a rather coarse resolution can be used, the net
architecture is also adapted (128× 256).

As training data, three different data sets were used:

1. Small test area: In our small test area one data set with
about 1,000 images was collected and manually labeled. The
data collection was done using the truck chassis remotely
controlled.

2. Carla:With the Carla simulator a second data set was collected
including 1,500 images of the “Town02” map. This data set
included different weather and lighting conditions.

3. CityScapes: The CityScapes data set was collected in 50
German cities and contains 4,000 pixel-wise segmented
images (Cordts et al., 2016). Adding this data set, first,
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FIGURE 5 | Comparison of the angles measured with the small-sized magnetic rotation encoder and the reference encoder (as ground truth).

increases the training data size and, second, allows us to
compare the effect of real-world data and artificial data and,
third, fulfills a prerequisite to transfer results to the real world.

The selection and combination of different training data sets is
an important point in machine learning (ML)-based solutions,
also for combinations of simulations and real-world tests without
miniature model tests: 1. most ML methods need the full variety
of input data in the training data sets as it will occur later in the
applications. 2. ML methods gain from large data sets, thus, each
additional data set can improve the results. 3. A transfer from one
to another training data set is an interesting test case in ML.

An example of a cost map computed by the AUT is
shown in Figure 8. For the given global target location a local
target is chosen automatically within the (visible, computable)
local map, using a method comparable to the proposal by
Ort et al. (2019). Local chosen target and global given target
usually differ as the local sensor data does not include the
given global target at the beginning in most cases. However,
the cost map computation is done dynamically while driving,
thus, needs the current sensor data, and the local target
needs to be reachable and on the local map. Details of
the AUT design can be found in the thesis by Schwalb
(2021).

4.4. Miniature Autonomy Design Process:
Analysis of the AUT
Several tests were carried out with the AUT described above
on the miniature truck and in the simulation. On the real

vehicle on the small test site, several test runs had to be
aborted without success. The reasons are a combination of a)
the mechanical setup without damping or springs and with an
imprecise steering mechanism, b) a suboptimal lens and visible
ROI, and c) a suboptimal road classification. This often results
in the inability to track the road and the vehicle leaving the
road. A major improvement to correct this misbehavior is an
optimized selection of training data. As another improvement,
a new detection method is currently being implemented that
includes lane-by-lane identification, refer to Section 6. However,
the main purpose of this road following implementation is to
serve as an AUT to investigate this design approach.

In about 10% of the runs, the entire path was traversed without
such errors. This resulted in enough data to study the AUT
behavior.

Figure 9 shows test runs in the Carla simulator. One test run
shown uses the TEB local planner, one uses the pure pursuit
planner. Both results are comparable, TEB has an average error
of 2.0 m and pure pursuit of 3.1 m (in the Carla simulator the
scale is 1:1, real traffic size). The large error in the TEB path is
due to a street detection error. Comparing the behavior of the
TEB planner and pure pursuit planner separately, it can be seen
that the TEB planner has clear advantages.

Further test runs were performed on the miniature truck
in the small test area. There, the system ran at a frame rate
of 10 fps. In Figure 10 pure pursuit can be seen. The average
error here is 0.029 m which, scaled by 1:87, is approximately
2.5 m, thus, comparable to the simulation results. In the overall
behavior, it can be seen that the steering angle is always somewhat
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FIGURE 6 | Plot comparing three localization methods developed for the small test area. Horizontal and vertical units are meters.

FIGURE 7 | System architecture developed for the algorithm under test (AUT).

suboptimal. This can be explained by the inaccurate steering
mechanics, which leads to a non-linear relationship between
servo position and wheel angle.

So far no emulation of real-world drivers (other vehicles
or pedestrians) was included since the simple automated (but

non-autonomous) vehicles are currently developed and not ready
yet (refer to Section 6). However, the purpose of the first study
described here is to serve as AUT, thus, to study the miniature
autonomy approach and to compare the solution of the AUTwith
a classical solution (refer to below).
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FIGURE 8 | Visualization of the costs computed by the AUT.

4.5. Miniature Autonomy Design Process:
Comparison With a Regular Design
The development of the AUT using the miniature autonomy
approach resulted in a solution that differs in several ways from
solutions published for real 1:1 scale vehicles.

In addition to the difference in hardware (e.g., computational
hardware and sensors), the AUT implementation uses a
downscaled BiSeNet V2 architecture, images with a coarse
resolution of 400 × 400 pixels, and 8-bit gray values. The actual
region of interest (ROI) is even smaller (300 × 300 pixels). Also,
the inference calculation uses the Tensorflow Lite framework
with a uint8 resolution instead of floating point values.

5. DISCUSSION

In previous studies (refer to Schönherr, 2019), it was shown,
that automated driving of a self-contained small scale vehicle
in a well-defined environment is possible using only a
microcontroller without an operating system and a small camera.
The transition from automated driving to the development of
semi-automated and autonomous driving on a small scale first
requires a suitable environment. The Miniatur Wunderland in
Hamburg and a specially developed small-scale test environment
in our autosys research lab serve as such testing environments.
Both environments exhibit a certain degree of complexity
similar to real-world complexity and give rise to the designation
autonomous driving as opposed to automated driving. The
terminology autonomous is used here in the sense that the exact
conditions under which the system is operated are not known
at the time the algorithm is developed. Aspects of complexity
include Changeable lighting conditions, configurable objects

(houses, trees, parked cars, etc), traffic lights and street lighting,
configurable roadway boundaries and conditions, and traffic.

Several platforms have been developed and tested over the
years. It has proven beneficial to use the Robot Operating System
(ROS) and incorporate Tensor Processing Units (TPUs) to take
advantage of existing methods and apply machine learning
methods for image recognition and feature extraction. However,
non-ROS systems using NPUs (Neural Network Processing
Units) as in our drone are also promising. In addition, various
technological approaches have been developed and tested over
the years, ranging from simple image feature extraction using
OpenCV or self-implemented low-level methods, over several
types of end-to-end approaches, to more complex methods
using semantic segmentation and carefully adjusted steering
controllers.

The current version of the miniature road vehicle described

above is showing promise in terms of the choice of sensors,

microcontrollers, electronics, and software. More work needs

to be put into a smoother integration of the TPUs and more

robust and precise mechanics of the steering subsystem. The final

architecture regarding software and hardware of the miniature

aircraft (drone) is still under investigation, although the first
proof of concept was successful.

The miniature test environment has demonstrated some
benefits as far as the overall concept is concerned. However, some
robustness issues have recently become apparent, particularly in
the design of the lanes. These are currently being redesigned to
allow longer and more reliable test runs.

In summary, the miniature test environment could
be used to test the “miniature autonomy design
approach” and the AUT scenario of autonomous road
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FIGURE 9 | X/Y graph of a track driven in the Carla simulator with pure pursuit and with the TEB planner path. Given in red is the ideal reference path. The X/Y units

are meters.

FIGURE 10 | X/Y graph of a track driven with the real truck chassis and pure pursuit. Given in red is the ideal reference path.

detection and following has proven to be a viable test
case. When comparing the AUT implementation on
the miniature chassis with a standard implementation
for real vehicles, some interesting differences can
be observed:

1. A Raspberry Pi CM 4 together with a Coral EdgeTPU is a
sufficiently powerful computation platform.

2. The small-size magnetic wheel encoder is a reliable solution
with the potential option of increasing the resolution in the
future.
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3. An image resolution of 400 × 400 pixels (8-bit gray values)
and a region of interest of 300× 300 pixels (running at 10 fps)
is enough for this task.

4. A BiSeNet V2 scaled down to 128 × 256 and inference
computed with Tensorflow Lite (uint8) is sufficient as well.

5. Finally, the UWB localization showed sometimes “jumps”
with single larger errors (refer to above). The particle filter
solution could compensate and correct such errors.

However, there were hardly any qualitatively different solutions
in this implementation—in particular, the BiSeNet V2 was
just scaled down. This was different from a street-following
implementation running on the sedan car (that used an ESP 32
without an ML hardware accelerator, Tiedemann et al., 2019).
Nevertheless, we decided to use as much computational power
as possible in the vehicles (including one system with an
FPGA on its own PCB) to have the computational capacity
to include more than just a street segmentation. These further
projects with more complex tasks are already underway, refer to
Section 6.

In this study, the purpose of the AUT was only to investigate
the miniature autonomy design approach.

5.1. Limitations
While the proposed miniature autonomy design approach might
lead to new solutions and to less needed test miles on real streets
it does definitely not replace such real tests. The variety on real
streets, with real environments, real other vehicles’ behaviors, and
real weather conditions are much larger than the variety within
the miniature tests.

In the upcoming work, it needs to be checked if a quantitative
measure in terms of standard benchmarks can be given to
identify platform differences and to identify how much an
introduction of miniature autonomy can change (refer to
Section 6). Nevertheless, this will most likely be possible only for
single parts, e.g., the behavior of the miniature vehicle mechanics,
and not for the whole process including control, electronics,
mechanics, and environment.

Furthermore, up to some extent, miniature sensors might
be extended by a preprocessing step to mimic real sensors’
properties by, e.g., adding noise, filtering, interpolation, delay,
etc.). This will not be possible in all cases since physical properties
differ quite a lot. The remaining differences between miniature
and real-world systems (in sensor and/or actuator hardware)
might cause an earlier occurrence of erroneous behaviors in
miniature tests compared to real-world systems. Thus, it could
uncover design errors. However, it might also be that errors
experienced in the miniature model tests are caused by properties
specific to miniature systems and, thus, are not relevant.

6. OUTLOOK

The primary goal in the near future is to further stabilize
the mechanics and electronics of our model-environment and
miniature mobile platforms. In addition to study on robustness

issues, the following projects are currently in progress or
completed:

A sufficiently accurate positioning system is currently being
developed using ultra-wideband technology and overhead
cameras. This will allow quantification of test results, creation of
a digital twin, synchronization with a simulation, and calibration
of sensors.

A simulation environment of our model environment is being
developed using Unity. This will allow the introduction of a
simulation in the development process of AI related technology.
A simulation will serve as another source of training data, enable
the application of reinforcement learning methods, and provides
a basis for investigating simulation-to-reality gap issues.

Currently, special miniature smart cars are being built. These
will not steer autonomously but will drive along magnetic wires
integrated into the roadway. Smart miniature cars will have some
integrated sensors andWiFi capabilities. They will serve as smart
traffic and as an additional source of data.

Further machine learning related questions are being
investigated. More complex roadway and object segmentation
methods (e.g., lane detection) are executed on the autonomous
miniature platform with a focus on robustness issues. The special
capabilities of ourminiature test environment in terms of lighting
conditions, traffic, changeable environment, etc. can be fully
exploited.

Regarding the miniature autonomy design process and the
study of this method our next steps are:

1. A comparison of the design process using small model tests vs.
using simulations.

2. Tests with varying lighting conditions on the small test area
and again the question of how this differs from simulations
and if it is worth the additional effort.

3. An evaluation of “24/7” tests.
4. Finally a comparison of real vehicle tests vs. model tests.
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