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We present a description of an ASM-network, a new habit-based robot controller model

consisting of a network of adaptive sensorimotor maps. This model draws upon recent

theoretical developments in enactive cognition concerning habit and agency at the

sensorimotor level. It aims to provide a platform for experimental investigation into the

relationship between networked organizations of habits and cognitive behavior. It does

this by combining (1) a basic mechanism of generating continuous motor activity as a

function of historical sensorimotor trajectories with (2) an evaluative mechanism which

reinforces or weakens those historical trajectories as a function of their support of a

higher-order structure of higher-order sensorimotor coordinations. After describing the

model, we then present the results of applying this model in the context of a well-known

minimal cognition task involving object discrimination. In our version of this experiment,

an individual robot is able to learn the task through a combination of exploration through

random movements and repetition of historic trajectories which support the structure of

a pre-given network of sensorimotor coordinations. The experimental results illustrate

how, utilizing enactive principles, a robot can display recognizable learning behavior

without explicit representational mechanisms or extraneous fitness variables. Instead, our

model’s behavior adapts according to the internal requirements of the action-generating

mechanism itself.

Keywords: habit, sensorimotor contingencies, minimal cognition, robot controller, adaptive autonomy, enactivism

1. INTRODUCTION

1.1. A Novel Habit-Based Controller
An enactive approach to AI and robotics requires us to take seriously the roots of autonomous
agency and sense-making (Froese and Ziemke, 2009). To gain insight into the nature of intelligence,
we cannot be content with mimicking the dynamics of intelligent behavior within the constraints of
externally imposed norms.Wemust also askwhy a system generates its own normative dimensions,
how are they grounded in the material processes of the agent as a self-organizing system, and
how do they relate to an intrinsically meaningful perspective on the world. These questions must
motivate the design of our artificial models.

In recent years, a rich notion of habit as a core feature of cognition has been explored by theorists
focussing on aspects of autonomy, sense-making, and anti-representationalism in enactivism
(Barandiaran and Di Paolo, 2014; Egbert and Barandiaran, 2014; Barandiaran, 2017; Ramírez-
Vizcaya and Froese, 2019; Hutto and Robertson, 2020). Of particular interest to us is a line of
investigation concerning how habit serves as an approximation of a fundamental unit of the
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sensorimotor domain of cognitive life, analogous to the role of
the autopoetic cell as foundational to the biological domain of life
(Buhrmann et al., 2013; Buhrmann and Di Paolo, 2017; Di Paolo
et al., 2017; Di Paolo, 2019). In this view, a habit is a precarious
but self-maintaining structure of sensorimotor activity, one that
sustains itself as an entity over time by continually reproducing
the conditions of its own performance.

Aspects of this view have been investigated through a
computational model called the Iterant Deformable Sensorimotor
Medium (IDSM) (Egbert and Barandiaran, 2014; Egbert and
Cañamero, 2014; Egbert, 2018;Woolford and Egbert, 2019; Zarco
and Egbert, 2019). The IDSM is essentially a mapping between a
sensorimotor state and a change in motor state which is mutated
as the medium is imprinted with a history of trajectories through
a sensorimotor space. When coupled to a robot the medium
serves as a controller which drives a kind of similarity-based
behavior, in which the robot is driven to repeat the motor
activity that it produced when it was historically in a similar
sensorimotor state. As a behavior is repeated more frequently
it in turn sustains and reinforces its influence on the IDSM
mapping. Taken together, this facilitates the development of self-
maintaining habitual behavior. Beyond the IDSM, a handful of
other AI/robotics-type works drawing upon enactive theory have
explored habits through different computational mechanisms
or used comparable similarity-based mechanisms without being
explicitly concerned with habit (Mirza et al., 2006; Iizuka and
Di Paolo, 2007; Bedia et al., 2019; Georgeon and Riegler, 2019).
Nevertheless, the scope of computational models of the enactive
notion of habit remains relatively under-developed considering
the relevance of habit to broader development of enactive
cognitive science.

A recent criticism of the line of investigations working
with the IDSM and related models is that they remain too
minimal to provide an effective model of intelligent behavior,
and that our artificial agents must be capable of developing an
increasingly complex network of habits (Ramírez-Vizcaya and
Froese, 2020). One of our recent works attempted to step in this
direction by exploring how maintaining and refining a network
of habits supported goal-oriented behavior acquired through
evolutionary processes (Woolford and Egbert, 2020). Here we
aim to push further in the direction of enriching the space of
available computational models which can be used to explore
habit-based cognition. To this end we present a new robot
controller model, an Adaptive Sensorimotor Map Network (ASM-
network). Building upon the kind of processes introduced with
the IDSM, the ASM-network adaptively regulates the behavior of
the robot as it engages with its environment, so as to maintain
the viability of a structural organization within the model. That
internal structure is motivated by the hypothesized organization
of a sensorimotor agent as a structure of self-maintaining
sensorimotor regularities (Di Paolo et al., 2017). The first half of
this article thus details relevant elements of sensorimotor theory
and adaptive sensorimotor agency, and then describes how the
model captures some of these principles.

After presenting the model, we present an investigation
to demonstrate its practical capacity as a tool for modeling
cognition behavior. We investigate how a robot can solve

a minimal cognition task previously investigated using
evolutionary robotics methods (Beer, 1996). Evolutionary
robotics methods have yielded invaluable developments in
embodied theories of cognition through the analysis of the
dynamics of adaptive behavior (Beer, 2008; Vargas et al., 2014).
However, they have a critical limitation as an approach to
investigating normativity and agency in an enactive sense, in that
the viability constraints which the adaptive behavior maintains
are externally imposed and have no meaningful correlation with
the behavioral dynamics of the system. Barandiaran describes
this as “the problem of dissociation between norm-establishing
and norm-following processes” (Beer, 1997; Barandiaran and
Egbert, 2014). Our investigation demonstrates that a system
which attempts to reconcile these processes can still be used to
investigate the same kinds of adaptive dynamics.

1.2. Sensorimotor Contingency Theory
Sensorimotor Contingency Theory is an attempt to account
for the existence and quality of perceptual experience without
appeals to notions of internal representation and other
computational explanations (O’Regan and Noë, 2001; Noe,
2004). According to O’Regan and Noë’s formulation of the
theory, regularities in the relationship between movement and
sensorimotor stimulation, and the “mastery” of such regularities,
can explain an agent’s phenomenal experience of perception as a
result of their embodied activity. An archetypal example of the
explanation provided by the theory is that of how the quality of
“softness” is experienced. When a person squeezes a soft object
such as a sponge, there is a particular contingent relationship
between movements in the hand yielding a particular amount
of pressure on the nerves in the finger tips. When squeezing a
harder object such as a stone, the same muscle movements would
coincide with a greater intensity of pressure on the fingertips. In
mastering the laws of these relationships between motion and
sensation the agent brings forth the experiences of softness and
firmness, and the distinction between them. As O’Regan puts it,
the experience of softness/firmness is a quality of the interaction
in time between the body and the object, not an essential property
of the object or “inside” the brain (O’Regan, 2011).

The theory’s emphasis on perception as a process of active
agent-environment interaction resonates with the enactive
approach to cognition, especially with regard to the notion
of sense-making. However the exact nature of sensorimotor
contingencies and the notion of mastery in particular has
proven challenging to reconcile with other aspects of enactivist
thought. One challenge is the original formulation’s apparent
acceptance of cognitive representationalism to account for
mastery (Hutto and Myin, 2012). Another is the question of
how and why an autonomous agent would develop mastery of
contingencies that are meaningful for that agent. Recently Di
Paolo, Buhrmann, and Barandiaran provided a formalization
of sensorimotor contingencies in terms of dynamical systems
theory (Buhrmann et al., 2013). As part of this formalization, they
defined four categories of sensorimotor contingencies, which
describe different levels of the relationship between sensorimotor
dynamics and the experience of the agent:
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FIGURE 1 | The sensorimotor scheme O, associated with the behavior of

bouncing a basketball. The scheme consists of the cyclical organization of the

three coordinations, A × A’ → B × B’ → C × C’ → A × A’, where the arrows

indicate the transitional structure between these coordinations. The A × A’

notation refers to the simultaneous realization of the agent-side sensorimotor

support structure A, and the environment-side response structure A’.

1. Sensorimotor (SM) Environment, the set of all regularities in
the way that actions may affect perceptions for a given body in
a given environment, e.g., between eye movements and retinal
stimulations, without regard for the agent’s internal dynamics
involved in performing those actions.

2. Sensorimotor Habitat regular trajectories within the
sensorimotor environment associated with a particular agent’s
way of being. In other words, the time-extended regularities
involved in the loop of both action affecting perception
and perception affecting action, given the specific internal
properties of the acting agent.

3. Sensorimotor Coordination, a clustering of regularities
within the sensorimotor habitat associated with the fulfillment
of a particular goal of an agent.

4. Sensorimotor Scheme, an organization of coordinations
associated with a particular normative framework and
modulated according to that framework.

These categories clarify the distinction between (1) contingencies
considered in more mechanical or statistical terms relating to the
coupling between body and environment, and (2) contingencies
as related to the experience of the agent in terms of its needs
and expectations. We will briefly expand upon the details of
these categories which are most relevant to this investigation. We
are mostly concerned here with what it means for sensorimotor
coordinations to be organized in relation to goals and norms.

Figures 1, 2 illustrate the way in which the bodily and
environmental aspects of bouncing a basketball relate to the ideas

of sensorimotor coordination and sensorimotor schemes. We
can consider this as a scheme composed of three coordinations:
Pushing the basketball toward the ground; preparing to receive
the ball as it bounces on the ground; and receiving the ball as
it returns to the hand. Each of these coordinations describes
a particular class of embodied dynamics, all associated with a
particular aspect of the basketball bouncing process. Assuming
the scheme is stable, then each particular instance of enacting
this scheme will follow the same sequence of coordinated acts,
with each instance of a coordination varying in its precise
dynamics but reliably establishing the enabling conditions for
an instance of the next coordination. The processes involved in
these transitions are honed over time with respect to various
normative dimensions associated with bouncing a basketball
effectively and efficiently.

A crucial emphasis of this formalization is that these
regularities are not just concerned with the agent’s brain
and body, but involve the entirety of the brain-body-world
system. The regularities associated with the performance of
this scheme encompass both the positioning and readiness of
the agent’s body, and the position of the ball in relation to
the body. Figure 2 illustrates how these regularities form a
sensorimotor-coordination. Each coordination encompasses co-
occurring regularities in the dynamics of both the agent (i.e.,
the actions and sensations associated with pushing the ball
downwards, in the case of A here) and the environment (i.e., the
position of the ball in space and its physical attributes, in the case
of A’), within a specific temporal context with respect to several
other coordinations. In other words, every instance of a particular
coordination is a trajectory through a space of sensorimotor
states (sensorimotor space), over which relevant state variables
are transformed from one particular set of enabling conditions to
another set, and a coordination structure ultimately is composed
of the infinite set of possible variations on these trajectories.

In this example, we have outlined what an organization of
sensorimotor contingencies might look like with respect to a
particular activity, but not how or why such an organization
would develop. Exactly whose goals and norms are we referring
to when we say a scheme is associated with a particular normative
framework, and where do those norms come from?

1.3. Sensorimotor Agency
Di Paolo et al. (2017) integrated their formalization of
SMCs with a proposal for an account of cognition in
which a complex embodied agent, such as a human, is
not reducible to just its biological processes, but rather
consists of many autonomous processes in deeply interwoven
but ultimately irreducible biological, behavioral, and social
domains. These processes and the relations between them
ultimately ground the goals and norms which are relevant
to the higher-level categories of sensorimotor contingencies.
The core of their proposal is the idea that an organization
of sensorimotor contingencies can manifest the necessary and
sufficient properties to possess its own form of agency. Such
an organization is proposed to constitute behavioral domain’s
analog to the notion of the cellular organism as biological agent.
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FIGURE 2 | A more detailed visualization of the A × A’ coordination from the previous figure. The coordination captures not just the agent’s actions (A) and sensations

but also the environmental processes that happen concurrently (A’). The state spaces represent theoretical projections of the state spaces of the relevant variables on

the agent-side and environment-side of the engagement. The trajectories are not just co-occurring but also circularly causal, with the sensorimotor trajectory being a

function of both internal (e.g., neuromuscular) dynamics and the environmental impacts on the agent’s body, and similarly the environmental trajectory being a function

of both the agent’s actions and environmental processes such as gravity acting upon the ball.

The short version of the definition of an agent that underlies the
proposal is:

An autonomous system capable of adaptively regulating

its coupling with the environment according to the

norms established by its own viability condition

(Barandiaran et al., 2009).

In the case of a sensorimotor agent, this system is a self-
individuating, self-sustaining organization of activity which
emerges within the dynamics of a brain-body-environment
system, an entity composed of interacting sensorimotor schemes.
This interaction refers to the relations between sensorimotor
schemes in time—the way in which the performance of one
scheme can regularly support, inhibit, or require the performance
of other activities. At a high level we can think of each of these
schemes as the regularities concerning a particular embodied
activity: drinking from a cup, walking, reaching for a phone.
Crucially, these are regularities which emerge not just in the
dynamics of the internal process of the agent, but over the
entire coupled system comprising the physical properties of
the world, the agent’s body, and the agent’s neurological and
physiological dynamics. A structure of interrelated activities
can be understood as constituting its own kind of entity in
the sensorimotor domain. Such a entity would comprise the
entirety of the activities involved in a particular embodied agent’s
mode of being. The self-individuation of this structure refers
to the way in which the stability of this structure is established
through the very processes of activity that constitute it. These

processes establish an operational closure of all of those activities
which stabilize support for other activities within this structure,
and in turn depend on the support of other activities in the
structure. This process of self-individuation grounds a dimension
of normativity related to the continuation of the activities which
constitute the sensorimotor agent, as well as to the integrity
of the structural relationships between activities. Actions and
environmental structures may take on meaning of being more
or less good or bad depending on how they support or disrupt
that process. These elements may be irrelevant or even in direct
opposition to the agent’s viability at another level, such as
the biological. If the dynamics of the brain-body-environment
coupling are such that the behavior of the agent may change
and develop to maintain its sensorimotor organization according
to these norms, then we have an autonomous structure at the
sensorimotor level which adaptively regulates its engagement
with its environment, thus fulfilling the criteria of an organization
that possesses its own form of agency.

This theory of sensorimotor agency has the potential to
explain how andwhy an agent develops the sensorimotormastery
necessary to ground its phenomenal experience of the world,
and to explain how complex behaviors and skills can take on
“a life of their own,” apparently divorced from any role in
maintaining the viability of the biological agent engaged in those
behaviors. Clearly though, the idea of an agent constituted by
its own acts presents a challenging conceptual puzzle (Di Paolo
et al., 2017, Chapter 6). Artificial models have a key role to play
in both clarifying and developing this and associated theories.
Much of this work to date has focussed on the notion of
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FIGURE 3 | Simplified visualization of an ASM-unit in operation. The model essentially stores a number of historical trajectories in this space which have passed from

the within range initial state to the range of final states, and utilizes information about those trajectories to generate motor activity for the robot in its current state.

habit, which provides a useful “first approximation” (Egbert
and Barandiaran, 2014) of a minimal kind of self-sustaining
sensorimotor entity. A habit may be conceived of as a dissipative
structure of activity which depends upon its own continual re-
performance for stability. In the context of the formalization of
sensorimotor contingency categories, the structure of a minimal
habit is akin to a single, circular scheme in which a series
of coordinations ultimately reproduce the conditions for their
own re-enactment. This structure grounds a single normative
dimension concerning that continuing cycle of reproducing
enabling conditions. Although the notion of habit—especially
a single habit in isolation—does not capture the full richness
of sensorimotor agency (Di Paolo et al., 2017, p. 146–154), it
provides a starting point for investigation.

This brings us to our own work. Our aim is to build
upon previous models that have been used to investigate this
kind of enactive notion of habit, moving a step closer to the
idea of sensorimotor agency proper. In particular our model
aims to investigate the notion of habit more directly in terms
of those categories of sensorimotor contingency, by explicitly
incorporating properties of sensorimotor structure and dynamics
which support the maintenance of that structure’s viability in the
face of environmental disruptions and obstacles. We now present
a description of this model.

2. MODEL

2.1. An Overview of the ASM-Network
Model
In the simplest description, the ASM-network model is a robot
controller which generates motor commands for a robot based
on the relationship between its current sensorimotor state
and its history of sensorimotor trajectories. It consists of a
network of Adaptive Sensorimotor Map units (ASM-units).
The general design of each unit is similar to an earlier model,
the Iterant Deformable Sensorimotor Medium (IDSM) (Egbert
and Barandiaran, 2014; Egbert and Cañamero, 2014), while the

mechanisms involved in organizing these units as a network
are based on our previous Sensorimotor Sequence Reiterator
model (Woolford and Egbert, 2020). Both of those models,
and this one, may be considered as belonging to a family of
habit-based robot controllers. These models are similar in
two primary ways: Firstly, they are all specifically concerned
with a sensorimotor level of abstraction (i.e., leaving aside
lower level neural and physiological dynamics). Secondly,
when coupled to the motors and sensors of an embodied robot
as a controller, they serve to encourage the repetition and
reinforcement of the robot’s historical behaviors. The ASM-
network is unique among these controllers in that it monitors the
way in which new performances affect the stability of historically
established behaviors, and adaptively modulates its own
dynamics in the direction of maintaining the viability of those
behaviors. Additionally, the processes of the model are organized
analogously to the organization of sensorimotor contingencies
in an autonomous sensorimotor entity as we described in the
previous section.

Figures 3, 4 illustrate the basic elements of the ASM-
network model. In operation, only one ASM-unit is “active”
at any one time, and that unit is responsible for governing
the changes in motor activity of the robot. This state of
activation traverses the network over time. As a rough
approximation, we may think of an individual ASM-unit as
being associated with the agent dynamics associated with a
single sensorimotor coordination structure, and a collection
of these coordinations in a network as being associated with
a sensorimotor scheme. Figure 5 illustrates a hypothetical
relationship between our basketball-bouncing sensorimotor
scheme and an instantiated ASM-network model in the
context of a robot, controlled by an ASM-network, which
is able to successfully enact that sensorimotor scheme. The
model components illustrated there will become clear as we
discuss further.

We now discuss the model in three parts: Firstly, we
explain model at the level of individual ASM-units, and then
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FIGURE 4 | Example of an ASM-network consisting of 10 ASM-units. Like in

Figure 3, ASM-units are represented by two-dimensional projections of

sensorimotor-spaces. Arrows indicate that activation will transition from one

ASM-unit to another when the controlled robot is in an appropriate

sensorimotor-state. Note that the yellow initial-state regions of each ASM-unit

corresponds in space with a purple or green final-state region from a

preceding ASM-unit.

FIGURE 5 | The activity of an ASM-network with three ASM-units, overlaying a

visualization of the robot engaged in the ball-bouncing scheme. Each

ASM-unit simulates a particular sequential component of the dynamics

involved in the robot’s side of the coupling. Each activation of the ASM-unit

yields the necessary state for the activation of the next ASM-unit in the

sequence. The progression of activations through the network mirrors the

temporal arrangement of coordinations in a scheme.

at the network level. Finally, we will explain how these
two levels interact to adaptively maintain stable behavior.
Symbols used in the following sections are summarized in
Table 1.

TABLE 1 | Symbols for model parameters and components.

Symbol Value for section 3 Description

τ 0.1 s Period between node-creation

events in an ASM-unit

Nmax 8,000 Maximum number of nodes in a single

ASM-unit before nodes begin to be replaced

w 1.5 Scales the relative importance of P

and V comparisons in similarity metric

tg 8 s Period of activation for an ASM-unit

before non-historical transitions may occur

th 16 s Maximum period of activation

for an ASM-unit

dcutoff 0.2 sm-space units Maximum distance in SM-space

for candidate parent nodes

N
〈

P,V,1m,C,Z,A
〉

ASM-unit node

P 8-dimensional

vector

Position in SM-space of a node

V 8-dimensional

vector

Displacement of node’s position

from previously created node’s position

1m 1-dimensional

vector

Change-in-motor-state generated

at node-creation

C label Node class label, inherited

from parent node

Z label Label of the transition condition

which terminates the activation of an ASM-unit

A 0 or 1 Flag which marks a node as

reinforced or inhibited

Described values for the parameters and dimensionality of vectors are those used in the

investigation in Section 3 but are only indicative of a suitable order of magnitude for the

general case.

2.2. ASM Unit-Level Architecture
All ASM-units shares the same functional properties, and are
essentially self-contained in their operation in most cases.
Therefore, we can present most of the model in terms of a single
ASM-unit in isolation from the rest of the network. Figure 3
illustrates the basic elements of an ASM-unit graphically. Readers
familiar with the IDSM will recognize several core similarities in
the ASM-unit’s architecture.

A key concept at the heart of an ASM-unit is the notion of
the sensorimotor space, the construct of all possible values of all
sensor and motor variables of the controlled robot, which are
each treated as bounded scalars. Conceptually we may think of
these values as representing the full range of movements and
sensations accessible to the robot. At any moment, the robot’s
sensorimotor state is the value of all of those sensors and motors:

sm(t) =





















m1(t)
...

mn(t)
s1(t)
...

sn(t)





















(1)

The ASM-unit essentially operates in terms of comparing the
current sensorimotor state to historical states in terms of their
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position in sensorimotor space. In an example in the context of
the basketball-bouncing scheme, we may think of it comparing a
particular movement and sensation of the arm to other historical
movements and sensations.

The ASM-unit also gives primacy to the concept of the time-
extended trajectory of the robot’s sensorimotor state through
sensorimotor space. In the context of each ASM-unit, which
is only active for a finite segment of time, we specifically use
the term sensorimotor trajectory to refer to discrete segments
of the robot’s trajectory through the space, beginning at the
time of the ASM-unit’s activation and ending at the time of
its termination. The ASM-unit therefore has a collection of
historical sensorimotor trajectories, based on how many times
it has been activated. Figure 3 illustrates a collection of five
historical sensorimotor trajectories, suggesting that it the ASM-
unit is currently in its sixth activation. As per the basketball
example, we may think of each of these sensorimotor trajectories
as instances of the robot’s sensorimotor activity as it was going
through a particular performance of a particular act, e.g., of
pushing the ball.

An ASM-unit is designed so that it causes historical
sensorimotor trajectories to be repeated, by dynamically
generating a sensorimotor-state to change-in-motor-state map,
f (sm) = ṁ, based on those historical sensorimotor trajectories.
The dynamics of the model are precarious in that information
of historical trajectories is lost over time, so for a particular
behavior to be sustained over the long term it must regularly
recur. However, repeating historical trajectories is not as simple
as merely repeating historical motor actions. The time-extended
evolution of the sensorimotor state may be separated into the
evolution of the motor states and evolution of the sensor states:

˙sm = ṁ+ ṡ =





















ṁ1

...
ṁn

0
...
0





















+





















0
...
0
ṡ1
...
ṡn





















(2)

ṁ = f (sm)

ṡ = g(m, e)
(3)

Where, e is a vector representing the environmental state
(i.e., properties of the world and the robot’s position in it).
Ultimately the ASM-unit is only responsible for generating
f (sm) (see later, Equations 5–7), but has no direct influence
on g(m, e). In other words, the ASM-unit is designed to
reproduce historical sensorimotor trajectories, but it only has
direct control over the change in state in a subset of the relevant
dimensions. The same motor action in two different contexts
may yield different sensorimotor trajectories depending on the
environmental state. This produces a tension which causes only
certain behaviors to be stable—those in which the repetition
of certain sensorimotor states is concurrent with the repetition
of certain environmental states. In our basketball example, this
means that regular movements and sensations are only stable
if the physical properties of the ball bouncing off the ground
are also regular. This challenge relates to the concurrence of

agent-side and environment-side dynamics in a sensorimotor
coordination as illustrated in Figure 2.

In any non-trivial system, natural variations in the
environmental state will mean that exact repetitions of
historical trajectories are not possible, and thus the ASM-unit
needs a mechanism for comparing the relative similarity of the
current state to historical states. Thus, the influence of particular
trajectories through sensorimotor space propagates over the
entire state space, such that historical change-in-motor-state
commands are adjusted for the current context. From a design
perspective, the functional effectiveness of these comparisons
and adjustments (i.e., the comparisons are accurate and the
adjustments suitable) are critical to the ASM-unit’s ability to
repeat historical behaviors.

This brings us to the two operational mechanisms of an
ASM-unit, (1) storing information about historical sensorimotor
trajectories, and (2) using that information to generate
change-in-motor-state commands. Sensorimotor trajectories are
sampled at discrete intervals and stored by the ASM-unit as
sequences of nodes, each representing the sensorimotor state
of the robot at the moment of sampling. When determining
a change-in-motor-state command, the ASM-unit compares
the current SM-state to these stored nodes, and generates an
output based on the state of the most similar stored node. The
remainder of this subsection will explain the details of these two
basic mechanisms.

2.2.1. Node Creation

The controller is applied in a simulation of a continuous-time
system, using the Euler method to approximate continuous
dynamics, with a time step of size 0.01. At regular intervals of
τ time units (τ = 0.1s) a node is created to store the current state
of the robot, and a vector 1m is generated which determines the
rate of change to the robot’s motor state over the next τ interval.
The structure of a node is illustrated in Figure 6. Upon creation,
each node stores the following information:

1. The current sensorimotor state of the robot, which we regard
as the node’s position in sensorimotor space P,

2. The vector V from the position of the previously created node
to the position of the current node,

3. The vector 1m for the intended change in motor state
determined during node creation. The process of generating
1m is discussed shortly.

4. An identifying class label for the node, C, which is inherited
from the most similar historical node (parent node) and
will propagate to future similar nodes. This too is discussed
further shortly.

There are also data stored in each node that relate to how the
ASM-unit is exited. When the activation of an ASM-unit ends,
all of those nodes which were created during that activation are
modified to include:

5. An identifying label, Z, of the exit region that caused the
activation to transition to another ASM-unit.

Finally, when the activation of the next ASM-unit is completed,
every created node is updated with feedback regarding the
controller’s progression through the higher order network:
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FIGURE 6 | A trajectory through a 2D sensorimotor space, represented in an

ASM-unit with eight nodes. We use the node N4 as an arbitrary example, all

others share the same properties. For illustrative purposes we treat the motor

and sensor dimensions abstractly as continuous ranges between 0 and 100.

Note that the component A = 1 is determined in the context of subsequent

activations of other ASM-units. This is explained in Section 2.4.

6. A boolean A indicating whether the behavior associated with
the node is reinforced (A = 1) or is inhibited (A = 0). (Wewill
discuss this aspect of the model, which concerns its adaptive
properties, in Section 2.4.).

A completed node may thus be defined as the tuple:

N = 〈P,V ,1m,C,Z,A〉 (4)

The number of nodes in each ASM-unit begins at zero and grows
to a maximum ofNmax in a developed robot. After this maximum
is reached, old nodes are destroyed to make room for new nodes.
All of these nodes’ data are used in future activations of the
ASM-unit to contribute to future output of themapping function.
However, for now we will ignore the adaptive mechanism of the
model and disregard the influence of the C, Z, andA components
of the nodes, which are involved in that mechanism. We will
return to this aspect of the model in Section 2.4.

2.2.2. Motor Command Generation

At the same time as the generation of a new node to store state
data, the model also generates a change-in-motor-state vector
1m which influences the current motor activity of the robot
and is associated with the new node. This is done by finding
a parent node, which is the historical node which represents
a state most relevant to the current sensorimotor state of the
robot. The parent node is found by a similarity metric which
is applied to all historical nodes within a fixed distance of the

FIGURE 7 | A visualization of the mapping function using the similarity metric

described in Equation (5). This illustrates the moment in which node Na is being

created. The position in sm-space Pa and displacement from the previous

node Va will be compared to those of every nearby node. We isolate two of the

three nearest nodes, Nb and Nc, to compare. Nc is closest in space to Na, but

the velocity of the trajectory associated with Nc is very different from that of the

current trajectory. Nb is slightly further away, but the velocity of its associated

trajectory is much more similar, so Nb is selected as the parent node of Na.

1ma is taken as the average between 1mb and the hypothetical vector which

would put Na’s successor at the same motor state as Nb’s successor. This is

indicated by the pale arrows behind the 1ma arrow.

current sensorimotor state in sensorimotor space, and the node
which yields the greatest similarity value is classed as the current
parent node. The behavior associated with the new node will be
similar to the behavior associated with the parent node, and to
reflect this the two nodes are regarded as having the same class.
This is represented in-model with the new node’s C component
set to the same value as the parent’s.

The similarity metric which finds the parent node is illustrated
by example in Figure 7. Let us consider a node which has
just been created Na = 〈Pa,Va,1ma,Za,Aa〉 and an arbitrary
historical node Nb = 〈Pb,Vb,1mb,Zb,Ab〉 We measure the
similarity of the historical node to the current node as the
weighted product of the Manhattan distance between their
positions in sensorimotor space and the distance between their
incoming vectors.

sim(Na,Nb) = −1

(

n
∑

i=1

|Pai − Pbi |

(

n
∑

i=1

|Vai − Vbi |

)ω)

(5)

Where ω is a fixed parametric weight which scales the relative
importance of V compared to P.

Once a parent node has been identified, it is used to determine
a change in motor state for the robot. The method for this
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is illustrated in Figure 7. The 1m value for the new node is
generated by taking a modulated form of the parent’s 1m value:

1ma =
motor(Pa)−motor(Pb)

2
+ 1mb (6)

Where motor(Pa) refers to taking only the motor components
of the sensorimotor position. In effect this produces an
interpolation of 1mb and the hypothetical vector which would
yieldNa’s successor having the samemotor state asNb’s successor.
If a parent node cannot be found, either because this is the
first activation of this ASM-unit, or because no historical states
were sufficiently close to the current state, then 1m is generated
randomly, with each component of the vector selected from a
normal distribution (µ = 0, σ = 0.03).

Once it has been generated, 1m is used to determine a rate of
change in motor state for robot over the next interval of τ :

ṁ =
1m

τ
(7)

In other words the robot’s motor state changes linearly from time
t to time t+ τ so that the motor state shifts frommt tomt +1m
over that interval.

2.3. Network-Level Model Architecture
We have discussed the design of an ASM-unit in isolation, and
will nowmove on to howmultiple ASM-units are linked together
as a network as illustrated in Figure 4. As already mentioned,
each ASM-unit spends only a limited period of time in a state
of activation, and this state of activation regularly transitions
from unit to unit. Transitions occur when the state of the
system meets particular conditions, which depend upon either
the robot’s sensorimotor state or the duration of an activation.
With a finite number of ASM-units in the network, walks through
the network ultimately become cyclical, and this leads to the
repeated activation of individual ASM-units which enable the
history-based mapping functions to develop as they are applied.

The network, taken as a whole, defines the robot’s behavior
at a higher order than the immediate motor activations
generated by an individual ASM-unit’s mapping function: The
complete activation of a specific ASM-unit reflects a directed
transformation from one sensorimotor state to another (i.e., from
one transition condition to another) over a discrete period of
time, abstracted from the sensorimotor dynamics involved in
producing that transition. In other words we may think of a
complete activation of an ASM-unit as reflecting a performance
of a discrete act (i.e., pushing a ball downwards), whereas
the internal processes of each ASM-unit are reflective of the
continuous sensorimotor dynamics that constitute that act (i.e.,
applying a certain amount of tension into the muscles as the
surface of the skin feels a certain amount of pressure). Thus,
similarly to the way that a set of sensorimotor trajectories
captured in an individual ASM-unit reflect a set of regularities
in a particular context of the agent-environment coupling, a
repeated walk through the ASM-network reflects another set of
historically-established regularities at a more coarse time scale.
Having a multitude of ASM-units in the ASM-network produces
a level of context-dependant and time-extended variability to the
model’s behavior: For any given sensorimotor state, one ASM-
unit’s mapping will likely give an output unique from any other
ASM-unit. This means that the structure of the ASM-network,
and the sequential order in which ASM-units are activated, is as
fundamental to the behavior of the model as each independent
mapping function.

In the general case, the ASM-network topology is dynamic
and may generate new ASM-units over time and establish new
links between ASM-units, however the details of this are not
relevant to the investigation presented in Section 3 which uses a
static network, and thus we will save that description for future
work. Here we will focus on how groups of ASM-units are
linked as a network and how transitions occur from one unit to
another. Figure 8 illustrates the different transition processes in a
network. Each ASM-unit has a set of transition conditions Z, with

FIGURE 8 | Illustration of the transition process involved when an active ASM-unit succeeds (ASM1) or fails (ASM2 ) to establish the necessary sensorimotor

conditions to make a transition that is associated with stable behavior. After ASM1’s activation, the network transitions from ASM1 to ASM2, which have an historically

established link. After ASM2’s activation, however, the conditions to transition from ASM2 to ASM3 are not present. The controller explores SM-space until a stable

behavior is re-established. It could do this by either by transitioning to an ASM-unit which was not previously linked (2a.), or through random motor activity (2b.).
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each condition being associated with exactly one other ASM-unit.
Each transition condition is defined as a hyperrectangular region
in sensorimotor space with fixed upper and lower bounds along
each dimension. Any time that the robot’s sensorimotor state is
inside one of these regions of the active ASM-unit, the transition
condition is considered to be satisfied. When the condition is
satisfied, activation of the current ASM-unit ceases and the ASM-
unit associated with the transition condition becomes active. All
ASM-units also define a set of initial conditions, which is simply
the union of all of the transition conditions associated with that
ASM-unit in other ASM-units in the network.

Transitions may also occur if the activation of a single
ASM-unit has lasted for an over-extended period of time. The
motivation for this is clarified in the next section based on the
principle of regularity underlying the model’s design. The limited
time window is handled through a pair of parameters tg , and
th. The first defines a grace period, tg = 8, in which only the
active ASM-unit’s transition conditions are checked. The second
parameter defines a hard limit for the activation window, th = 16.
In the times between tg and th of an ASM-unit’s activation, all of
the network’s initial conditions are checked as though they were
transition conditions for the current ASM-unit. Finally, at time
th, activation of the ASM-unit is terminated immediately and the
controller generates random motor activity until any ASM-unit’s
initial condition is satisfied.

When a transition occurs, the formerly active ASM-unit’s
recently created nodes are updated with information about the
transition condition, as explained in the earlier description of
nodes. This aspect of the model is motivated by the need to adapt
to irregularities in the agent-environment coupling, and other

principles of structural self-individuation. We will now discuss
the former concern in detail, but hold back discussion on the
latter for a future work.

2.4. Adaptive Mechanisms of the Model
At last we turn to the adaptive mechanism of the ASM-network.
This mechanism produces a simple intrinsic goal for every
activation of an ASM-unit, toward which it is biased to develop:
To establish both sensorimotor and environmental conditions
that are sufficient to allow the next ASM-unit to do the same for
its own successor, thereby maintaining the established structure
of the ASM-network as a whole. To explain this, we begin
by temporarily stepping back from the technical description
to discuss how behavior can be understood as adaptive and
maladaptive in the context of the model.

Recall Figure 1, which presented an illustration of
sensorimotor scheme associated with bouncing a basketball.
In that scheme, there is an established structure of regularities
in the agent’s movements and perceptions, and in the way that
the ball responds to and enables them. However, if a disruption
is introduced to the scheme, say the ball is the wrong shape
to bounce in the same way as a basketball, performance of
the scheme will quickly go away. Figure 9A illustrates such a
disruption to the environmental response structure. In that
example, the coordination in which the agent prepares to receive
the returning ball is disrupted when the ball bounces away in a
way that a basketball would not have. The previously established
regularities in the relationship between motor action and sensory
stimulation do not hold. The same actions associated with
receiving the ball are met with irregular sensations, perhaps an

FIGURE 9 | (A) A visualization of a disruption to the basketball-bouncing scheme. The agent-side dynamics remain the same, but the environmental support for the

scheme is insufficient, specifically in terms of the shape and other physical properties of the ball which cause it to bounce differently off the ground. This disruption

prevents the transition from B × B’ to C × C’. (B) An idealized illustration of an ASM-network controlling a robot encountering that disruption. Although the

sensorimotor regularities involved in pushing the ball downwards are compatible which the established scheme, as the ball bounces wildly the sensorimotor

relationship becomes irregular, perhaps due to the variation in the robot’s visual sensors. This prevents ASM3 from being activated as the robot is not in a suitable

sensorimotor state.
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emptiness of the hand and a sight of the ball moving away. The
enabling conditions for the next coordination are not met, and
the agent is at a loss. Successfully adapting to this disruption
would entail altering the dynamics of the interaction with the
ball such that the various normative conditions that motivate the
agent to bounce the ball remain satisfied. At the sensorimotor
level, this would mean enabling the continued performance of
subsequent and concurrent sensorimotor coordinations as they
have been established through experience.

In order to adapt to a disruption such as the misshapen
ball, the agent could either adjust its movements so that it
can bounce the different ball in such a way that it returns
to hand, or it could do something other than bounce the
ball if it is misshapen—perhaps kick it instead. In the former
case, adaptation occurs within the context of a sensorimotor
coordination—the dynamics involved in transforming the state
of the coupling from one set of enabling conditions to another
may alter while the same organization of coordinations is
retained. In other words the agent may attempt to reconcile the
disruption with the pursuit of the same goal. In the latter case,
adaption occurs at the schematic level, through new coordination
structures providing compensatory progressions through the
same scheme, or with the emergence of a diverging sensorimotor
scheme with a different normative orientation. These processes
could also occur in tandem to a greater or lesser degree.

Figure 9B illustrates an idealization of the scenario of a
disruption playing out in the case of a robot controlled by
an ASM-network, comparable to Figure 5 which illustrated the
robot enacting the scheme without disruption. Just as the agent-
environment coupling is not in a suitable state for enacting
the next coordination, so is the ASM-network not meeting
the conditions to allow the next ASM-unit to become active.
Processes which compensate for such a disruption in ASM-
network model could occur at both the unit and network
level: Adaptation at the level of the coordination structure
can be influenced through the reinforcement and inhibition of
particular historical trajectories depending on how they relate to
the resulting progression through the network. This alters the
mapping functions and therefore the low-order dynamics of the
coupling, while retaining the same higher-order sensorimotor
transformations across sequences of ASM-unit activations. At the
schematic level, adaptive processes can be influenced through
the creation of new ASM-units in the network and new links
between existing ASM-units. This allows new mappings to be
generated and new transitions to occur, to accommodate new
modes of agent-environment engagement. In this article, we
focus purely on how the model’s dynamics at the unit-level
can adapt to maintain a pre-existing structure. The latter part
of the adaptive process—how the structure of the network can
generate dynamically—is equally important. However, we save
that description for a future work as it is not a part of the
investigation presented in Section 3.

The ASM-unit’s adaptive mechanism is based on a principle
of regularity. In a correctly functioning ASM-unit with an
established set of historical trajectories, if the environmental state
is sufficiently similar to its state during previous activations,
then the sensorimotor trajectory produced by the ASM-unit’s

operation should also be similar to the trajectories produced
by previous activations. By “similar trajectories” in this context
we specifically mean two trajectories which begin within the
same enabling conditions and reach the same set of transition
conditions within a limited time window. This principle follows
from the idea that because the controller is by design attracted
toward repeating historical motor activity, the source of major
deviations in a sensorimotor trajectory must be irregularities
in the environmental response structure. Following from this
principle, for a sequence of coordinations to be actively
maintained over time, the stability of the environmental support
structure must also be maintained. This provides a condition
by which a sensorimotor trajectory may be evaluated in the
context of enacting sensorimotor coordinations: Not only must
there be regularity in the relationship between action and
perception within a coordination, but that regularity must
correlate with the stability of the environmental support for the
next coordination. The model reinforces or inhibits trajectories
based on whether that correlation appears to hold, based on the
principle of regularity.

Figure 10A illustrates the process of reinforcing an instance
of a behavior. The model always reinforces any behavior which
does not lead to a failure to produce a regular trajectory
in the next ASM-unit. In other words if the sensorimotor
trajectory over the course of an ASM-unit’s activation is similar
to historical trajectories, then we assume that the environmental
state delivered by the preceding ASM-unit activation provided
suitable support for the sensorimotor coordination. It follows
that the activation of the preceding ASM-unit did not establish
any instability in the environmental support structure, and
therefore that trajectory should be reinforced to have an attractive
influence on future behavior.

In a contrasting example, Figure 10B illustrates an instance
of nodes in a trajectory being inhibited because they lead to
a breakdown of the established sensorimotor regularities. It
follows from a corollary of the principle of regularity that if
the current sensorimotor trajectory is different from historical
trajectories produced by the same ASM-unit, then sufficient
environmental support was not established by the preceding
ASM-unit (e.g., ASM1 in the figure) despite it achieving a suitable
sensorimotor state. This means that the mapping associated with
that ASM-unit, and the behavioral dynamics that it produces,
are not sufficient to maintain the stability of the broader
sensorimotor structure, because it produced regularities in the
sensorimotor response that did not correlate with the stability
of the environmental support structure. Therefore, the nodes
associated with the dynamics of the preceding ASM-unit’s last
activation are inhibited, in order to alter the unstable dynamics.
Additionally, the nodes in the current ASM-unit (e.g., ASM2 in
the figure) which fails to transition to the expected next ASM-
unit are also inhibited, as they too reflect dynamics which did not
produce a stable engagement.

Let us return to the details of the implementation. Trajectories
are reinforced or inhibited by setting the value of A component
of every node involved in representing that trajectory. Recall
that this component is simply a marker of this reinforcement
property: if the trajectory is reinforced, thenA = 1 for every node
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FIGURE 10 | (A) Illustrates an instance of reinforcement. At the end of Activation 2 there is a successful transition from ASM2 to ASM1, and this leads to a

reinforcement of the trajectory from Activation 1 which established the conditions for that successful transition. (B) By contrast illustrates an instance of inhibition. At

the end of Activation 2 the established conditions to transition to ASM1 are not met, and activation passes to some other unit ASMx . This causes the trajectory from

Activation 1 to be inhibited because it produced conditions which led to an unsuccessful transition.

associated with that trajectory. If inhibited, then A = 0 for every
node. Our explanation of the ASM-unit’s mapping function in
Section 2.2 assumed that all nodes were reinforced, but we now
complete the explanation in the case where nodes may be either
reinforced or inhibited. Recall that we previously stated that if
A = 1 for all nodes, then the parent node is identified as the
historical node which yields the highest similarity score in the
metric given in Equation (5). When the adaptive component is
included however, and A = 0 in some cases, the ASM-unit uses
a filtering process to bias the system toward repeating behavior
associated with the most relevant reinforced historical trajectory,
even if there are several other more similar historical trajectories.
The process may be best described algorithmically:

1. sim(Na,Ni) (Equation 5) is applied to all nodes to find the
node which produces the highest similarity score, call it Nb.

2. If NA
b

= 1, then Nb is regarded as Na’s parent node and the
algorithm terminates.

3. Otherwise, a set C of node class labels is created such that
C =

{

NC
b

}

.
4. The node with the next highest similarity score is found, call

it Nc.
5. If NA

c = 1 and NC
c /∈ C and NZ

c 6= NZ
b
, then Nc is regarded as

Na’s parent node and the algorithm terminates.
6. Otherwise, set C = C ∪

{

NC
c

}

and return to step 3 until
the algorithm terminates or there are no more valid historical
nodes for comparison.

Once the algorithm terminates, the 1m change-in-motor-state is
generated as described earlier. This process causes the behavior
of the robot to be directed toward repeating dynamics which
ultimately supported successful transitions through the network,
as well as actively avoiding those which failed. Essentially the
addition of new, reinforced nodes representing an instance

of a behavior increase the likelihood of that behavior’s future
performance by (1) increasing the diversity of states which attract
the repetition of that behavior, and (2) by lasting longer than the
nodes which came before them, given the finite capacity for nodes
in an ASM-unit. By contrast, the addition of inhibited nodes
reduces the likelihood of the same behavior being repeated in the
future by negating the influence of reinforced nodes via the effect
of the C and Z components.

This completes our description of the model as used in this
investigation. The reinforcement and inhibition mechanisms
produce a simple intrinsic goal for every activation of an ASM-
unit, toward which it is biased to develop: To establish both
sensorimotor and environmental conditions that are sufficient to
allow the next ASM-unit to do the same for its own successor.We
now present results of an investigation which demonstrate how
this intrinsic goal can in turn produce more second-order goal-
directed behavior in the robot which the ASM-network controls.

3. INVESTIGATION

We now demonstrate how an ASM-network can be used to
control a robot which successfully learns to perform a task
involving object discrimination. The parameters of the robot
and environment are essentially equivalent to an experiment
first presented by Beer (1996), in which agents were evolved to
distinguish between circles and diamonds using the standard
evolutionary robotics technique of evolving a continuous-time
recurrent neural network controller using a genetic algorithm.
The agents demonstrated their ability to distinguish between the
shapes by colliding with circles while avoiding the diamonds.
The task captures a fundamental capacity of any acting agent—in
order to selectively interact with its environment, an agent must
be capable of discriminating between different environmental
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features. We use this task as a first demonstration of the ASM-
network’s value in investigating goal-oriented adaptive behavior
guided by the relationship between environmental and internal
mechanisms, as opposed to extrinsic fitness functions.

In our version of the experiment no genetic algorithm or any
other external optimization process is required. The properties of
the environment are specifically arranged, and the ASM-network
model is partially constrained, so that the stability conditions
for the ASM-network’s dynamics concurrently produce behavior
which aligns with the ascribed norms of the task. Initially the
robot’s behavior is entirely random, but over time the robot
develops an ability to scan the shape, identify the difference
between circles and diamonds, and responds appropriately to
the different shapes. Our results illustrate how our robots solve
the task.

3.1. Experimental Setup
Figure 11 illustrates the experimental setup. A robot with seven
ray sensors and one bi-directional motor is situated in a 2
dimensional arena. The rays are spread evenly with an angle of
π
9 radians between each, with three on either side of a central

ray pointing directly upwards. The motor allows the robot to
move horizontally with a velocity ranging between −30 and
30 units per second. The arena has a width of 300 units and
a height of 300 units, and periodic boundaries. At the start
of a simulation the robot begins at position (150, 0) in this
arena. An object, which may initially be either a circle or a
diamond shape is positioned in the arena. The object enters
the arena at 100 units above the robot vertically and offset
between −50 and 50 units horizontally from the robot. Circle
objects have a diameter of 36 units, and diamonds have a
side length of 36. The objects falls at a rate randomly selected
between 12 and 16 units per second. The robot’s sensors are
stimulated whenever the ray intersects with the falling object,
with the sensor activation modeled as a continuous scalar which
linearly increases from 0 if the intersection point is at the tip
of the ray, up to 1 if the intersection is at the position of
the robot.

A single run of the experiment continues until there have

been at least 2,000 descents of both circles and diamond objects.
The results here are based on 64 runs. During a run, the object

falls directly downwards, while the robot moves around the

FIGURE 11 | Experimental setup in three parts. (A) Illustrates the arrangement of the robot, its sensors, and an example of the circle descending. (B) Illustrates the

topology of the network that controls the robot. Transition conditions are suggested in three dimensions, with arrows and color-coding indicating which ASM-unit is

enabled by each transition condition. These conditions are discussed more precisely in the body text. (C) Illustrates the different ways that the object types react to

hitting the robot or the arena floor.
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arena freely. When the object collides with the robot or the
bottom of the arena, it returns back toward the top of the
arena immediately, responding differently if it is a circle or a
diamond. This is illustrated in Figure 11C. If a circle collides
with the robot, it returns 100 units vertically, whereas if it
collides with the bottom of the arena it returns 300 units. The
inverse is true for the diamond, it returns 100 units when it
hits the bottom of the arena and 300 units when it collides
with the robot. When the object returns, its downward velocity
randomly resets to a new value from the same possible range,
the object’s horizontal offset is randomly reset, and the shape
has a chance of swapping to the other type with a probability of
p = 0.5. This closely resembles a succession of resetting trials
in an evolutionary robotics framework, but we emphasize that
a single robot remains active over the course of the entire run,
and the single ASM-network develops its history over the run.
The continuity of a run is critical for two reasons: (1) The ASM-
network needs to build a history of behavior over time for it
to develop toward solving the task; (2) There is a consequential
difference for the robot between colliding with an object and
missing an object, in that the object returns to its sight more
or less quickly depending on its shape and whether it collides
or not (i.e., diamonds returning either 300 or 100 units up and
the opposite property for the circles). The significance of these
differences is discussed in detail in Section 4.

Each ASM-unit in the network has a sensorimotor space with
eight sensorimotor dimensions (S1..7 ∈ [0, 1], M ∈ [0, 1]),
coinciding with the seven sensors and one motor (RS1..7 ∈ [0, 1],
RM ∈ [−30, 30]) of the robot, such that:

M =
RM + 30

60
(8)

Sx = RSx (9)

The network is constrained to support the fulfillment of the task.
The network has a fixed arrangement of five units, with pre-given
transition conditions and links between each. These transition
conditions are associated with the potential sensorimotor states
of particular stages of the desired functional behavior, e.g., when
the robot sees any object, when the robot collides with any
object. This scaffolds the development of functional behavior and
constrains which habits are potentially viable, but it does not
define the behavior of the robot, as all of the motor dynamics
are produced by the ASM-unit mapping functions, which begin
undefined as there is no history for them to respond to. The way
in which these constraints scaffold specific functional behavior is
explained in Section 4.

The topological arrangement of the network is illustrated in
Figure 11B, but due to the dimensionality of the sensorimotor
space the transition conditions are only able to be suggested in
an image. We define them precisely here. ASM1 has 2 separate
transition conditions linked to ASM2 and ASM3, respectively.
The transition condition Z1,2 (i.e., condition for the transition
from ASM1 to ASM2) is defined as follows:

Z1,2 :
{

M ∈ [0, 1], S1,2,3,5,6,7 ∈ [0, 1], S4 ∈ [0.98, 1]
}

(10)

Where M ∈ [0, 1] means that the motor state as represented in
the ASM-unit may be anywhere between 0 and 1 to satisfy the
condition. Sx refers to the same for each sensor. Note in particular
that S4 is different from the others. Practically, this means that
the transition occurs whenever the robot’s central sensor is
very highly stimulated, and all other sensors and the motors
may be in any state. This condition would occur whenever the
object collides into the front of the robot. The other transition
condition is:

Z1,3 :
{

M ∈ [0, 1], S1,2,3,4,5,6,7 = 0
}

(11)

Which means that this condition is satisfied if and only if every
sensor is at 0, i.e., the robot cannot detect the object.

ASM2 has two transition conditions which are both linked
back to ASM1:

Za
2,1 :

{

M ∈ [0, 1], S1,3,4,5,6,7 ∈ [0, 1], S2 ∈ [0.01, 1]
}

Zb
2,1 :

{

M ∈ [0, 1], S1,2,3,4,5,7 ∈ [0, 1], S6 ∈ [0.01, 1]
}

(12)

Which means that the conditions are satisfied if either the S2 or
S6 sensors are at least slightly activated. In practice, at least one
of these conditions is satisfied if the object is anywhere in the
majority of the coverage of robot’s sensory field, although not if
for instance the object is moderately far to the left or right, or
immediately in front of the robot at a long distance.

ASM3 has two transition conditions which are the same as
those in ASM2, such that Za

3,1 ≈ Za
2,1 and Zb

3,1 ≈ Zb
2,1. We use the

approximation to reflect that although the ranges are the same,
the transition conditions are not identical because the sets require
different ASM units to be active. ASM4’s transition conditions are
also defined similarly to other units, such that Za

4,1 ≈ Za
2,1 and

Zb
4,1 ≈ Zb

2,1, and finallyASM5’s transition condition is Z5,4 ≈ Z1,3.
In Section 4, we discuss how this arrangement relates to the
behavior that the controller produces in more detail.

3.2. Results
We measure the performance of a robot in the task by looking at
how many times the robot responded “correctly” in a window of
the most recent descents of each shape. Figure 12 illustrates the
average performance over time over 64 runs. The plot samples
every 20th descent of either circles or diamonds, with each point
giving

∑

i
ci

20×64 , where c is the number of correct responses in
the previous 20 descents of a shape for the ith robot. Across
64 runs, the average performance of the robots for the first 20
descents for circles is 0.37 (i.e., they catches circles 37% of the
time) and for the first 20 descents of the diamond is 0.76 (i.e.,
they avoid diamonds 76% of the time). The average performance
in the last 20 descents for circles is 0.97, and for the last 20
descents of diamonds the performance is 0.99. Performance
improvement is rapid, reaching an average of over 0.9 for both
shapes within 200 descents, and reaching peak performance after
1,000 descents. Performance for diamonds is higher, especially at
the start, because of the greater likelihood of missing an object by
chance compared to colliding with that object. Catching involves
precise positioning, whereas avoiding can be accomplished in
many equally good ways. These results illustrate that the robot
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FIGURE 12 | Plot of the improving performance of robots, averaged across 64 runs. Although this figure only shows the first 500 interactions with each shape

because most of the development occurs early, performance continued to improve incrementally for the remaining 1,500 interactions.

is capable of learning how to effectively discriminate between
diamonds and circles.

The robot is capable of reliably solving this specific task
because the topology of the network is arranged such that the
behavior involved in maintaining the established links in the
network is necessarily also behavior which solves the task. In
all robots we observed a direct correlation between the rate
of successful transitions between ASM-units and the rate of
the robot’s correct responses to the object shapes. Crucially
though, the pre-given topology and environmental conditions
are insufficient to define for the robot the actual sensorimotor
dynamics involved in solving the task, i.e., how to move around
the environment in such a way that it can identify the different
shapes and collide or avoid as appropriate. To learn these
dynamics, the robot must engage with the environment over
time, and over the course of this engagement themodel’s adaptive
mechanisms reinforce those dynamics that support the transition
conditions within the network and inhibit those that lead to
violations of those conditions. The maps of each ASM-unit,
most critically ASM1, develop in such a way that the robot’s
behavior consistently establishes the enabling conditions of each
ASM-unit in a suitable sequential order. In ASM1 this means
that the mapping must produce dynamics which differ when
encountering differently shaped objects, as the environmental
conditions have been set such that disruptions will occur
elsewhere in the network if the robot interacts with the objects
incorrectly. This means that the bulk of the learning process
that occurs over the course of an experimental run is in the
development of ASM1’s map.

Meaningfully visualizing the maps themselves, and how they
change over time, is challenging due to their dimensionality.
Figure 13 illustrates a projection of the states of ASM1 for
one robot using principle component analysis. Note that

Component 1 = [0,−0.03,−0.03, 0.04, 0.18, 0.44, 0.64, 0.59] and
Component 2 = [0,−0.01,−0.01, 0.20, 0.66, 0.56,−0.32,−0.29].
The plot compares node positions in the early and late stages
of the robot’s development and highlights important differences.
Firstly, almost all nodes are reinforced by the end of the
robot’s development. Secondly, there are subtle change in the
distribution of the nodes over time, and by extension the
mapping: One clear example is that inhibited nodes (purple) tend
to be clumped together around (0.73, 0.9), in the early stages
of development, and by the later stage of development most
of the nodes in that area have disappeared. This suggests that
the inhibited nodes successfully dissuade the continuation of
trajectories which approach that region of sensorimotor space.
Figure 13C illustrates the projected sensorimotor trajectories of
the last 10 interactions with each shape for the same robot,
indicating the way that the trajectories for different shapes
diverge around (0,−0.25), and end in different regions of
sensorimotor space.

The relative positions of the robot and object over time as
the object descends through the robot’s sensory field provide
a better illustration of the robots’ development. Figures 14, 15
illustrate examples of these trajectories. Figure 14 demonstrates
the development of a single robot, which we selected to exemplify
the way in which the adaptive mechanisms of the model
contribute to particular dynamics becoming more stable than
others depending on how well they support the network-level
organization. The plots represent the robot’s horizontal position
relative to the object, from the moment the object is at a height
of 100 units until the moment the object reaches height of 0.
In each encounter the initial conditions of the object vary, in
terms of speed and displacement, within the parameters already
discussed. The top row illustrates the first 200 encounters with a
circle, and then the last 50 encounters. The second row illustrates
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FIGURE 13 | Projections of ASM1 derived using principle component analysis. (A) Illustrates the positions of the nodes after 100 descents of the object. Purple

markers indicate inhibited nodes, green indicates reinforced nodes. (B) Illustrates the positions of nodes after 2,000 descents. (C) Illustrates the sensorimotor

trajectories of the interactions with the last 10 descents of each shape. Blue indicates circles and red indicates diamonds. Note that the motor dimension is ignored

because it confounds the interpretability of the plot. The rapid jumps in the plots are due to individual sensors suddenly becoming active or inactive as they intersect

with the object.

the same for encounters with the diamond. The majority of the
improvement occurs rapidly, in the first 50 encounters. We can
also see that more subtle developments continue, most notably a
kind of behavior which leads to occasional narrow misses of the
circle becomes less frequent between the 50th to 200th encounter.
The final trajectories shows how the developmental process has
continued over the longer term to exaggerate the differences
between responses to the different object shapes, and to increase
the consistency of responses to a particular shape, especially in
the case of diamond encounters.

Figure 15 demonstrates the performance of eight randomly
selected robots, contrasting the early stages of their interactions
with the objects against the late stages. Every robot displays a
tendency to transition from an initially sprawling set of different
trajectories to a significantly more concentrated set of trajectories
in the later stages. Given that the object appears at a random
position with respect to the robot, a typical strategy emerges
which involves the robot moving to approximately the same
position relative to the object in each encounter, before the
responses to the different shapes diverge. All of the robots display
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FIGURE 14 | Plots illustrating the behavior one robot as it interacts with the falling objects. The first column shows the robot’s first 50 interactions with circles in the

top row and diamonds in the second row. The second column shows the second 50 interactions and so on. Each line illustrates a single interaction with an object

from the moment that it is 100 units above the robot until the moment the object either collides with the robot or the bottom of the environment. Blue lines indicate

that the object ultimately did the correct thing as per the task description, i.e., it collides with the circle or avoids the diamond. Following each plot from bottom to top

shows the relative horizontal positions of the robot and object as the object descends toward the robot. The object’s position is always at 0 on the x-axis, so a point at

x = 100 indicates that the robot is 100 units to the right of the object, and gives no indication of the robot’s absolute position in the environment.

some variation of a behavior involving sweeping multiple sensors
across the object in either direction before the responses diverge.
Beer observed that similar foveate-scan-decide strategies were
typical in his evolved CTRNN-controlled robots. This suggests
that these kinds of responses are particularly attractive for
this task even when the adaptive mechanisms producing such
behavior are distinct.

3.3. Auxiliary Results
In an auxiliary experiment we, performed 16 runs in which robots
were only ever exposed to diamond objects. There we observed
that a dominant behavior is for the robot to immediately and
continually moving at full speed in one direction or the other,
thereby missing the diamond by some distance. This is a very
simple behavior for the robot to discover by accident as it
simply involves keeping its motor state around its maximum or
minimum regardless of sensory state. This behavior also appears
in the early stage of Figures 15A,D–F, but is lost by the later
stages. This suggests that such a behavior is less stable when
circles are also present, as it limits the robot’s ability to identify the
shape type and respond appropriately. This provides an example
of the space of viable habits being constrained by the contrasting
properties of the shapes. Finally, we performed 64 runs in which
the responsive properties of diamonds and circles was inverted.
The average successful performance rate over the course of all
robots’ development is presented in Figure 16.

4. DISCUSSION

4.1. How Can the Robots Perform the
Task?
Our results present a model, based on enactive principles
of sensorimotor contingency theory and habit, which allows
a robot to learn to perform a specific cognitive task of
object discrimination without a functionally-oriented reward
mechanism. The model as presented in Section 2 is a generic
medium which specifies a whole suite of dynamics with certain
kinds of attractors. In the experiment presented in Section 3,
we apply some constraints to that medium which establish the
viability conditions of a particular sensorimotor organization,
such that the internal norms of the system align with the
ascribed norms of task, that is to avoid diamonds and collide
with circles. This allows a generic adaptive mechanism, directed
toward satisfying those internal norms, to also shape the behavior
of the robot to satisfy the requirements of the task. In natural
systems, a web of evolutionary and developmental processes all
serve to shape the sensorimotor organization of an agent in
a manner that produces an alignment such as this, while we
have engineered the alignment with a specific set of constraints
utilizing our knowledge of the task and system. How exactly
does the process of maintaining this particular sensorimotor
structure align with adaptively regulating behavior in terms of a
functional task?
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FIGURE 15 | Plots comparing the early and late stages of development for eight randomly selected runs. The first and third rows illustrate the first 40 interactions with

each shape type for 8 different robots (A–H), and the second and fourth rows show the last 40 interactions for the same robots. Blue lines indicate interactions with

circles and red lines interactions with diamonds.

Figure 17 illustrates the relationship between the enabling
conditions of an organization of sensorimotor coordinations as
they relate to the structure of the ASM-network used in the
experiment. We conceptualize an agent performing this task as
alternately enacting a pair of habitual behaviors, which, following
(Egbert and Barandiaran, 2014), we understand as simple loops
of sensorimotor coordinations:

1. In Loop 1 the interaction progresses from the robot detecting
the object at long range until it collides with the object (A1 ×

A1’), and then from there until the robot detects the object at
long range once more (B× B’).

2. In Loop 2 the interaction progresses from detecting the object
at long range until the object leaves the robot’s sensor range
(A2 × A2’), and then until the robot detects the object at long
range once more (C× C’)

We label A1 and A2 as such because they share an enabling
condition but involve diverging sensorimotor trajectories to

reach different transition conditions. Thus, we have two partially
overlapping loops of sensorimotor coordinations A1 × A1’
→ B × B’ → A1 × A1’ and A2 × A2’ → C × C’
→ A2 × A2. As we have discussed in Section 1, we may
think of the continuing sequential satisfaction of the enabling
conditions in these loops as the conditions of viability of a
sensorimotor habit. By design, our ASM-network medium is
oriented toward adapting behavior to maintain such viability
conditions. Transition conditions between ASM1, ASM2, and
ASM3 are associated with sensorimotor states associated with
detecting objects, colliding with objects, and losing detection
of objects, while ASM4 is associated with conditions that
only occur when the expected progress through the loops is
disrupted. Thus the pre-given structure of the ASM-network
in Figure 11 imposes this kind of arrangement of sensorimotor
coordinations onto the robots, and as such the sequential
fulfillment of the coordinations’ enabling conditions as its task.
However, those habitual viability conditions are completely
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FIGURE 16 | Results of an inversion of the default task, in which the responses properties of diamonds and circles are swapped. This causes the robots to develop to

avoid circles instead of diamonds and vice versa. Results are presented as per Figure 12, note that the learning rates are equivalent but the robots take longer to

respond correctly to diamonds instead of circles in this case.

agnostic to the different sensorimotor properties of interacting
with the shapes, and thus do not sufficiently explain the robots’
functional fulfillment of the object discrimination task. It is
the different properties of diamonds and circles, with respect
to what happens when they collide with either the robot or
the bottom of the arena, that imbues the shapes with intrinsic
relevance with respect to these goals. Specifically, colliding with
a diamond causes a delay in returning the object which disrupts
the progress of Loop 1, and likewise missing a circle leads to a
disruption Loop 2. Since the ASM-network’s adaptivemechanism
is geared toward avoiding behavior which produces disruptions,
i.e., behaviors which are non-viable with respect to maintaining
the arrangement of coordinations, the difference between the
objects will drive the robot to respond differently to the two
shapes. An interesting consequence of this is that if we invert
the properties of circles and diamonds in terms of how they
respond to collisions and misses, then robots with the same
ASM-network parameters instead learn to seek diamonds and
avoid circles. That the functional behavior produced is a equally
a consequence of both the internal dynamics of the agent and
dynamic properties of the environment highlight the value of this
kind of experimental approach.

4.2. What Do the Robots Learn
Autonomously?
We have discussed how the particular network used in
the experiment produces an alignment between the internal
mechanisms of our robot and the ascribed norms of the task.
But since we achieve this alignment through directly engineering
a set of constraints, what exactly is left to the robot to learn
autonomously? In functional terms, the robot has only been
given a structure of sensorimotor conditions that it needs

to repeatedly satisfy in order to maintain stable behavior. It
must learn that there is a difference in the way that the two

shapes impact that stability, that the difference corresponds

with particular perceptual characteristics of interacting with the

shapes as they descend, and how to act in response to those

different characteristics so that it avoids interactions which
destabilize its sensorimotor structure. While the arrangement in
Figure 17 are a consequence of the network structure illustrated
in Figure 11B, the development of suitable ASM-unit mappings
which satisfy this arrangement is comparable to the optimization
of weightings in terms of task fitness in an Evolutionary
Robotics approach.

We can explore this further to clarify our model’s relationship
to the theoretical concepts of sensorimotor contingencies and
habit mentioned in Section 1. Our constraints on the network
establish the parameters of the relationships between a set
of sensorimotor coordinations that are necessary for those
coordinations to be stable, but it does not establish the actual
sensorimotor dynamics that constitute those coordinations.
While the general effect of action on perception is implicitly
established in the characteristics of the robot and shapes, closing
the causal loop to establish the effect of perception on action
can only be established through interaction between robot and
environment. The development of those agent-side dynamics
will vary based on whatever specific environment-side dynamics
it encounters. The environmental dynamics can vary in terms
of four properties, all of which change the perceptual character
of interacting with the objects from the agent’s perspective.
These properties are: (1) the different shapes of the objects; (2)
The different mechanical properties of the objects (i.e., what
happens upon collision); (3) The different speeds of the objects;
(4) The different initial displacements of the objects. With our
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FIGURE 17 | An illustration of the robot’s arrangement of sensorimotor

coordinations as they relate to the ASM-network. Successful performance of

the task aligns with the robot proceeding through performance of Loops 1 and

2 without disruption. Over time ASM1 develops such that only Transition3
occurs when diamonds are present and only Transition2 occurs when circles

are present. Some simple adaptive processes also need to take place in ASM2

and ASM3 such that they consistently lead to the robot re-discovering the

object as it returns into view. Note that ASM5 does not feature as its only

purpose in the network is to provide suitable initial conditions for ASM4.

privileged view of the system we know that the differences in
properties 1 and 2 are meaningful with respect to the norms
of the system, while 3 and 4 are not, but this is not made
explicit in the experimental setup, i.e., the adaptive mechanism
is not tuned to respond to those properties in the same way
that a fitness function defines the relevant properties of the
world. Through interacting with the environment over time,
these relevancies nevertheless become expressed through the
robot’s behavior.

In developing stable habitual behavior, the robot effectively
learns that it needs to respond to the different shapes differently
and how to make those different responses. While it is not
responding like this, the internal dynamics of the controller
will be in flux since the agent-side dynamics of the coupling
become altered when particular trajectories are inhibited. Stable
habitual behavior entails the performance of a habit continually
re-establishing the conditions of its own re-performance, but
due to the instability of the controller the conditions for a
particular way of performing a habit may be lost over time even
if the same initial sensorimotor state is established. The results
illustrate that the robots generally developing the foundation

of a stable behavior within a few dozen interactions, but
beyond this the behavior is refined over time as the robot
generalizes that distinction between properties 1 and 2 across
the variations produced by properties 3 and 4. This refinement
coincides with a gradual improvement in task performance
after the first, relatively rapid phase of acquiring a generally
successful strategy. The behavioral refinement over time reflects
an individuation process in two separate habits (i.e., robot-
diamond interactions and robot-circle interactions) becoming
more distinct from one another to avoid interference between
the two, e.g., suddenly switching to an established seeking
behavior while in the process of avoiding because the dynamics
of each resonate too similarly with a particular context. Although
this is only a limited form of individuation—the distinction
between the structures of the habits is already present, only their
constitutive dynamics become more distinct—it nevertheless
points to interesting developmental processes which occur even
within this constrained model.

4.3. Limitations and Future Work
A criticism may be made of our investigation that the
constraints and carefully arranged properties of the experiment
mean that the model’s internal adaptive mechanism serves an
analogous function to an external optimization process such
as an evolutionary algorithm. While this is the case here,
because we are imposing a specific behavior on the system,
the crucial difference is that our model would still have an
adaptive and developmental gradient in the absence of such
constructions. In the typical evolutionary approach a specific
functional behavior is attractive in its own terms, via the fitness
metric. However in our approach the particular functional
behavior is made attractive through the relationship between
the environmental dynamics and the internal processes of the
robot and controller. Attractive behaviors will still arise for any
specification of environmental dynamics and be meaningful in
these terms.

Nevertheless, it is worth discussing the consequences of the
network constraints. In particular, the robot’s capacity to solve
the task as we expect it to do so relies in part on the fact
that it is incapable of assimilating the “wrong” environmental
support into its sensorimotor structure. In other words, the
dynamics associated with the diamond disappearing from the
robot’s view for much longer when it collides with the robot
are always treated as disruptive regardless of context and of
how many times it occurs, and vice versa for the circle. This
high-level rigidity limits the ways in which the robot may
adapt. In discussing the development of sensorimotor schemes
in human development, Piaget discussed three different classes
of adaptive processes of how instances of this disruption are
resolved over time (Chapman, 1992; Boom, 2010): (1) the
disruption is ignored without altering behavior; (2) The behavior
alters to compensate disruptions which have previously been
encountered, or (3) potential disruptions are anticipated and
behavior is altered so that the disruption is not encountered at all.
The second process would most accurately describe that which
is occurring in the robots in this investigation, while the others
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are not possible within the constraints that we have placed. The
combination of these kinds of adaptive process is a key part
of open-ended, autonomous development that is neicessary for
sensorimotor agency. The obvious next step in terms of using the
ASM-network to investigate sensorimotor agency is to remove
the constraints at the network level, in a manner that allows
precarious, self-maintaining structures to develop dynamically at
that level.

Although the constraints we have placed on the model
in this investigation limit the kinds of habits that may
form autonomously, they allow for an analytically tractable
investigation to demonstrate some of the model’s capabilities.
Our results provide a demonstration that the ASM-units are
effective in producing behavior which supports the maintenance
of a networked arrangement of such units that reflects a
structure of sensorimotor coordinations. Furthermore, this alone
is sufficient to produce a form of minimal cognitive behavior.
However the model is also sufficiently generic that it is not
necessary to have a pre-given network arrangement, engineered
to align with a specific function, in order to produce coherent

behavior. This opens the possibility to investigate self-organizing

sensorimotor structures and adaptive autonomy in more depth
in the future.
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