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We suggest that the influence of biology in ‘biologically inspired robotics’ can

be embraced at a deeper level than is typical, if we adopt an enactive approach

that moves the focus of interest from how problems are solved to how

problems emerge in the first place. In addition to being inspired bymechanisms

found in natural systems or by evolutionary design principles directed at

solving problems posited by the environment, we can take inspiration from

the precarious, self-maintaining organization of living systems to investigate

forms of cognition that are also precarious and self-maintaining and that

thus also, like life, have their own problems that must be be addressed if

they are to persist. In this vein, we use a simulation to explore precarious,

self-reinforcing sensorimotor habits as a building block for a robot’s behavior.

Our simulations of simple robots controlled by an Iterative Deformable

Sensorimotor Medium demonstrate the spontaneous emergence of di�erent

habits, their re-enactment and the organization of an ecology of habits

within each agent. The form of the emergent habits is constrained by the

sensory modality of the robot such that habits formed under one modality

(vision) are more similar to each other than they are to habits formed under

another (audition). We discuss these results in the wider context of: (a)

enactive approaches to life and mind, (b) sensorimotor contingency theory,

(c) adaptationist vs. structuralist explanations in biology, and (d) the limits of

functionalist problem-solving approaches to (artificial) intelligence.
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1. Introduction

Artificial Intelligence and the scientific approach to mind

(what is known as cognitive science) was born (or rather raised)

as a problem solving discipline (Newell et al., 1958; Putnam,

1965; Fodor, 1968). Deprived of life, the machine metaphor

was one of symbol manipulation and rationality (deductive,

inferential, heuristic or otherwise). The unprecedented potential

of Universal Turing Machines (computers) was the driving

metaphor to study the mind. The software, the mind,

was the problem solving method, the hardware, the brain,

its implementation.

Alternative conceptions of the mind were available at the

origins of Artificial Intelligence and Robotics (Grey Walter,

1950; Ashby, 1952) but the rapid success of computer science

left them aside. Over time, the limitations of the problem-

solving centered computational theory of the mind became

apparent and the biologically inspired, embodied and later

enactive conceptions of the mind gained momentum. We are

now immersed in a mesh of hybrid architectures, applied to a

wide range of practices, from industrial to scientific modeling

applications, and a new summer of Artificial Intelligence

is rising, with robotics as a major container of social and

technological expectations.

There are good reasons for why problem-solving attracts

so much attention from researchers, but it is pertinent to ask:

what aspects of minds are omitted or obscured by the problem-

solving focused perspective? what can life teach us about what

intelligence holds before and beyond problem-solving? and even

when problem solving is addressed . . . how is it that natural

agents have and become concerned by their own problems?

This paper has two goals. The first is to argue that by

abandoning problem solving (or at least putting it down for

a time), other useful explanatory targets and ways to explain

minds are given space to emerge.

The second, more specific goal is a case in point: we use

simulated robots to show how sensorimotor contingencies

influence the formation of self-maintaining patterns of

sensorimotor activity “habits” in regular ways that depend

upon sensory modality. By de-emphasizing problem solving,

we are able to take a fresh look at the relationship between

sensory modalities, sensorimotor contingencies and habitual

behaviors. But to explain these results, we first need to provide

more context.

The paper proceeds as follows. The next section explains

what we mean by “problem-solving,” why it has been a popular

target within the cognitive sciences, and what we see as the

primary disadvantage of excessive attention being given to

the topic. We then explore the intimate relationship between

robotics and biologically inspired and embodied problem-

solving paradigms. Section 2.3 introduces the enactivist

concept of autonomy, providing an alternative framework for

developing Sensorimotor Contingency Theory outside of the

problem-solving approach. The remainder of the paper presents

and analyzes a simulation model that is used to explain: (i) that

robots must first have their own problems instead of solving

those posited by external observers; (ii) that, in doing so, they

must assert a way of life whose structure and form must be

taken as the object of study. We finally discuss some of the larger

implications of our enactive approach in connection with wider

theories of biological explanation and inspiration.

2. From problem solving to enactive
robot

2.1. Problem-solving in minds and
machines

We use the term “problem-solving” to refer, in a broad and

inclusive manner, to the kinds of things that we associate with

being capable or clever. Nowadays, for many, “the ability to

solve problems is not just an aspect or feature of intelligence—

it is the essence of intelligence” (Hambrick et al., 2020, p.553).

It is certainly not a new idea. The very birth of Artificial

Intelligence owes much to it (Newell et al., 1958). As Newell and

Simon later stated: “Since ability to solve problems is generally

taken as a prime indicator that a system has intelligence, it

is natural that much of the history of artificial intelligence is

taken upwith attempts to build and understand problem-solving

systems” (Newell and Simon, 1976, p. 120). The task of artificial

intelligence was thus to devise potential solution-generators and

to design tests that could evaluate them. This assumed that the

problem space was well fixed so that solutions could both be

evaluated and generated. Decades later, Artificial Intelligence

handbooks still devote their first central sections to problem

solving (e.g., see part II of Norvig and Russell, 2021, 4th edition).

A problem is a context in which behaviors can be evaluated

according to a norm of success at “solving” the problem.

Problems vary from being trivial to challenging to impossible

as the proportion of behaviors that are good (out of all

possible behaviors) shrinks. They include “high-level” human

problem-solving, such as the skills that are taught in schools or

universities, as well as embodied problems such as balancing on

two feet or swimming efficiently. For a system to be evaluated in

terms of problem-solving, one must first have the specification

of the context and of a normative evaluation so that behaviors

within that context can be compared as more or less successful.

Defined as such, just about anything can be seen as a problem

solver. A bottle lid solves the problem of preventing spills; a car’s

differential solves the problem of distributing force effectively to

its wheels; a computer program solves the problem of beating a

human at chess.

Herein lies both the advantage and the disadvantage of

placing problem solving at the center of the cognitive sciences:

almost anything can be evaluated in terms of its problem solving
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ability. On the one hand this is a great boon. Quantifying

problem solving ability is relatively straight-forward and the

ability to quantify how effective a system is at solving one

or more problems facilitates technoscientific progress where

measurements can play an important role in defining progress.

This is apparent in artificial intelligence (AI) research where

benchmarks such as chess and other games (Canaan et al.,

2019), hand-writing recognition (e.g., Graves and Schmidhuber,

2009), image classification, speech recognition, etc. (e.g., MLPerf

benchmarks MLPerf, 2021), are used to quantify progress.

Problem-solving similarly provides metrics for studying the

minds in psychology and neuroscience, where problem-solving

related notion of ‘tasks’ (e.g., the Simon task) are used to

structure human activity and performance related metrics

such as reaction speed or error rate are seen as providing

key insights into how our minds operate (Simon and Wolf,

1963).

The ease of measuring problem-solving ability

sometimes leads to it (problem-solving ability) becoming

the explanandum—the thing we strive to understand. This

is seen in research questions like: How do people recognize

faces so well? How do babies come to understand the motives

of other people? How do we play chess? How can we make

a safe self-driving car? etc. Problem-solving also sometimes

becomes the explananda—the terms in which we explain what

minds are, how they work, or what they do. Evolutionary

psychology (Pinker, 1997; Buss, 1998), for example, emphasizes

the evolutionary advantage of problem-solving ability and

in this context, explanations that are provided in terms of

problem-solving ability are seen as complete, as evolution

can be invoked to explain why such mechanisms exist. The

evolutionary advantage of having a mind is in its contribution

to problem solving and therefore, minds are best understood as

problem solving machines.

However, it has been argued that: “The essence of

intelligence is to act appropriately when there is no simple

pre-definition of the problem or the space of states in

which to search for a solution. Rational search within a

problem space is not possible until the space itself has

been created, and is useful only to the extent that the

formal structure corresponds effectively to the situation”

(Winograd and Flores, 1987, p.98). Thus, even from a

problem solving perspective, intelligence is not really the

capacity to solve a problem but to bring a situation into a

fabricated frame where it can be treated as a problem to

be solved.

Moreover, the problem with excessive focus upon problem-

solving is that there are other unique and important features

of minds that are worthy of study—features that may only

indirectly relate to problem-solving ability or perhaps not at all.

The problem, in a nutshell, is the conflation of (i) “problem-

solving ability” with (ii) all of the other phenomena associated

with “being a mindful body.”

The mainstream computational functionalist approach to

the mind (Putnam, 1965; Fodor, 1968) doesn’t really help much

addressing what mindful bodies are beyond problem-solving

devices. For Putnam, the very definition of the mental is always

in reference to a Turing machine table that works out rational

transitions (e.g., computing and storing preferences over a utility

function or solving problems in problem representation space).

Deviations from this rationality are treated as pathological. All

humanmental life is, according to Putnam, not perfectly normal,

thus relatively pathological. Putnam acknowledges “our model

is an overly simple and overly rationalistic one in a number

of respects. However, it would be easy, in principle, although

perhaps impossible in practice, to complicate our model in

all these respects—to make the model dynamical, to allow for

irrationalities in preference, to allow for irrationalities in the

inductive logic of the machine, to allow for deviations from

the rule: maximize the estimated utility. But I do not believe

that any of these complications would affect the philosophical

conclusions reached in this paper” (Putnam, 1965, p. 43).

Deviations from the abstract rational rule are pathological.

Explanation lies on the pure domain of abstract problem solving,

the deviations make it all more complicated (as if dirt in the

form of a set of exceptions where to be added to the pure

explanation) but change fundamentally nothing. As we are

about to see, embodied approaches, and particularly enactivism,

bring these “pathological” expressions to the center of the

explanation (of which rational thinking is the complicated

achievement) turning it into the core constitution of mind.

Biologically inspired robotics has a lot to contribute in

this direction.

2.2. From biologically inspired
problem-solving to enactive robotics

Enactivism was born under the conviction that robotics, as

a field, would require, or even force, cognitive science to move

beyond the problem-solving framework:

The assumption in CS [Cognitive Science] has all along

been that the world can be divided into regions of discrete

elements and tasks to which the cognitive system addresses

itself, acting within a given “domain” of problems: vision,

language, movement. Although it is relatively easy to define

all possible states in the “domain” of the game of chess,

it has proven less productive to carry this approach over

into, say, the “domain” of mobile robots. Of course, here

too one can single out discrete items (such as steel frames,

wheels and windows in a car assembly). But it is also clear

that while the chess world ends neatly at some point, the

world of movement amongst objects does not. It requires

our continuous use of common sense to configure our world

of objects. (Varela, 1992, p.251)
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Yet, moving away from the problem-solving paradigm has

taken a long path, most of which, rather than abandoning

problem-solving has deeply transformed the way we understand

how nature solves those problems. In a sense, biologically

inspired robotics has mostly followed the problem-solving

approach and biological inspiration has focused on picking up

biological mechanisms to solve problems: from the internal

neuronal inspiration of artificial neural networks since its

early conception (Rosenblatt, 1958) to their later development

(Rumelhart et al., 1988) to the embodied strategies that either

transform the problems to be solved by their “brains” or have

outsourced the computational load of the problem solving to

body and world (Pfeifer and Scheier, 2001). What radically

distinguished biologically inspired robotics from GOFAI (Good

Old Fashioned Artificial Intelligence) was a change of focus

from the abstract to the concrete, from the symbolic to the

sensorimotor and from the rational to the practical know-how

of situated action. Despite the emphasis on self-organization,

agent-environment emergence of behavioral functioning (Steels,

1990) embodiment and situated action (Maes, 1990), etc. the

main goal was still to build robots capable of solving behavioral

problems. After all, to put it with biologically-inspired roboticist

Barbara Webb: “The sensorimotor problems faced by animals

and by robots have much in common” (Webb, 1995, p. 117)

and, not only can animals help us devise robots that solve

problems in a biologically inspired manner, but also solving a

sensorimotor problem with the robot could help us understand

how the animal solves it; like “[d]etecting which ear is closer

to the sound” which “is a non-trivial problem for the cricket”

(Webb, 1995, p. 120).

Other trends of biological inspiration have built upon

evolutionary theory itself and artificially evolved brains or

brains and bodies to solve the problems (encoded as fitness

function) in what is commonly known as evolutionary robotics

(Cliff et al., 1993; Nolfi et al., 2016). Random variations

to the parameters of robotic brain’s and bodies are selected

against a fitness function that operates as the benchmark of

the problem to be solved. Despite the problem-solving focus

that is almost inherent in artificial evolutionary optimization

techniques, evolutionary robotics served to disclose a number

of principles of behavioral self-organization that non-linear,

fine grained agent-environment coupling display when artificial

evolution can freely explore the solution space without the

prejudices inherent to the human design (Harvey et al., 1997).

Some of these approaches entail radical departures from

core assumptions of the computational functionalist theory of

the mind: cognitive processing does not only occur in the head

and the body must be integrated as a key feature of cognitive

problem solving (not simply as an executioner of the solution

representation worked out in the head or a sensory transmitter

of the problem into it); agent-environment interactions can self-

organize with little if any representations; material bodily and

interactive constitution are not mere implementation details

of abstract capacities but intrinsic part of the problems and

solutions that cut across them.

But enactive robotics moves yet further into biological

inspiration. On the one hand there are enactive approaches

that have attempted to introduce more of the living body of

natural intelligence into robotics by including self-organized

mechanical, soft bodies (Man and Damasio, 2019) or even

chemical bodies (Damiano and Stano, 2021). But also, and

perhaps most relevant for enactive theory transferring to the

robot what metabolism has to offer to anchor intrinsic needs

or emotional feedback (Ziemke and Lowe, 2009). There is

however another enactive path that brings into robotics some

principles of living organization and, more specifically, the

autonomy of behavior, a way of life for robots, not as somehow

transferred from the biological body, but enacted at the scale of

brain-body-world dynamics (Barandiaran and Moreno, 2006).

Some forerunners of this inspiration are no doubt Ross Ashby

on the organism-centered inspiration of adaptive controllers

as machines capable to remain homeostatic in the face of

perturbations (Ashby, 1952) and Grey Walter’s “life imitating”

robots “designed to illustrate the uncertainty, randomness, free

will or independence so strikingly absent in most well-designed

machines” (Grey Walter, 1950, p. 44).

More recent development of this line of inspiration on

natural and biological principles for the design of robots came

hand in hand with the development of a theory of autonomous

behavior and agency (Smithers, 1997), organismically inspired

robotics (Di Paolo, 2003), and habit-centered enactive robotics

(Egbert and Barandiaran, 2014).

2.3. Enactivism and the autonomy of
sensorimotor life

Varela, Thompson and Rosch opened up a new way of

thinking in 1991. Their enactive approach conceives that

“cognitive structures emerge from the recurrent sensorimotor

patterns that enable action to be perceptually guided” (Varela

et al., 1991, p.173). They later stated that: “[C]ognition

is no longer seen as problem solving on the basis of

representations; instead, cognition in its most encompassing

sense consists in the enactment or a bringing forth of a

world by a viable history of structural coupling” (Varela

et al., 1991, p.205). The enactive approach thus emphasizes

sensorimotor coupling and the recurrent patterns that emerge

from agent-environment interactions.

This way Varela overcame the operational (en)closure of

the nervous system that served as his main analogy with the

organization of the living, captured (together with Humberto

Maturana) within the theory of autopoiesis. Ever since, the

relationship between the self-organizing nature of nervous
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activity and that of behavior became to some extent problematic

(see Barandiaran, 2017 for a discussion).

Inspired by Maturana and Varela, Tim Smithers re-states

the need for biologically inspired autonomy in robotics, in

the context of the impossibility to design robot agents from a

problem-solving stand point:

Designing and building autonomous agents thus

becomes the problem of designing and building processes

that can support and maintain this kind of identity

formation through interaction: processes that, through

interaction, are continuously forming the laws of interaction

that can sustain and maintain the interaction needed to

form them. In other words, we need interaction processes

that can support the self-construction and maintenance of

interaction processes through interaction, in essentially the

same way that the material and energy interaction processes

of single cells can be understood as being involved in the

continual forming of the mechanisms that support this

interaction. Such systems will thus be self-law making as

well as self-regulating, in essentially the same way as we can

understand biological systems and autonomous city states.

(Smithers, 1997, p.102)

This analogy between metabolic autonomy and the

autonomy of behavior was further explored in Di Paolo (2003).

According to this view, enactivism needs not be committed to

build bio-chemically living robots (provided that this is possible

or even desirable) but to endow a robot with a way of life. This

intuition was further explored in Barandiaran (2007, 2008).

Sensorimotor Contingency Theory can further enrich this

approach. It uses regularities in the ways that motor activity

affect sensory activity (sensorimotor contingencies) to explain

the qualities of perceptual experience (O’Regan and Noë, 2001).

Empirical research involving sensory substitution, sensory

modification, psychophysics has informed the development of

sensorimotor contingency theory (SMCT), which attempts to

explain diverse aspects of perceptual experience, including why

certain sensory modalities have a particular “feel” to them; how

it is possible to make one experience one sensory modality (e.g.,

touch) in a way that feels more like another (e.g., sight); and the

conditions in which subjects are (or are not) capable of adapting

to major transformations to their sensorium. The key idea in

SMCT is the role that action plays in perception: a classical

enactive theme (Noë, 2004).

Using variations of the basic theme of how motor activity

modifies sensory input, a set of robotic architectures wheremade

using sensorimotor contingencies as building blocks for robotic

design (Maye and Engel, 2013; Jacquey et al., 2019). But these

are hardly enactive in the sense of the deep biological inspiration

that the enactive approach can offer.

Perhaps the best way to explore such potential is to bring

forth the concept of sensorimotor autonomy (updated and

refined from a previous proposal of Mental Life and also

explored in more detail on the concept of Sensorimotor Life):

the capacity of an agent to sustain and regulate the structures

that generate behavior. This definition echoes the metabolism-

based definitions of life as far-from-thermodynamic equilibrium

chemical systems capable of maintaining the network of

chemical reactions that constitute it (Gánti, 1975; Maturana and

Varela, 1980; Rosen, 1991; Ruiz-Mirazo et al., 2004; Luisi, 2006).

The basic constituent of sensorimotor autonomy is a

sensorimotor structure (a behavioral scheme or habit) made

possible by both a set embodied-neural pathways and a set

of sensorimotor contingency relationships. Think of it as

a coordination pattern that emerges out of environmental,

sensorimotor and neural (or behavior generating) mechanisms.

Now, if this structure is far-from-equilibrium or, said differently,

if let alone it tends to extinguish or vanish, and if the very

enactment of the sensorimotor scheme reinforces itself by

repetition or by satisfying certain conditions that feed-back

into its supporting structure (e.g., reinforcement of synaptic

connections by Hebbian learning or reward reinforcement),

then we have first sense of self-maintenance that is characteristic

of habits. The more the habit is enacted the more it is

strenghthened, the stronger it is the more likely it is to be

enacted. That is the virtuous (or vicious!) self-sustaining nature

of the habit.

We can now go back to the original, albeit obscure and

self-referential, intuition of roboticist Tim Smithers and his

idea of the autonomy of behavior based on the “processes

that, through interaction, are continuously forming the laws

of interaction that can sustain and maintain the interaction

needed to form them.” These laws or norms are nothing other

than the very conditions under which the habit is viable, that

it can persist and sustain itself. This is a strong analogy with

(metabolic) life that opens up the very possibility of having a

problem of your own and having to solve it. The problem for

the precarious, self-maintaining autonomous cell is persistence,

avoiding decay and disintegration (see Barandiaran and Egbert,

2013 for a more detailed analysis). The same goes for the

precarious, self-maintaining nature of a habit, and ultimately of

autonomous sensorimotor life (see Barandiaran, 2008; Di Paolo

et al., 2017). This approach also opens up a new mode of

explanation that is characteristic of biological thinking and can

be applied to sensorimotor dynamics: focusing on the nature

and structure of constraints rather than the problems they are

suppose to be adapted to solve. We return to these themes in the

discussion section.

In what follows we introduce habit-based enactive robotics

to illustrate and further develop the points we have briefly

outlined. Inspired by SMC and enactive principles we build

robots that are capable of generating spontaneously a complete

ecology of habits that display structural constraints within

the sensorimotor space. The results will help us discuss how

enactive robotics can contribute to a new understanding of mind
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and cognition with a deeper biological inspiration than what

problem-solving can provide.

3. Model

3.1. Overview

The computational model simulates a two-wheeled robot

that moves around a two-dimensional environment. The robot

has two independently controlled motors; one for each of its

wheels, allowing it to move forwards or backwards in a straight

line or to turn in a variety of arcs, or on the spot. The robot’s

motors are controlled by an iterant deformable sensorimotor

medium (IDSM) (Egbert and Barandiaran, 2014)—a habit-

forming controller that is described in detail below.

The robot’s environment is periodic in the sense that

when the robot moves off one side of the environment, it

appears on the opposite side. A stimulus source is also located

in the environment. This source, which moves around the

environment, can be thought of as simultaneously emitting a

sound tone and a source of light, but in any given trial the robot

is only capable of perceiving one of those sensory modalities

(light or sound). We now present each element of the simulation

in detail.

The robot and its environment are simulated using Euler

forward integration with a time step of1t = 0.01. Thus, a single

time-unit consists of 100 iterations, and the IDSM is updated

every iteration.

3.2. Stimulus

The stimulus source moves around the environment in a

circle. Each rotation, it slows to a stop at its left-most position,

before accelerating again to complete another rotation. This

trajectory is specified by the following equations which describe

the stimulus’s position (sx, sy) as a function of time (t):

sx =
1

2
+ cos(

t

10
+ sin(

t

10
)) (1)

sy =
1

2
+ sin(

t

10
+ sin(

t

10
)). (2)

3.3. Robot

The simulated robot (Figure 1) has two independently

controlled motorized wheels. It’s position changes according to

the following differential equations,

dx

dt
= ks cos(α)(ml +mr) (3)

dy

dt
= ks sin(α)(ml +mr) (4)

FIGURE 1

The simulated two-wheeled robot. The variable α specifies the
orientation of the robot (direction of forward travel). The robot’s
sensors are located on its periphery with the parameter β
specifying the o�set of the sensors from the direction the robot
is facing.

dα

dt
= ks

(mr −ml)

2R
, (5)

where x and y are the robot’s position in the environment; α is

its heading; ks = 0.25 scales the speed of the motors; R = 0.05

is the robot’s radius; and the variables ml and mr represent the

velocities of the robot’s left and right wheel motors.

We consider two robot sensor configurations. “Visual”

robots have two directional sensors. The excitation of each, V ,

is the product of an attenuation factor due to distance from

that sensor to the stimulus, and an attenuation factor due to

misalignment between the orientation of the sensor and the

relative direction of the stimulus. This second attenuation factor

is calculated by taking the scalar product of a unit vector that

points from the sensor to the stimulus and Eo, a unit vector that

specifies the direction that the sensor is facing.

Formally,

V =
0.25

0.25+ ‖Er‖2
︸ ︷︷ ︸

distance

(
Er

‖Er‖
· Eo

)+

︸ ︷︷ ︸

orientation

, (6)

where Er is a vector that describes the position of the stimulus

relative to the sensor; ‖r‖ is the magnitude of that vector;

and the + superscript indicates that negative values within the

parentheses are truncated to zero. The excitation of these sensors

is thus highest when the sensor is close to the stimulus and

directly facing it.

“Auditory” robots have two sensors that respond to the rate

at which the sensor is approaching or moving away from the

stimulus source. This is analogous to the Doppler effect whereby

the perceived frequency of a sound when approaching is higher

than when moving away from the listener. The excitation of an

auditory sensor, A, is given by:

A =
1

2
+ k

d||r||

dt
(7)
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where the first term can be thought of as the tones natural

pitch which is offset by the relative speed of the sensor and

the stimulus scaled by k = 3
4 to keep the magnitude of the

sensor (given the relative speeds of the robot and the stimulus)

within a similar range of excitation values as simulated for the

visual sensor.

To address the periodic boundaries of the environment,

auditory sensors always use the nearest stimulus source as

defined by the minimum image convention and visual sensors

calculate the combined effect of 5 stimuli: one in the simulated

space and four virtual copies of the sensor offset north, south,

west and east of the simulated space arena by one arena width.

This means that if, for example, a visual robot is close to

the north boundary of the arena and facing north it can still

see stimuli.

Visual sensors are offset from the direction the robot is

facing by βv = π/5 (see Figure 1). Auditory sensors are offset

by βa = π/2. The orientation of visual sensors is α ± βv, i.e.,

perpendicular to the tangent of the robot’s circular body at that

position, facing outwards. Auditory sensors have no orientation.

3.4. IDSM

3.4.1. Overview

The IDSM is a robot controller intended to capture the

idea of a self-maintaining pattern of sensorimotor activity.

Inspired by the habitual behavior of people and by the enactivist

concept of “autonomous” self-sustaining sensorimotor systems

(see e.g., Di Paolo et al., 2017), the IDSM was designed such

that patterns of sensorimotor activity reinforce the mechanisms

that produce them (Egbert and Barandiaran, 2014; Egbert and

Cañamero, 2014; Egbert, 2018). The IDSM has been used to

explore how a habit-based individual can be trained to perform

different tasks (Egbert and Barandiaran, 2014); how different

forms of motor babbling can bias the subsequent formation

of habits (Zarco and Egbert, 2019); how the essential variables

of a biological autonomous system can be shared with the

essential variables of a sensorimotor autonomous system (Egbert

and Cañamero, 2014) and the extent to which IDSM-based

sensorimotor autonomous systems can be considered to be

adaptive (Egbert, 2018). In the present paper, we use the IDSM

in a new way: to show, in a formal model, how sensorimotor-

contingencies can play an essential role of sculpting the form

of habits without themselves being explicitly internalized or

represented by the “brain” or “controller” of an embodied agent.

The IDSM works by recording trajectories taken through

sensorimotor space, i.e., how the sensorimotor state changes for

various experienced sensorimotor states. When a sensorimotor

state is experienced that is similar to one that has been

experienced in the past, the motors of the robot are actuated

in a way similar to how they were actuated in that previous

experience. Memories of previous trajectories are gradually

forgotten, unless they are reinforced by re-enactment and so the

only patterns of behavior that can persist for long periods of time

are those that are re-enacted. When the sensorimotor state is

in an unfamiliar (or forgotten) state, motor activity is random.

The IDSM used in this paper is very similar to that described in

Egbert (2018). Any differences between the model here and that

in Egbert (2018) are explicitly highlighted below.

A useful metaphor for understanding how the IDSM works

is the paths that form on university campuses, where paths

taken by students crossing a grassy field between academic

buildings trample and kill the grass. The emergent dirt paths

influence the trajectories taken by subsequent students, but the

grass also regrows, so only emergent paths that are regularly

traveled can persist in the long-term. This is essentially how

the IDSM operates, but the trajectories taken and the paths that

form are in sensorimotor space, rather than on a university

campus. The dynamic also relates to the self-reinforcing nature

of habitual behavior, where repeated performance of patterns

of behavior (e.g., the direction you look when crossing the

street; smoking a cigarette; or a tendency to worry) increases

the likelihood of similar behavior being performed in the future.

And to reiterate: the IDSMwas designed to capture the enactivist

concept of autonomy (a precarious self-maintaining system) in

a sensorimotor system—see Di Paolo et al. (2017).

More formally, the IDSM can be thought of as a function,

f , that transforms the robot’s current sensorimotor state into

an “output,” i.e., the next moment’s motor state: ft(St ,Mt) →

Mt+1. As this function is applied, the function itself also changes

as a function of the current state of sensors and motors and

the current state of the function: 1f
1t = g(f , S,M, 1S

1t ,
1M
1t ).

This change, which we shall now describe, was engineered so

that sensorimotor state trajectories would bias the system to

increase the likelihood that similar sensorimotor trajectories will

be repeated in the future.

3.4.2. Tracking sensorimotor trajectories

As the robot’s sensorimotor state changes, the IDSM

maintains a set of records called “nodes.” Each node describes

the sensorimotor-velocity (i.e., the rate of change in all sensors

and motors) for a particular sensorimotor-state at the moment

that the node was created. Each node,N, is a tuple,N = 〈p, v,w〉,

where p represents the sensorimotor state associated with the

node (referred to as the node’s ‘position in sensorimotor space’);

v indicates the sensorimotor velocity when the node was created;

and w indicates the weight of the node, a value that changes

dynamically and is used to scale the overall influence of the node.

We shall refer to these components using a subscript notation,

where the position, SM-velocity vector, and weight of node N

are written as Np and Nv and Nw, respectively.

As a robot controlled by the IDSM moves through

sensorimotor states, new nodes are created recording the

sensorimotor velocities experienced at different sensorimotor

states. Specifically, when a new node is created, its Np is set
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to the current sensorimotor state; its Nv is set to the current

rate of change in each sensorimotor dimension, and its initial

weight, N0
w.

The two vector terms (Np and Nv) can be thought of as

existing within an abstract sensorimotor space (ASMS). A many

to one mapping transforms any given position in the ASMS to a

specific sensorimotor state, according to:








3(µl)

3(µr)

σl

σr








=








ml

mr

sl
sr








(8)

where µl,µr , σl, and σr indicate a position in the four

dimensional ASMS; the vector on the right indicates the

sensorimotor state (i.e., the actual state of left-motor, right-

motor, left-sensor, and right-sensor) associated with that ASMS

position; and3(x) = sin[(4+x)2πx3] is the non-linear function

plotted in Figure 2. The purpose of this mapping is to avoid

prescribing a characteristic rate of motor change, and instead

to allow the IDSM to autonomously find habits with rates of

motor change that are neither too fast nor too slow. Different

regions of ASMS correspond to different rates of motor change.

For instance, when abstract motor state x / 0.5, a small change

in that state variable corresponds to a small change in 3(x),

the actual motor state (see the difference between the red circle

and red X in Figure 2), where an equivalent change in x when

x ' 0.7 corresponds to a greater change in the actual motor state

(blue circle and X in Figure 2). When the sensorimotor state

of the robot is unfamiliar, changes in motor activity are driven

randomly (as explained below) and this3mapping allows these

random changes in sensorimotor space to correspond to slow

or fast changes in motor state. By exploring different parts

of the abstract sensorimotor state, the IDSM can experiment

with sensorimotor patterns with different rates of change until

ones that are self-reinforcing emerge. The ASMS is also treated

as periodic so as to avoid the IDSM getting stuck at motor

boundaries (as discussed in Egbert, 2018). ASMS state variables,

µl,µr , σl, σr all ∈ [0, 1] and the ASMS distance functions

(described below) adhere to the minimum-image convention.

New nodes are added when the density of nodes near the

current sensorimotor state is less than a threshold value, i.e.,

when ψ(x) < kt . Loosely speaking, ψ is a measure of how

‘familiar’ the current sensorimotor state is, as estimated by

summing a non-linear function of the distance (Equation 11)

from every node with a positive weight to the current

sensorimotor state. Formally,

ψ(x) =
∑

N

ω(Nw)d(Np, x) (9)

ω(Nw) =







1 if Nw > 0

0 otherwise
(10)

FIGURE 2

Abstract motor-state to motor-state mapping. Changes made
to low abstract motor state [e.g., red circle and (X)] produce less
change in actual motor state (3(x)) than when the abstract
motor state is high (e.g., blue circle and X).

where x represents the current ASMS position, kt is a threshold

parameter describing maximum node-density at which new

nodes will be created and d() is the following non-linear ASMS-

distance function.

d(Np, x) =
2

1+ exp(kd||Np − x||2)
(11)

3.4.3. Nodes influence the sensorimotor state

One time unit after a node has been created, it is added to

the set of ‘activated’ nodes that influence the sensorimotor state

according to:

m =
1

φ(x)

∑

N

ω(Nw)d(Np, x)( Nv
︸︷︷︸

vel.

+A(Np − x,Nv)
︸ ︷︷ ︸

attraction

)µ (12)

This equation describes a weighted average of the influence

of all of the nodes. The influence of each individual node is

the sum of its “velocity” factor and its “attraction” factor. The

velocity factor is simply the Nv vector (i.e., the sensorimotor

velocity recorded when the node was created). The attraction

factor is defined by

A(a,Nv) = a−

(

a ·
Nv

||Nv||

)
Nv

||Nv||
(13)

and it causes the sensorimotor state to move toward the node.

The attraction term is included to cause the system to move

toward more familiar regions of sensorimotor space and to

help stabilize patterns of repeated behavior (see Egbert and

Barandiaran, 2014, 2015). The µ superscript in Equation (12)

expresses that the IDSM only (directly) controls the motor

components of the sensorimotor state. The sensory components

are the result of the robot’s relation to its environment and

so are not directly controlled by the IDSM, but are, of

course, influenced by the motor dynamics, indirectly through
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the sensorimotor contingencies determined by the robot’s

environment and body.

The influence of each node is attenuated by a non-linear

function of the distance between the node and the current

sensorimotor state. This attenuation is expressed by the term

d(Np, x) and it means that nearby nodes affect the sensorimotor

state and farther away nodes have little influence. The influence

is also attenuated by a threshold function of weight, [ω(Nw)]

such that only positively weighted nodes affect the motor

state. Previous versions of the IDSM had a more complicated

sigmoidal function in place of the simpler threshold function

used here (Equation 10). Note that the degradation of the nodes

and the threshold function of Equation (10) mean that when

nodes are not visited for a long period of time they cease to

have any influence whatsoever. Nodes that have degraded to this

point essentially cease to exist.

After a node is created, its weight changes according to:

dNw

dt
= −k↓ + k↑d(Np, x) (14)

In this equation, the first term represents a steady

degradation of the node’s influence and the second term

represents a strengthening of the node that occurs when the

current sensorimotor state is close to the node’s position.

The influence of all nodes is summed and then scaled by the

local density of nodes,

φ(x) =
∑

N

ω(Nw)d(Np, x)
∣
∣
∣
activated nodes

(15)

This equation looks similar to that used to calculate ψ

(Equation 9), but is different in thatψ describes the local density

of all nodes, where as φ describes the local density of activated

nodes only.

3.4.4. Random motor activity

When the local density of activated nodes is low, motor

behavior is random. This is accomplished by defining of a

“switch” value, s, which specifies when the behavior is to be

random and when it is to be controlled by the influence of the

IDSM’s nodes. The following equation expresses that s is 1 when

φ is low and 0 when φ is high; and that it moves between these

values in a smooth, sigmoidal manner:

s =
1

1+ exp(Rg(φ(x)− Rt))
(16)

Here, Rg and Rt are parameters that specify the threshold

of familiarity and the discreteness of the transition between

random and non-randommotor activity. This value is then used

to switch between randommotor activity (r), and IDSM’s output

(m), thus:

dµ

dt
= (1− s)m+ sr. (17)

where the random motor activity vector, r is varied over time

to produce a random walk in motor space as follows: every

iteration, there is a Rp chance that the components of r will

be assigned random values selected from a normal distribution

with a standard deviation of Rσ . The value of the Rσ and other

parameters can be found in Table 1.

4. Experiments and results

We now present two computational simulations of this

model where we vary the sensory modality of the robot

to explore how sensorimotor contingencies constrain the

forms of the sensorimotor habits that can emerge and self-

stabilize. The simulated robots and their environments are

identical except that one robot’s sensors are visual (as described

above) and the other’s are auditory. Formally, the only

difference between these simulations is the equations that

describe the stimulation of the robot’s left and right sensors

(Equations 6, 7).

To generate the data presented below, we ran 10 trials of each

condition (i.e., we simulated 10 auditory robots and 10 visual

robots) and for each condition, we selected a trial that displayed

a wide variety of habits, and for which the simulated agent

returned to one or more habits that it performed earlier but

had stopped performing for some period of time. Not all trials

did this—some instead rapidly fell into a pattern of behavior

that was stable for the duration of the simulation. Data for all

of the simulations is available at [DATA STORE LOCATION].

The analysis below covers visual simulation #9 and auditory

simulation #0.

We now present an overview of the behaviors demonstrated

by these two robots.

4.1. Visual sensors

The path taken by the visual robot through its environment

is displayed in Figure 3A. This is a complicated and difficult

to visualize trajectory, but it in fact involves several distinct

repeated patterns of sensorimotor behavior (Figures 3B–H). To

identify these, we first plotted the proximity of each of the

IDSM’s nodes to the robot’s sensorimotor state over the course of

the simulation (Figure 4). In this time series, it is easy to observe

segments of time in which a particular set of nodes is repeatedly

visited. For instance, when 750 / t / 1, 200, there are a few
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TABLE 1 Parameters.

Parameter Value Description

ROBOT

Rs 0.25 Robot speed

Rd 0.1 Robot diameter

Ro π/5 Offset of sensors from center line of robot

Rf 0.25 Falloff of sensor excitation with distance

LIGHT

Lv 0.1 Light velocity scale constant

Lr 1/3 The radius of the light’s circling motion

IDSM

kd 500 Fall-off of non-linear ASMS distance measure

k↓ 5 Node weight decay rate

k↑ 2000 Node-reinforcement rate constant

kt 1 Node-density threshold parameter, influencing when new nodes are to be added

N0
w 1000 Node weight upon creation

MOTOR BABBLING

Rp 0.1 Chance of random reassignment of random-motor walk direction and velocity

Rσ 0.25 Standard deviation of random motor components

Rt 1 Node-density threshold parameter, influencing when motor activity is random

Rg 20 Steepness of transition between random and IDSM driven motor activity

nodes with indices close to 5,000 that are repeatedly visited (tan

horizontal sequence of dots), and the same set of nodes are

briefly revisited three times in the final 500 time units of the

simulation. We manually identified these repeated patterns of

sensorimotor activity, and assigned each pattern a label and a

color (the example just provided is labeled “D” and colored tan).

Times when the robots behavior is not clearly repeated were

not assigned a label and are marked with a light gray color. To

be clear, repetitions were identified in sensorimotor space (via

the identification of repeatedly visited nodes), not in physical

space. Returning to Figure 3, we can see that when the robot is

performing the D pattern, it is moving around the environment,

regularly turning in loops with squarish corners. Figure 5 shows

how the state of the sensors, motors and the distance between

the stimulus and the robot as the trial progresses.We can see that

each of the colored regions tend to occupy particular regions of

the sensorimotor space (the sensorimotor ‘habitat’ of the habit—

see Buhrmann et al., 2013) and certain patterns of behavior

involve the robot pursuing the moving light (e.g., F-behavior)

while others avoid it (e.g., D-behavior).

Each of patterns B–H can be construed as a potential habit,

i.e., a pattern of autonomous, self-maintaining sensorimotor

activity. To justify this claim, we observe that

1. A node can persist for an extended time if and only if it is

regularly “visited,” i.e., if and only if the robot’s sensorimotor

state regularly comes sufficiently close to the node such that

the node’s weight always kept above zero.

2. The robot’s sensorimotor trajectory depends upon the nodes

in that (a) the nodes directly control how the motor

components of the sensorimotor state change, and (b)

the nodes indirectly constrain and influence the sensory

components via their effect upon the motors.

From these observations it follows that the nodes enable

the very thing that they depend upon to persist and reflexively,

the enactment of the pattern of behavior enables the very

thing that it depends upon (the nodes) for its persistence.

Similar to a model of biological autopoiesis (Varela et al., 1974),

where inherently unstable components such as metabolism and

membrane are mutually enabling, the components of these

patterns of behavior in this model are in a relationship of mutual

interdependence and support, and thus can be considered

autonomous under some readings of the enactivist literature.

The behavior itself is operationally closed entity (a “unity”),

constituted by inherently unstable components (the nodes and

the sensorimotor trajectory) and yet persists thanks to its own

enactment or performance.
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More detailed analysis of the operational closure of these

systems is outside the scope of the present paper (but see Egbert,

FIGURE 3

The trajectory taken by the visual robot (A), broken down into 8
patterns of repeated sensorimotor activity, i.e., habits (B–H). The
portions of the trajectory where the robot’s behavior is not
clearly repetitious are included in plot (I). Each of the nine plots
shows the full 1× 1 arena. Video showing this trial is available at
https://www.youtube.com/watch?v=2v1TyvKz9qw.

2018 for initial analysis of the precarious autonomy of a simple

IDSM-based habit). We can see the basic idea however, when we

consider how the weight of the nodes changes as time passes in

the simulation (see Figure 6). Recalling that when the weight of

a node reaches zero, that node ceases to exist, it is clear that only

nodes that are regularly visited can persist in the long term. For

a collection of nodes to be visited, the sensorimotor trajectory

must move in a particular trajectory and the sensorimotor

trajectory is largely determined by the activity of nodes. It

follows from this that the only way that a pattern of behavior can

persist is if it is one that causes the repeated revisitation of its

constituent nodes. We can also note that this self-reinforcement

of a habit need not be constant or contiguous. For example, the

B-habit (red) is established early in the simulation [t ≈ 250)]

and then is not visited again until t ≈ 1, 250, where it is

enacted a few times and the nodes are reinforced such that they

survive until close to the end of the simulation. The parameters

that prescribe the rates of node weight reinforcement (k↑) and

degradation (k↓) determine how regularly patterns of behavior

must be enacted if they are to persist.

4.2. Auditory sensors

We performed a similar analysis on the auditory robot.

Figure 7A shows the complete path taken by the auditory robot

in its environment, broken down by habit (Figures 7B–H).

Figure 8 shows the weight of each node which also provides

FIGURE 4

Node proximity during the course of the visual robot’s simulation. The darker the point in this plot, the closer that node is to the robot’s
sensorimotor state at that point in time. The larger colored points indicate the index of the node that was closest (in sensorimotor state) to the
robot’s sensorimotor state at that time. The color of the closest-node points indicates the habit that those nodes are associated with. These
colors match those in Figure 3.
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FIGURE 5

State of sensors and motors for the simulation of the visual robot.

FIGURE 6

Node weight during the course of the visual robot’s simulation. The weight of each node (shades of gray) are shown as time progresses during
the simulation. After most nodes appear, their weights decay (become lighter as time passes), but some nodes are regularly visited and their
weights are reinforced (long gray horizontal lines). The closest node at any time is plotted in color, just as in Figure 4.
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FIGURE 7

Spatial trajectory taken by the auditory robot (A); broken down
into “habits” i.e., self-reinforcing patterns of behavior (B–H); and
portions of the trajectory not associated with any habits (I). Each
of the nine plots shows the full 1× 1 arena. Video showing this
trial is available at https://www.youtube.com/watch?v=
If_WeclEtCM.

an indication for how close each node is to the current

sensorimotor state of the robot and the timeseries plots for the

auditory robot are shown in Figure 9. It is worth noting that

though these patterns of behavior may seem random, they all

(both visual and auditory) relate to the moving stimulus source

in regular, non-random ways. The regularities in the interaction

with the stimulus are much more easily seen in the animations

linked to in the captions of Figures 3, 7).

4.3. Comparison of sensorimotor
structures

Even when two behavior’s functions are the same (e.g., they

both accomplish taxis) the forms of the underlying sensorimotor

habit can be different. As a case in point, we can compare

auditory habit E with visual habit F. In both cases, the robot

circles around the stimulus, maintaining a similar approximate

distance from the stimulus as the stimulus moves in spurts

around the environment. When we look at the two patterns of

sensorimotor activity (Figure 10), we see two different pictures.

Each row of this visualization shows the spatial trajectory

of the robot (left) followed by four projections of the 4D

sensorimotor trajectory of the robot and it is obvious that

the two sensorimotor trajectories are qualitatively different.

The auditory pattern involves less diversity in the range of

states visited; the mean and other statistical properties of the

sensorimotor trajectories are also clearly different, etc. But every

habit in this model is unique—how much of the difference

between these habits is simply due to the fact that they are

different habits, and how much is due to the difference in the

robot’s sensorimotor modalities?

To address this question, we can look at projections of the

sensorimotor trajectories of all of the habits of the visual robot

(Figure 13) and observe that there are regularities in the forms

of the habits of this robot. This is most readily seen in the left-

sensor vs. right-sensor projection (upper right) which reveals

elements of this robot’s sensorimotor contingencies, including

aspects of both its sensorimotor habitat and environment

(Buhrmann et al., 2013) of the robot. Specifically, the bilateral

symmetry of the robot’s embodiment result in a (statistical)

mirror symmetry across the left sensor = right sensor diagonal.

The directionality of the visual sensors and their different

orientations mean that it is impossible (in the environment with

a single stimulus) to maximally stimulate both left and right

sensors concurrently, leading to the L-shape apparent in upper-

right plot of Figure 13, with arcs that pass between the stems of

the L as the robot turns such that the stimulus moves from being

in front of one sensor to in front of the other. These features are

also found in the other nine visual robot trials.

Similar plots for the auditory robots (Figure 14) also

reveal regularities. Like the visual robot, the auditory robot’s

embodiment is bilaterally symmetric and so it has the same

symmetry across the diagonal in left-sensor/right-sensor plot,

but the non-directionality of the auditory sensors and the fact

that their excitation does not fall off with distance make other

aspects of the sensorimotor activity different. The auditory

trajectories tend to repeat patterns of diverging from a center

point in short arcs in a pattern of returning and diverging

again, in a different direction. These dynamics can be seen in

greater detail in Appendix A, which shows the projection in

sensorimotor space of each habit individually.

Sensors and motors are involved in a recursive relationship

of influence, where sensors influence motors (via the controller)

and motors influence sensors (via the effect of actions upon the

environment and the agent’s relationship to the environment).

It therefore would make sense that the constraints imposed

upon sensory dynamics by different sensory modalities would

constrain the motor dynamics. In other words, under one

sensory modality, certain motor trajectories will be more readily

repeated (and thus stabilized) than others, and which motor

trajectories are more readily repeated would depend upon the

sensory modality.

We do, in fact, see differences in the distributions of motor

states between the two sensory conditions (Figure 11). Visually,

we can see that the distributions of motor (and abstract motor)

states in the visual robots seem different than that of the

auditory robots (Figure 11); and the distributions of motor

states within these groups in independent runs of the visual

trial seem more similar to each other (Figure 12) than they are
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FIGURE 8

Node weights with nodes closest to the current sensorimotor state of the auditory robot highlighted and marked by color of habit.

FIGURE 9

State of sensors and motors for the simulation of the auditory robot.
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FIGURE 10

Contrasting the sensorimotor dynamics of two “circling” habits. In both cases, the robot circles the stimulus, but they use di�erent sensory
modalities to do so. The patterns of sensorimotor activity are clearly di�erent despite the external “functional” description of the behavior.

to the other group. We confirmed the statistical significance

of these differences by using Kullback–Leibler divergence to

assess the distributional conformity of 50 visual trials and 50

auditory trials. The within-group (intra-modal) distributions

were significantly more similar than the between-group (inter-

modal) distributions form (t = –4.67, p = 0.0114) and for µ (t =

–8.507, p = 0.0215).

In the absence of the self-reinforcing dynamic of the IDSM,

habits, motor activity would be random, in which case we would

expect the same distribution of motor states in both sensory

modalities. The histograms in (new) (Figures 11, 12) show that

this is not the case, and thus provide support for the claim that

the sensorimotor contingencies implicit in the different sensory

modalities constrain not only the sensory dynamics, but also

motor dynamics—and in doing so, they play an important role

of constraining the form of emergent autonomous sensorimotor

dynamics.

The primary point that we wish to communicate using

this model is that sensorimotor contingencies influence which

patterns of autonomous sensorimotor behavior can emerge and

persist. It is worth emphasizing that the plots in Figures 10,

13, 14 are not plots of the sensorimotor contingencies of the

robot—they are plots of the robots’ self-maintaining habits.

Nevertheless, we see in these plots the influence of sensorimotor

contingencies—the way that the contingencies have constrained

the set of habits that can form and self-stabilize, producing the

regular patterns described in the paragraphs above.

The two different sensory modalities entail two different

sets of sensorimotor contingencies. The different sensorimotor

contingencies each imply a different set of possible self-

stabilizing habits, and so the habits that form with one sensory

modality are more similar to each other than they are to the

habits that form with the other sensory modality. Two visual

habits will be different from each other, but they will generally

be more similar to each other than auditory habits. This is

what we mean by the claim that the form of sensorimotor

habits are constrained by their sensory modality and it is

apparent in the regularities described above and seen in

Figures 13, 14. In this account, sensorimotor contingencies play

an important role. They influence the form of the emergent

autonomous sensorimotor strutures, but the rules themselves

are not internalized or learned in any other way.

5. Discussion

5.1. Solving somebody else’s problems vs.
having your own problems

The robots we have just presented display a number of

interesting and challenging features for traditional problem-

solving centered artificial intelligence (biologically inspired or

otherwise). We see in this model how sensorimotor dynamics

can have problems of their own. As we have seen AI and robots

more specifically are generally built to solve problems. But whose

problems? Perhaps the engineers’ problems or those of their

clients, perhaps animal problems that require robotic models

to be better understood, maybe societies problems but certainly
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FIGURE 11

Histograms showing di�erence in distributions of sensorimotor states for 50 visual and 50 auditory trials. As expected, the di�erent sensory
modalities produce di�erent distributions of the sensor state. It can also be seen that in visual trials, the abstract motor-state tended to be higher
(corresponding to faster rates of motor state change—see Figure 2) and the motor state tended to be more extreme.

not those of the robot itself. It is thus important to distinguish

between having one’s problem vs. being able to solve a problem.

A bacterium that swims up a gradient toward the resources it

needs to survive is doing both. It has a problem (it needs food

to persist) and it solves that problem by navigating through

its environment. AI, on the other hand, is capable only of the

former. A “self-driving” car that takes me to a restaurant dinner

is solving a problem (my need for food), but that problem is

mine, and not the car’s.

The enactive robots presented in this paper where not

designed to do anything, to solve any problem. None of our

analysis was described in terms of success or failure at the

performance of a task. The architecturemakes habits emerge and

with them a basic sense of having a problem: the habit needs to

enact itself in order to persist. The norms of behavior here are

thus only in terms of the persistence of the behavior itself (and

concurrently the mechanism that produces it). Surely, life is full

of problems, we certainly have enough with our own and don’t

need to be concerned with creating new ones . . . unless we want

to understand what it is to have a problem and how life is, itself,

a source of problems. Enactivism embraces a deep conception of

life as the self maintenance of a network of precarious processes.

In this sense life is inherently a source of problems. By making

it possible for habits to emerge and sustain their own existence

through recurrent sensorimotor interaction we have shown how

this conception of life can be practically transferred to a “way of

life” in sensorimotor robotics.

A research program on enactive robotics can and must

address how sensorimotor life is a source of problems. We can

move beyond the single habit and envision how the network of

habits that constitutes the agents can display emergent problems

of its own: that of keeping the whole network alive, coping with

variations on the way the environment affords or precludes to

enact them. This line of enquiry requires further work but the

present model requires little development to start addressing it.

5.2. Constraints and form in biological
and behavioral explanation

Biological inspiration in robotics can also move beyond

the analogy between metabolic or physiological life and its
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FIGURE 12

Histograms showing in-group similarity in sensorimotor state for visual trials (left) and auditory trials (right).

sensorimotor counterpart. In particular the models presented

and analyzed in this paper show how sensorimotor life and

the problems that emerge within are constrained by sensory

embodiment and how such constraints constitute an important

part of what it means to explain life.

Whether it is understood as more fundamental-than,

complementary-to or directly at odds-with (Newman, 2018)

natural selection, it is the repeated, regular, robust and often

phylogenetically independent appearance of forms or structures

in biology what becomes in itself an object of study that

cannot be reduced-to or deduced-from life as a response to

environmental problems. In this sense biologically inspired

enactive robotics can learn from biological development and

its organization and import into psychology some explanatory

strategies followed by biologists. Darcy Thompson, René

Thom, Pere Albert, etc. all conceived biological forms to be

both explananda and explanans on themselves. Homologies,

analogies, inherency, are all concepts directed to capture the

re-emergence of certain forms (and functions!) in biological

organisms. The notion of constraint plays here a fundamental

role. The way in which different layers of materiality and self-

organization limit and channel the emergence of viable forms is

essential to biological explanation.

If biological inspiration within the problem-solving

paradigm concluded that the material embodiment of

robots permits to offload and transform the problems to be

solved, the biological inspiration of the enactive paradigm

can conclude that the embodiment loads and informs the

problems that constitute the sensorimotor agent. As we

have seen, sensory modalities constraint motor trajectories,

which in turn, shape how habits get stabilized. Thus, in

a way that parallels the explanatory role of constrains in

evolution, we can hypothesize that behavioral variability is

not free (to explore potential solutions to cognitive problems)

but is constrained and channeled by the embodiment of

the agent.

Now, before the advent and widespread influence of

evolutionary theory in biology, the latter synthesis with

molecular biology and subsequent expansion to psychology,

sociology and even epistemology, or philosophy more generally,

the concept that was key for the continuity between life and

mind was that of habit.

5.3. Enactive robotics revisited

There are different takes on how enactivism translates into

robotics. As mentioned in the introduction it is possible to

simply reject representational functionalism, or to claim for

the importance of embodiment, or to demand that robot be

endowed with living bodies, or to introduce some feedback

mechanisms that parallel those provided by emotion bearing

bodies. We have taken a different approach—that envisioned

by Smithers (1997) and latter developed by Di Paolo (2003),

Barandiaran andMoreno (2006), and Barandiaran (2008). What

a research programme in enactive robotics entails is the study

of the organization of sensorimotor life: the form of viability

of different habits, the topology of the network of habits that
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FIGURE 13

Sensorimotor dynamics for the visual robot. These plots show motor trajectories in abstract sensorimotor space (upper left); two projections of
the actual sensorimotor trajectories of the robot (upper and lower right); and the mapping function, 3, that transforms the abstract motor state
to an actual motor state (see Section 3.4.2). Colors indicate habits as in previous plots.

unfolds over development, the shape of the habitat that is thus

constructed, the structure of the world that is experienced.

Habit-based robots as designed here are capable of individuating

habits and of creating an ecology of habits that can easily be

understood as a form of sensorimotor self.

Not only has enactivism informed robotics (Ziemke and

Lowe, 2009; Vernon, 2010) but robotics has often served

enactivism (Beer, 1995; Di Paolo, 2003; Aguilera et al., 2016)

by clarifying its claims, pushing theoretical development,

operationalizing its concepts or penetrating diverse problems.

The model we developed here can be aligned with the latter.

It can be used to clarify and make explicit the often obscure

original formulation of enactivism that “cognition in its most

encompassing sense consists in the enactment or bringing forth

of a world by a viable history of structural coupling” (Varela et al.,

1991, p. 205). We have shown how a robot endowed with an

IDSM can bring into being a number of habits, the world that

it brings forth is the habitat, more specifically, the structured

set of sensorimotor contingencies that the agent inhabits or

enacts. This habitat must be viable in the sense that habits

must be sustainable and results from a (developmental) history

of sensorimotor (structural) coupling. And in so doing, we

have demonstrated how sensorimotor contingencies can directly

constrain or “sculpt” the form taken by sensorimotor habits

without requiring any virtualization, i.e., without any internal

model or representation of the sensorimotor contingency.

Perhaps it is worth clarifying why the nodes do not

constitute an internal model or representation. The nodes do not

stand-for something else other than the sensorimotor dynamics

they partake in. It is not possible to operate upon the nodes

in a decoupled offline mode that is not itself the enactment of

a behavior, and there is not additional module or subsystem
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FIGURE 14

Sensorimotor dynamics for the auditory robot. This figure is the same as Figure 13 but plotted for the auditory robot.

“consuming” such nodes to carry out any further operation. In

these ways, the nodes do not represent a behavior or habit, but

they embody it—they constitute the habit together with elements

of the robot’s bodily and environmental dynamics.

6. Conclusion

A central focus across the cognitive sciences is upon

problem-solving ability and tremendous progress has beenmade

in understanding how to mechanize problem solving. Much

of AI and robotics research is validated by how well some

artifact (neural network, human being, robot, etc.) performs

at a problem-solving task (chess, maze navigation, bipedal

walking, etc.).

However, the conflation of “problem-solving ability” with

all of the phenomena associated with ‘being a mindful body

leaves out a number of features that demand be put at

the center of (enactive) theorizing: historicity, embodiment,

habitat, precariousness, identity, norm-establishing, etc. All

these dimensions of mental life are worthy of study and

remain outside of the problem-solving frame that scaffolded the

development of Artificial Intelligence and Robotics.

We have here presented a set of robots with different sensory

modalities that spontaneously develops a complex ecology of

sensorimotor habits. These are constrained by the sensory

modality of the robot and give rise to sensorimotor habitats

of specific forms. The very nature of habits thus developed,

understood as self-sustaining forms of sensorimotor activity, has

shown how robots must first have their own problems instead

of solving those posited by external observers; and, that, in

doing so, they must assert a form of life whose structure and

topology must be taken as the object of study. In particular we

have seen how the form of sensory embodiment shapes potential

sensorimotor contingencies and these constraint the shape and

type of sensorimotor habits that emerge during development.
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To be alive is not a computable function but the way in

which materiality (implementation), behavior and function are

deeply intertwined. What was once claimed as the triumph

of functionalism as the clear conceptual separation between

matter, behavior and machine state transitions is now its deepest

weakness. The enactive approach brings all three together again.

To be fair it is not the materiality of the robot’s “body” that is a

stake here (neither does the simulation itself possess any body

beyond the computer in which the simulation was carried out,

not the physical body, e.g. wheels and sensors, would be at stake

was the robot to be implemented in real life), but the materiality

of the sensorimotor mapping, its precarious existence, its fading

structural stability.

Perhaps the “artificial sciences” (AI, artificial life, robotics,

exploratory computational modeling, etc.) would benefit from

similarly investing more time in targets other than problem-

solving ability. Biologists are sometimes accused of suffering

“physics envy”—i.e., wishing that the objects of their study were

more easily and completely summarized by simple, provable

equations. Perhaps we enactivist and embodied researchers

can be accused of “problem-solving envy” a desire for our

artifacts and theories to be equally or more capable of solving

problems as the expert systems or disembodied neural networks

of other problem-solving focused approaches. And perhaps

this envy is a distraction, and impeding our progress toward

understanding minds. In fact, robotics cannot only reveal itself

as an engineering practice directed at solving problems but also

as a philosophical practice aimed at posing the right problems.

This is a contribution that enactive robotics is ready to do.
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Appendix A

FIGURE A1

Projections of the sensorimotor trajectories of the visual robot. Colors and letters (B–H) are included to facilitate comparison with Figure 3. (A)
Shows the superposition of trials (B–H).
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FIGURE A2

Projections of the sensorimotor trajectories of the visual robot. Colors and letters (B–H) are included to facilitate comparison with Figure 7. (A)
Shows the superposition of trials (B–H).

Frontiers inNeurorobotics 23 frontiersin.org

https://doi.org/10.3389/fnbot.2022.847054
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Using enactive robotics to think outside of the problem-solving box: How sensorimotor contingencies constrain the forms of emergent autononomous habits
	1. Introduction
	2. From problem solving to enactive robot
	2.1. Problem-solving in minds and machines
	2.2. From biologically inspired problem-solving to enactive robotics
	2.3. Enactivism and the autonomy of sensorimotor life

	3. Model
	3.1. Overview
	3.2. Stimulus
	3.3. Robot
	3.4. IDSM
	3.4.1. Overview
	3.4.2. Tracking sensorimotor trajectories
	3.4.3. Nodes influence the sensorimotor state
	3.4.4. Random motor activity


	4. Experiments and results
	4.1. Visual sensors
	4.2. Auditory sensors
	4.3. Comparison of sensorimotor structures

	5. Discussion
	5.1. Solving somebody else's problems vs. having your own problems
	5.2. Constraints and form in biological and behavioral explanation
	5.3. Enactive robotics revisited

	6. Conclusion
	7. Permission to reuse and copyright
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References
	Appendix A


