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The neuroplasticity rule Differential Extrinsic Plasticity (DEP) has been studied in the

context of goal-free simulated agents, producing realistic-looking, environmentally-aware

behaviors, but no successful control mechanism has yet been implemented for

intentional behavior. The goal of this paper is to determine if “short-circuited DEP,”

a simpler, open-loop variant can generate desired trajectories in a robot arm. DEP

dynamics, both transient and limit cycles are poorly understood. Experiments were

performed to elucidate these dynamics and test the ability of a robot to leverage these

dynamics for target reaching and circular motions.

Keywords: Differential Extrinsic Plasticity, self-organization, robotic control, play, intrinsic motivation,

neuroplasticity, reinforcement learning, complexity

1. INTRODUCTION

Robot control is still very much a work in progress. While much has been learned of how humans
and animals control their bodies (Winter, 2009), either outright or after a learning process, we still
do not know enough to be able to design a robot that even approaches human dexterity. Classical
control theory and more recently Reinforcement Learning (RL) have been extensively studied but
are still subject to lack of robustness, the curse of dimensionality and unreasonably high learning
times (Sutton and Barto, 2018).

One issue with these frameworks is the assumption that the brain directly controls the output of
each available degree of freedom; typically a learning agent will adjust its body’s motor torques at
each time step to produce a desired result in a rigid body systemwithin a given environment (see for
example OpenAI Gym; Brockman et al., 2016). This is clearly not how biology tackles the problem.
In a human, descending signals from the cortex pass through and are modified by interneurons
with their own neuroplasticity mechanisms, which activate bundles of muscle fibers and drive an
underactuated soft body with extremely complex dynamics (Pierrot-Deseilligny and Burke, 2005;
Winter, 2009). On the face of it, we have no hope. If we can’t reliably control a mathematically
much simpler rigid robot, how could we possibly control an agent with a similar complexity to a
human body?

On the other hand, could the complexity of the human body actually be a help and not
a hindrance to the perception/control problem? The bio-inspired research agenda known as
Embodied Intelligence suggests so (Pfeifer and Bongard, 2006; Cangelosi et al., 2015) and has
spawnedmany different initiatives in this area. One approach is morphological computation, which
investigates the ways that parts of the information processing burden can be offloaded to the body
itself (Hauser et al., 2012; Müller and Hoffmann, 2017), through sensor morphology (as in the case
of flies’ eyes) (Iida and Nurzaman, 2016) or through the simplification of control (Eder et al., 2018).
Physical reservoir computing uses the complexity of the body for general purpose computation
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(Nakajima, 2020). The richness of behavior of the peripheral
nervous system, providing fast-acting reflexes and hierarchical
and coordinated control (Côté et al., 2018) has been less applied
to robotic research, which almost exclusively models the control
problem as the agent’s brain directly driving motor torques.
Finally, investigations into different neuroplasticity schemes
show that a surprising variety of complex, environmentally-
aware behaviors can be spontaneously generated from simple,
biologically plausible neuroplasticity rules within sensorimotor
loops (Zappacosta et al., 2018).

These latter neuroplasticity-generated spontaneous behaviors,
detailed in the book “The Playful Machine” (Der and Martius,
2012) and in related papers (Der and Martius, 2015, 2017), can
drive simulated agents to explore and react to their environments
in a manner that is highly suggestive of natural behaviors
without building in any goals or higher-level planning of any
sort. The most recent iteration of this research uses a particular
neuroplasticity scheme called Differential Extrinsic Plasticity
(DEP) (Der and Martius, 2015; Pinneri and Martius, 2018) to
generate intriguing behaviors that are tightly coupled with the
environment: a four-legged creature will appear to search for
and find ways to climb over a fence; a humanoid will eventually
clamber out of a hole it is trapped in. From our external observer
perspective, these embodied behaviors appear to be goal-driven,
but yet they are not. DEP has emerged as an interesting and
promising candidate plasticity rule, but to date no practical

FIGURE 1 | In the “classical” version of Differential Extrinsic Plasticity (DEP) comprises two overlapping dynamical systems. [(A), top] The input layer x of a

feed-forward neural network C is driven by the motor positions. The output layer y drives the motor torques. These motors operate on the agents body in a given

environment (potentially with collisions) and the resulting motor positions xt+1 will be fed back to the input to start the cycle again. [(A), bottom] The positional

information returned as xt+1 is also fed to an inverse model that infers the rate of change of the motor torques ˜̇y that would have generated them in the absence of

environmental feedback. The difference between ˜̇y and the actual rate of change ẏ captures the environmental effects of the agent’s actions. This difference is then

used to modify the weights of C. In the “short-circuited version” of DEP [(B), top and bottom] there are no motors or sensors; the output y of the network is fed directly

back to the input x.

applications for it have yet been found. It is an autonomous
goal-free controller rather than a useful control method or
component in a larger system.

A complicating factor in the practical usage of DEP is the
current lack of an analytical solution, despite the research time
invested. In all likelihood, even simple DEP systems are too
complex to be fully described analytically and so research has
tended to be empirical, treating DEP as a pre-existing natural
phenomenon. This is not an insurmountable issue; it places
DEP within the context of related research into algorithmic
information and complexity theory, both areas cited in theories
of the development of the human brain (Hiesinger, 2021). The
behavior of DEP may not be solvable analytically even if it is
deterministic. It may be undecidable: the only way to determine
the output being to run it in simulation.

Given this, how can we study DEP and map out its potential?
First, we must simplify: by temporarily removing environmental
feedback we can map out baseline behaviors for DEP, following
the methods employed in Pinneri and Martius (2018). Second,
we must test the control-ability and limits of what DEP can
do: to what extent can higher order systems “request” particular
behaviors, and how much coverage will these behaviors provide
in the context of a given task?

This paper takes the first steps in this direction. By employing
“short-circuit DEP” (see below) and with a simple test case, where
the output of short-circuit DEP drives a simulated 2 degree of
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freedom (DOF) robot arm, we show that DEP can be made
to accomplish specific goals and that these goals cover a useful
region of task space.

2. MATERIALS AND METHODS

2.1. How “Classical” Differential Extrinsic
Plasticity Works
DEP describes a way of wiring motors and related sensors
together with a neuroplasticity rule, such that a DEP-enabled
agent produces a large set of “natural looking” behaviors that
respond to interactions with the environment. Summarizing
(Der and Martius, 2015; Pinneri and Martius, 2018), this section
describes the equations that define the thermoplasticity rule for
the “classic” version of DEP (see Figure 1A).

For a two-layer artificial neural network with input layer xi,
output layer yi, weights Cij, biases hi, and a tanh activation

TABLE 1 | Different plasticity schemes.

Plasticity scheme Update rule

Hebbian learning τ Ċij = xiyj

Differential Hebbian learning τ Ċij = ẋi ẏj

Differential extrinsic plasticity τ Ċij = ẋi (ẏj + δẏj )− Cij

function, the output activation is given by:

yi = tanh(

n
∑

j=1

Cijxj + hi) (1)

A simple feedback controller for an agent with rotary motors
may then be constructed where yi drives motor torques and xi
is driven by the resulting motor positions (see Figure 1A for
a 2 degree of freedom example). In itself, this is not a very
interesting controller, although given that themotor positions are
ultimately determined not only by the applied torques but also by
the body in which they’re embedded and its interaction with the
environment, nor is it trivial. This neural controller, the body and
the environment together form a single dynamical system.

The behavior of this dynamical system can be overlaid by a
second dynamical system driven by neural plasticity, that is, the
evolution over time of the controller’s weights. Many plasticity
schemes have been studied (see Table 1). Hebbian learning
modifies the weights based on the product of pre and post-
synaptic activations1. Differential Hebbian Learning is similar
(Zappacosta et al., 2018), but uses the product of the rates of
change of the two activations.

Differential Extrinsic Plasticity extends Differential Hebbian
learning by introducing an inverse model F that maps the rate of

1Using Hebbian learning here would give a system that resembles a continuous

variable Hopfield Network, but with normalization and an inverse model.

FIGURE 2 | (A) Examples of limit cycles reached by “Short-circuit” DEP. The phase diagrams show the trajectory of the system along the dimensions x1 and x2. The

second and third trajectories oscillate between two endpoints. The other trajectories are all rotational. (B) Maps of the attractors reached based on initial values of

x1, x2. The color bar refers to the rotational angle of the attractor, in the case of rotational attractors. Cyan refers to the non-rotational attractors shown in the second

and third examples in (A). The resulting map is shown in the top row. The map in the lower row reproduces the one shown in Pinneri and Martius (2018), but to

generate it requires slightly altering the DEP algorithm (see text). Our version lacks their basins of attraction.
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FIGURE 3 | (A) The experimental setup. A “short-circuit” DEP controller drives a 2DOF robotic arm in an open loop fashion. (B) A flowchart of the search algorithm for

obtaining a value for C0 that reaches a desired target ee∗ from starting position ee0.

change of received sensor values ẋt+1 back to the inferred rate of
change of motor torques ˜̇yt that caused them:

˜̇yt = F(ẋt+1) (2)

In most DEP implementations the inverse model F is
implemented as a simple matrixM such that

˜̇yt = Mẋt+1 (3)

and, as in this paper, it is often assumed to be the identity
matrix. F isn’t required to be strictly accurate to reproduce DEP’s
behavior (Der and Martius, 2015).

The revised update rule uses ˜̇y in place of ẏ and adds a damping
term. Dropping the time superscript t:

τ Ċij = ẋi ˜̇yj − Cij (4)

One way to think about ˜̇y is as the sum of the real historical value
for ẏ at t plus an error term δẏ with respect to the model F.

˜̇y = ẏ+ δẏ (5)

This substitution is shown in the final row of Table 1. Comparing
it to the scheme for Differential Hebbian Learning shows how
this “unexpected” environmental feedback is incorporated into
the weight updates.

The weight matrix C is normalized to Ĉ at each time step with
a factor κ and a parameter ρ that prevents a division by zero.

Ĉ← κC/(‖C‖ + ρ) (6)

Finally, the activation rule is modified from Equation (1) to use
the normalized Ĉ rather than C:

yi = tanh(

n
∑

j=1

Ĉijxj + hi) (7)

The combination of these two overlaid dynamical systems
produces an agent that cycles through a series of complex
behaviors that are responsive to environmental feedback.

2.2. How “Short-Circuit” DEP Works
A simplified version of DEP was used in Pinneri and Martius
(2018) for an empirical analysis of its behaviors. In this
configuration there are no motors or sensors; the system output
y is connected directly back to the system input x (Figure 1B).
As ˜̇yt = Mẋt+1 and ẋt+1 = ẏt and M is the identity matrix the
update rule simplifies to

τ Ċij = ẋiẏj − Cij (8)

This is effectively Differential Hebbian Learning with damping
and normalization.

By eliminating the environment, the behaviors generated can
be simplified to a set of predictable limit cycles, examples of which
are shown in Figure 2A. The limit cycles reached depend on the
initial conditions of the system, in particular the initial values for
x1, x2, y1, y2, ẋ1, ẋ2, ẏ1, ẏ2, and C. In Pinneri and Martius (2018),
all initial values were held constant except for x1, x2.

Following that paper, a map of the attractors reached based
on differing initial conditions for x1, x2 is shown in Figure 2B.
For each fixed point, the final 2x2 Ĉ matrix, is considered to be a
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FIGURE 4 | (A) For the circular controller, θ2 is derived from the angle between subsequent vertices of x. (B) This angle A is calculated by simple geometry.

rotational matrix and the corresponding angle is assigned a color.
There are two cases of non-rotational matrices: a zero matrix
(which is assigned bright red) and period-2 oscillations, such as
the second and third examples in Figure 2A, which are assigned
cyan. The resulting map is shown in Figure 2B (top).

It should be noted that (Pinneri andMartius, 2018) obtained a
different pattern, as that paper used code that inadvertently reset
the C matrix to zero at t = 2, generating different dynamics
(private communication). Their results were reproduced (with
the necessary code modification) in Figure 2B (bottom). For our
experiments we followed the strict interpretation of the DEP
equations. The attractors identified are the same, but the attractor
map with respect to initial conditions is different; the “basins of
attraction” cited in that paper being absent. In our opinion, these
basins are an artifact of the previous code base and not intrinsic
to DEP as such.

In the present paper’s experiments, as well as x1, x2, the initial
value C0 of the matrix C is also varied. It was discovered that
choosing different values for C0 elicits different trajectories and
ultimate limit cycles for each combination of the initial values
x1, x2. One way of looking at this is to say that different C0 can
select different behaviors for a given initial x1, x2.

2.3. The Experimental Setup
In the two experiments described, the “short circuit” DEP system
is used to drive a simple 2 degree of freedom robotic arm (see
Figure 3A).

The state s of the short-circuit DEP system can be fully
captured as

s = {xt+1, xt , xt−1,Ct} (9)

so that at each timestep st+1 ← DEP(st).
We can then use a robot arm with segment lengths l1, l2,

here 0.5 m, to “read out” the state s of DEP. The joint angles

θ , comprising θ1, θ2, are driven by a “driver” function D that is
specific to a given task type, such that

θ = D(s) (10)

Note that this is an open-loop controller. None of the reported
benefits of environmentally-aware “Classic” DEP are used here,
in line with the goal of learning to control a very simple DEP
system. The position of the robot’s end effector can be considered
as a simple transformation or readout of DEP’s internal state s.

Two types of task are considered. In the first, the goal is for
the robot arm’s end effector that starts at position ee0 to reach an
arbitrary target position ee⋆. For this type of task, function D(s) =
Dreach(s) is simply

θ = Dreach({x
t+1, xt , xt−1,Ct})

= πxt+1

= πy

(11)

In other words, the output of y of short-circuit DEP directly
drives the motor angles θ .

In the second type of task, the goal is for the end effector
to trace a circular trajectory of arbitrary radius r. Here, D(s) =
Dcircle(s) and we leverage the angleA between the vectors xt+1−xt

and xt − xt−1. See Figure 4 for the simple geometry that defines
a, b, c. Then, the two joint angles θ1, θ2 can be defined in the new
driver function:

θ = Dcircular({x
t+1, xt , xt−1,Ct})

θi =

{

ωt if i = 1

cos−1
(

b2+c2−a2

2bc

)

if i = 2

(12)
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FIGURE 5 | Examples of Reaching trials with: (A) different end effector start positions (green dot) and target positions (red dot). (B) The progress of the search for a

solution C matrix. (C) The solution trajectory in DEP space for the successful trial. (D) The solution trajectory in robot space for the successful trial. The most recent

positions are shown in dark blue while the early part of the trajectory is in light blue.

At a fixed point of C, Ĉt+1 → Ct and if |x| << 1,

xt+1 = tanh(Ĉxt),

xt+1 ≈ Ĉxt
(13)

Under these conditions, x is rotating around the origin in DEP
space and the angle between every other point is approximately
constant. As this angle drives θ2 then θ2 will also be a constant. θ̇1
is a constant, so the robot will describe a circle.

2.4. The Search Algorithm for C0
Given an input of an initial end effector position ee0 and target
position or trajectory ee⋆, our goal is to obtain an initial matrix
C0 that will drive the system to reach ee⋆. C0 is obtained by a
search algorithm, detailed in Figure 3B.

The 2 × 2 matrix C0 has four parameters that here each vary
between −1 and +1. The algorithm linearly divides the range of
each parameter into eight values, giving 8 × 8 × 8 × 8 = 4,096

possible values for C0. A simple grid search is performed, with
each value being trialed in a rollout of 20,000 time steps.

In the case of the reaching task, at each time step of the rollout,
if the distance between eet and ee⋆ is within a given tolerance ǫ,
then success is declared. 10 random starting positions ee0 and
10 random targets ee⋆ were combined to give 100 trials, each of
which is an execution of the algorithm in Figure 3B.

In the case of the circular task, success is declared after a full
rotation of the end effector, where the mean squared radius error
with respect to r is less than ǫ. Five random starting positions ee0
and five random radii r⋆ were combined to give 25 trials, each of
which is an execution of the algorithm in Figure 3B.

The experiments were implemented in Python on Jupyter
notebooks. The full source code may be downloaded from
GitHub2, inspected and run.

2https://github.com/SimonBirrell/dep-control
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FIGURE 6 | Examples of Circular Trajectory trials with: (A) The progress of the search for a solution C matrix. (B) The solution trajectory in DEP space. (C) The solution

trajectory in robot space. The most recent positions are shown in dark blue while the early part of the trajectory is in light blue.

3. RESULTS

The trajectories in DEP space produced in the experiments

generally consisted of a transient phase where the system

“wanders” in x1, x2 followed by a limit cycle phase. The Reaching
task leveraged both transient and limit cycle phase, while the
Circular task leveraged the limit cycles.

3.1. The Reaching Task
One hundred trials of the Reaching task were performed. In
every case, the system reported success: it found a path to all
end effector targets from all end effector starting positions. The
tolerance ǫ| had a value of 0.01 m.

Trajectory examples are show in Figure 5. In the example
in the top row, the search algorithm tested 1,541 C0 matrices
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FIGURE 7 | Search complexity and variance increases with lower error tolerance, for (A) Reaching trajectories and (B) Circular trajectories.

(Figure 5B) before finding a value that caused the end effector
(Figure 5A) to reach the desired target. The solution itself in
DEP space (Figure 5C) and robot space (Figure 5D) show that
the system had entered a rotational limit cycle before reaching
the target.

A second example, in the second row of Figure 5 shows a
contrasting example where a solution was found after testing only
179 search steps. In the solution, the systemwas still in a transient
phase when it hit the target, at only six time steps into the rollout.

3.2. The Circular Trajectory Task
Twenty-five trials of the Circular task were performed. In every
case, the system reported success: it managed to describe a
circular trajectory of at least one rotation where themean squared
radius error with respect to the desired radius was less than ǫ, in
this case 0.01 m.

Trajectory examples are shown in Figure 6. In the example
in the top row, the search algorithm required a mere 50 steps
(Figure 6A) to find a limit cycle in DEP space (Figure 6B) that
completed a circle of the desired radius (Figure 6C) after 551 time
steps of the rollout.

In the second example, in the second row of Figure 6, the
search algorithm required 3,412 search steps (out of a maximum
of 4,096) (Figure 6A) to find a solution in DEP space (Figure 6B)
that completed a circle after 332 time steps of the rollout.

The relationship of search time to tolerance ǫ can be seen
in Figure 7. For lower, more stringent, error tolerances ǫ, the
number of search steps required increases, as does its variance.
Increasing the tolerance required for reaching even slightly (say
from 0.01 to 0.025 m) reduces the search steps required by 75%.

4. DISCUSSION AND FUTURE WORK

The controller described in this paper is unlikely to signal the end
of inverse kinematics. To borrow Dr. Johnson’s phrase, it “is like
a dog’s walking on his hinder legs. It is not done well; but you

are surprised to find it done at all” (Boswell, 1791). Why do these
results, andDEP in general, matter?We can answer in three ways.

4.1. DEP as a Control Mechanism
First, what is the prognosis for DEP as a control system?
The present controller has reduced a high dimensional control
problem to one of simple selection of one of 4,096 different
discrete values of the C0 matrix. The original motivation for this
paper was to find a way to leverage DEP within the context of
Reinforcement Learning.C0 provides a low dimensional interface
for higher level systems to exploit. Yet most of the solutions are
indirect, taking time for the end effector to reach its goal.

The search algorithm could be extended to optimize for lower
time steps to reach the desired target position or trajectory.
Different trajectory types could be produced with different
driving functions, although fewer functions would be preferable
to more. Driving functions could be abstract, as they are here, or
derived from physical models of body elements, such as springs,
tissue, or muscles.

There is scope for improving the search algorithm itself
from a simple grid search, depending on what patterns, if
any, can be found in the mapping of target to C0. Are there
basins of attraction for C0? Is this controller learnable in a way
that generalizes?

Once understanding of the core behavior of “short-circuit”
DEP has improved, environmental awareness, one of the core
supposed advantages of the neuroplasticity rule, could be
reintroduced. This opens the way to recovery from perturbations
and short term, “reflex” reactions to changes in the environment.

4.2. The Study of DEP
A continuing expressed frustration in the DEP literature is the
lack of a full analytical treatment of DEP behavior. That may be
due a lack of human resources applied to the problem, or it may
be that a full treatment is simply intractable. Some algorithms
are mathematically “undecidable,” which is to say that their
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behavior cannot be predicted without executing the algorithm
itself. Perhaps DEP falls into this category.

In either case, this paper follows recent work in taking
an empirical, engineering approach to analysing DEP, rather
than a theoretical treatment. There remain many questions to
be answered.

DEP has produced some fascinating simulations, with realistic
looking and intriguing behaviors, such as gait switching,
overcoming obstacles, and interaction with devices such as
handles. How much of the observed behaviors are due to
DEP as a neuroplasticity rule and how much are due to
the particular body morphology of the simulated agents?
Passive walkers also produce realistic behaviors and respond
to the environment in a limited way, yet they have no
neuroplasticity at all. Clearly, the agents behavior is generated
by the complete system of neuroplasticity plus body plus
environment. How we can disentangle the contributions
of each?

Finally, does DEP scale? What are the limit cycles of higher
dimensional DEP systems? Our understanding of DEP behavior
is only just beginning.

4.3. Leveraging Pre-existing Complexity
DEP is an example of self-organization in action: of complexity
generated from simple rules. Self-organization is easy to
spot, but hard to design, yet may be necessary to enable
long-term learning processes such as evolution to work
effectively (Kauffman, 1995). Classical DEP is a system that,
in that evocative phrase, exists “on the edge of chaos,”
producing a rich set of behaviors even in the “short circuit”
version. Is this complexity useful to agents, or is it a
simple artifact?

The leverage of pre-existing complex behaviors is seen in
Physical Reservoir Computing (PRC), a field that applies a thin
layer of learning over highly complex, pre-existing dynamics
in a real or simulated body. A PRC system leverages a set of
dynamical behaviors as if they were basis functions and combines
them using a shallow artificial neural network. The network
can then be trained to perform some desired function. The
dimensionality of a problem that might require training a very
deep neural network has been reduced to that of training a
shallow one.

In the case of PRC, the pre-existing complexity is physical.
In other cases it may be algorithmical. A curious example is
the history of procedural content generation in computer games
(Smith, 2015). The practice originated over 40 years ago with
the need to generate details of thousands of planets in highly
resource-constrained computers. Rather than store such details,
they were generated from the Fibonacci sequence, passed through
an interpretive function analogous to our “driver function.” By
using a predictable mathematical sequence that has inherent
complexity, a vast amount of content could be generated ex
nihilio. Other examples of Algorithmic Information have been
studied, such as the “undecidability” and Turing completeness of
Rule 110 (Cook et al., 2004).

What is unclear is whether and to what extent nature
has leveraged these potential sources of complexity. In
developmental biology, there is a gap between the information
specified in the genome and the complexity of the end product
(Hiesinger, 2021). In learning there is a gap between the
mechanisms we have available and the complexity of the
problems to solve. Does pre-existing complexity play a part in
closing this gap? Is DEP an example of this?

Differential Extrinsic Plasticity remains a fascinating
phenomenon. Neuroplasticity remains an under-explored
component of Embodied Intelligence and a rich opportunity for
future work.
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