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Although we can measure muscle activity and analyze their activation patterns, we

understand little about how individual muscles affect the joint torque generated. It is

known that they are controlled by circuits in the spinal cord, a system much less

well-understood than the cortex. Knowing the contribution of the muscles toward a joint

torque would improve our understanding of human limb control. We present a novel

framework to examine the control of biomechanics using physics simulations informed

by electromyography (EMG) data. These signals drive a virtual musculoskeletal model in

the Neurorobotics Platform (NRP), which we then use to evaluate resulting joint torques.

We use our framework to analyze raw EMG data collected during an isometric knee

extension study to identify synergies that drive a musculoskeletal lower limb model. The

resulting knee torques are used as a reference for genetic algorithms (GA) to generate

new simulated activation patterns. On the platform the GA finds solutions that generate

torques matching those observed. Possible solutions include synergies that are similar

to those extracted from the human study. In addition, the GA finds activation patterns

that are different from the biological ones while still producing the same knee torque.

The NRP forms a highly modular integrated simulation platform allowing these in silico

experiments. We argue that our framework allows for research of the neurobiomechanical

control of muscles during tasks, which would otherwise not be possible.

Keywords: EMG, Neurorobotics, muscle synergies, biomechanics, simulation, muscle control, spinal cord

1. INTRODUCTION

We take our freedom to move around at will for granted. Only when this freedom is impaired
do we start to realize how much so, and only when we try to alleviate the impairment with
the aid of technology do we start to fully appreciate how complex the pathway from intended
motion to execution actually is. Much of our normal walking is unconscious, driven by rhythmic
neural activation generated in the spinal cord by the central pattern generators. It has long been
obvious that the spinal cord has considerable autonomy in calculating appropriate responses to
proprioceptive input and that cortical intervention would be too slow.

It is still unclear though how precise motor output is generated based on the integration and
balancing of cortical input and proprioceptive feedback. The neural circuitry of the spinal cord
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has not been mapped functionally at the same level of detail as
that of the cortex. This is because much of the knowledge gained
through invasive techniques, e.g., multi-electrode arrays, cannot
be performed in humans, except in unusual circumstances. The
generalization of ideas that were developed in models of four-
legged creatures to human performance is clearly problematic.

A non-invasive technique is electromyography (EMG), where
relatively small wearable sensors are used to record muscle
activity. In this work we use the data from an experimental study
of an isometric human knee extension where the role of feedback
in recruitment of muscles for the act, was established (York
et al., 2022). As per standardized and well-established protocols,
muscle activation is recorded from five distinctmuscles. Together
with neural modeling, such measurements can provide insight
in local processing in the spinal cord. But importantly, even in
animal studies there is still no access to individual muscle forces.

Simulation is the only available option to understand
how force is generated once the activation pattern has been
established. The Neurorobotics Platform (NRP) (Knoll and
Gewaltig, 2016; Hinkel et al., 2017; Albanese et al., 2018)
developed within theHuman Brain Project (Markram et al., 2011;
Amunts et al., 2016) is a natural simulation environment for
gaining an understanding of force vector output by neural signals,
as we can model the entire system: neural activation, resulting
muscle tensions and resulting force output, in this experiment the
resultant force on the knee torque. In this paper, we extend the
feature rich framework of the NRP for EMG data evaluation and
demonstrate that it is ideally suited to investigate force generation
in a musculo-skeletal model. Moreover, since it is an entirely
simulated environment, this allows in silico experimentation. We
apply machine learning and signal processing to reanalyze the
EMGdata trials, determine features and cover the synergies in the
signal. We feed the muscle activation into the physics simulation,
observe resulting biomechanical motions and quantify resulting
knee torques.

We use a Genetic Algorithm (GA) to generate alternative
control signals as a reference that produce the same torque
output as in the study.Musculoskeletal control systems are highly
redundant, therefore calculating the inverse dynamic solution
remains to be difficult and we instead use a bio-inspired approach
based on heuristics search. GA is a parallel algorithm with a
multitude of different initial populations that cover a wide search
space, in our case amultitude ofmuscle activation configurations,
and hereby is able to find alternative synergies that produce
the same torque on the simulated model. Preserving multiple
potential solutions throughout the algorithm execution is a
benefit to foster diverse solutions in contrast to, e.g., gradient
based methods. GA are a natural fit in use with a simulation
environment since the fitness of any offspring can be evaluated
online in a closed-loop of applying muscle activation to the
simulated musculoskeletal model and observing generated joint
torques. We choose GA over other bio-inspired methods such
as Particle Swarm Optimization since its implementation does
not require any global memory that, e.g., keeps track of the best
solution of all execution steps. Hereby we lay the foundations for
highly efficient search with parallel simulations of more complex
control systems in the future, as the NRP provides a scripting

interface to a high number of simulation instances that are
running on virtual machines of a large computing center.

We have experimental evidence that demonstrates so-called
synergies (York et al., 2022), the co-activation of several muscle
groups to produce a desired motor output. With this work we
can embed these findings in a larger context. We find that
the same body behavior can be generated by various possible
synergies, a number of the synergies found in our simulation
matched those identified in the experimental data. This suggests
that there is more than one way to produce a given motor
output and we show that a simulated environment can be used to
infer potential implementations for control strategies. Modeling
helps understanding the considerable amount of redundancy that
is available in the musculo-skeletal system and provides new
insights in how the desired action may be executed.

2. RELATED WORK

2.1. EMG Based Simulation
Apart from EMG recordings, the observability of muscle control
principles in human is limited and therefore simulations based
on EMG data are a central aspect with an increasing research
interest for the study of body motion control. Research includes
the simulation of physiology and morphology of muscles, e.g.,
models to generate EMG data (Schnetzer et al., 2001), or to
compare it with biological recorded data (Hamilton-Wright and
Stashuk, 2005).

Such EMG based simulations can enhance rehabilitation
procedures and control of neuroprosthetic devices. Aung and Al-
Jumaily (2011) proposes a real time visualization of colorized
muscles based on EMG input to increase motivation in
rehabilitation exercises. In Amezquita-Garcia et al. (2022), a
musculoskeletal simulation has been used to visualize finger
motions that are extracted from EMG data. In Blana et al.
(2016), neural networks have been applied to compute arm joint
positions from EMG data and resulting motions are visualized on
an arm model in Virtual Reality for improved neuroprosthetic
control. A musculoskeletal lower body model is simulated with
OpenSim (Delp et al., 2007; Seth et al., 2018) and controlled by
data from wearable EMG and IMU sensors in Cimolato et al.
(2020), the predicted joint torque in simulation is used to control
the subject’s neuroprosthetic leg.

The combination of EMG data as a basis for activation control
of virtual muscles and corresponding body motion data enables
novel methods for the analysis of musculoskeletal control in
simulation. Data from wearable EMG sensors has been applied
in simulation for gait analysis in Gurchiek et al. (2022). Jonkers
et al. (2002) showed that gait simulation based on EMG and
joint data reflects kinesiological principles of walking even with
a simplified musculoskeletal leg model and can serve as a basis
for studying motion execution resulting from muscle control. A
benchmark between different musculoskeletal simulators, here
SIMM-SD/Fast and Opensim, with an upper limb model and
EMG driven muscle activation can be found in Saul et al. (2015).

In Żuk et al. (2018), a musculoskeletal lower limb model,
similar to the one we use in this work, has been simulated in
OpenSim and muscles are controlled by EMG data to study the
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contribution of individual muscles to the final gait pattern, but
no definite answer could be found. With our work we contribute
another aspect to the research question of muscle activation
patterns with a similar procedure, but demonstrate alternative
muscle control strategies in an isolated knee bending experiment
compared to EMG based muscle activation. We integrate the
simulated body model in a 3D environment setting that recreates
an experiment setup virtually, and the NRP supports the design
of suchmusculoskeletal models and worlds with dedicated design
tools (Feldotto et al., 2022). The implementation of spiking
neural networks for muscle activation enables a comparison
of muscle control paradigms with activation generated by
simulated spiking neural network models of the spinal cord in
the future.

2.2. Neurorobotics Platform
The Neurorobotics Platform (NRP) is developed within the
European Human Brain Project and is integrated into the
EBRAINS research infrastructure for brain simulation on
supercomputing infrastructure. The NRP uses the robot
simulator Gazebo (Koenig and Howard, 2004) for rigid body
computations and has been extended with the muscle simulation
framework from OpenSim (Delp et al., 2007; Seth et al.,
2018) to simulate musculoskeletal models interacting with
virtual environments. This unique integration enables simulation
of classical motor-driven robots and biologically derived
musculoskeletal mammalian bodies in the same experiment, in
our case a musculoskeletal lower limb model in a virtual test
environment. As part of the NRP the Closed Loop Engine is
implemented to synchronize spiking neural network simulations
in NEST (Gewaltig and Diesmann, 2007) with the physics
simulation in predefined simulation steps. Transfer Functions
specify the bidirectional exchange of sensory data and motor
control commands. To optimize the workflow for experiment
design the NRP provides user tools for fully customized setups
such as a Robot Designer, Environment Designer, a Virtual
Coach for scripted experiments and State Machine for automated
control. Communication is based on the widely used Robot
Operating System (ROS) (Quigley et al., 2009) that enables
modular interchange of information within the NRP, as well
as with external processing nodes in soft- and hardware. In
this work we add an additional processing node within this
modular framework for EMG data processing and control with
a Genetic Algorithm. The NRP is deployed on the EBRAINS
computing cluster infrastructure and hereby accessible via web
browser. We here employ a local installation of the NRP on
a local computer as it is offered open source to a wide user
community. Use cases include the evaluation of neural networks
based on neurophysiological experiments in embodied closed-
loop simulations with musculoskeletal and robotic models.

The NRP has been used for reconstruction of physical
experiments before, in particular a stroke rehabilitation study
with mice has been implemented in Mascaro et al. (2020). Here,
we focus on the human musculoskeletal system and EMG data
of muscle activation that help us better understand biological
muscular motion control patterns.

3. EXPERIMENTAL SETUP

In this section, we describe the experimental study that has
been realized in this work. We first introduce the participant
study of human knee extension and then we describe the
simulation architecture that has been implemented to reproduce
and evaluate the study data virtually.

3.1. Human Knee Extension Study
We conducted a modified knee extension study with human
participants (York et al., 2022) and focus on the knee angle alone
as the one degree of freedom (DOF) at the rotary joint. All others
will be avoided by providing support and one DOF also provided
better measurable one dimensional feedback, reducing the effect
of extraneous variables.

A cross-sectional, single-blinded control study was designed
to compare the muscle activity at four distinct knee angles during
isometric contractions. Healthy participants (n = 17, female = 8)
within the ages of 18–30 (24.4 ± 2.57 years) without previous
knee joint injury participated in the study. Participants were
randomly allocated to different groups, and all measurements
were conducted in themotor control laboratories of the center for
sports sciences, in the School of Biomedical Sciences, University
of Leeds, UK.

A physio-clear plastic Goniometer angle ruler was used to
measure the knee extension angles. Participants lay supine on the
bed with the head, back and leg muscles being fully supported.
The setup is adapted from the Fugel-Meyer’s knee control test
used in stroke rehabilitation (Fugl-Meyer et al., 1975). The knee
was held in position using a locking knee brace (DonjoyTM).

3.1.1. Study Procedure
Subjects were asked to perform an isometric knee extension
experiment with maximal voluntary effort. Initially, participants
lay suspine on the bed with both legs stretched out in front, the
hip, knee and ankle are located at a 0◦ to each other. For every
recording the participant contracted their muscles at the back of
the thigh of the right leg, while the knee is placed at a given steady
angle. Participants were asked to activate the Rectus Femoris (RF)
voluntarily, to ensure RF was the most active muscle, in line with
current literature. We examined four different knee angles: at
0◦ (foot extended, so straight at the knee), 20◦ (knee is slightly
bent with foot pointing away), 60◦ (middle of the range of knee
flexion), and 90◦ (foot is at a perpendicular to the hip regarding
the knee).

The order in which the knee angles were presented for
testing was randomized across participants. Overall, participants
contracted their muscles at each angle 6 times, with each
contraction lasting 5 s, with a 3-min break between each
contraction. We use anonymized indices consisting of three
letters for data recorded from the various study participants such
as aac and aad.

3.1.2. EMG Data Recording
For all the four fixed knee angles with maximal muscle effort
EMG data was recorded. For this purpose sensor pads were
attached to record from the knee muscles Rectus femoris (RF),
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FIGURE 1 | Human knee extension experiment: Participant study with EMG recordings (left) and experiment replication in the Neurorobotics Platform (right).

Vastus Lateralis (VL), Vastus Medialis (VM), Semitendinosus
(Se), and Biceps Femoris (BF). For recording wireless sEMG
sensors (Delsys TrignoTM system; at 1.9 kHz, the bandwidth of
20 to 450 Hz) were used. Electrode placement and recording sites
were selected based on the SENIAM protocol (Rainoldi et al.,
2004). We used anatomical landmarks to identify the muscles
following the SENIAM guidelines (Rainoldi et al., 2004). Prior to
placement of sEMG electrodes, relevant skin areas were shaved
and cleaned with isopropyl alcohol, abraded with preparation
gel (Nuprep, NRSign Inc., Canada), (Merletti et al., 1998). The
electrode placement was verified in each subject by palpating the
muscles and asking participants to perform amuscle contraction.
The root-mean-square (RMS) of the evoked muscle activity was
then calculated. Activity across muscles was normalized to that
in RF, which was voluntarily activated by the participants at each
angle in both tasks.

3.2. Simulation Architecture
EMG data analysis reveals insights into correlation between
muscle activation and knee angle, but solely looking at the
recorded EMG data a conclusion about resulting joint torques
cannot be derived. We therefore reconstruct the physical
human knee extension study in a simulated environment: We
model a virtual room that contains an experiment bed and
a musculoskeletal body model as a physics simulation in the
NRP. Figure 1 shows both an exemplary test setup of the
original participant study (left) and its replication with the
musculoskeletal simulation as the basis for the experiments
described in this paper.

An available OpenSim model of the lower limb (Delp et al.,
1990; Anderson and Pandy, 1999; Au and Dunne, 2013) is
adapted for this study and its implementation in the NRP. The
original model represents a subject that is 1.8 m tall and has
a mass of 75.16 kg (Au and Dunne, 2013), mass and inertial
properties have been averaged from anthropometric data of five
subjects (age 26 ± 3 years, height 177 ± 3 cm, and weight 70.1
± 7.8 kg) (Au and Dunne, 2013). To achieve best accuracy of
musculotendon actuator paths bone surfaces had been marked
with polygon meshes and then digitized (Delp et al., 1990). For
our simulation study in the NRP joints are reduced to basic
revolute motions and only muscles recorded in the physical study
are used. These are visualized in Figure 2: Rectus Femoris (RF),

FIGURE 2 | Muscles of the simulated lower limbs considered in our

experiment: (A) Rectus Femoris, (B) Vastus Lateralis, (C) Vastus Medialis, (D)

Semitendinosus, (E) Biceps Femoris, (F) Medial Gastrocnemius, and (G)

Tibialis Anterior.

Vastus Lateralis (VL), Vastus Medialis (VM), Semitendinosus
(Se), Biceps Femoris (BF) as well Medial Gastrocnemius (MG)
and Tibialis Anterior (TA). All muscles are simulated according
to Thelen (2003), hill type models that emulate characteristics
of elasticity and damping. The torso is fixated to the virtual
bed, the right leg can move in a planar space in line with the
physical setup. We implement a ROS control node in Python
that controls simulated muscles with an activation value in range
[0,1] (0 represents a fully relaxedmuscle and 1 expresses maximal
activation). Muscle synergies as well as resulting biomechanic
behaviors measured in terms of joint angles and torques are
recorded for analysis.

In this paper we demonstrate a pipeline that consists of
two different control and evaluation steps to actuate the
musculoskeletal model. First, we calculate normalized muscle
activation values from EMG data collected during the participant
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FIGURE 3 | Experiment setup in the Neurorobotics Platform with two distinct control approaches: EMG data from the participant study is processed and applied to

the simulated model to record resulting knee forces. In a second step optimal synergies are calculated by Genetic Algorithms using the simulation model as test and

evaluation bed.

study. Second, we implement GA to compute an optimal
muscle control pattern by active trial on the simulated model.
Figure 3 visualizes the architecture, that is centered around the
virtual experiment replicate, conceptually. In both control steps
we interface derived muscle activation data with the physics
simulation by means of ROS topics. As a result we inspect and
record knee joint angles and torques on the simulated model.

4. DATA PROCESSSING

Data passes through several steps before the final virtual
experiment can be performed. First, the raw EMG data is
preprocessed and muscle activations are extracted from the
trial recordings. The normalized inputs are then fed into the
NRP simulated muscles and the resulting torques are measured.
Finally, these torques are taken as reference and a GA is used
to generate muscle activation configurations which replicate the
measured values.

4.1. EMG Data Analysis
4.1.1. Trial Localization
To perform the experiment, the trials have to be isolated and
extracted from the original recordings and the EMG signals have
to be preprocessed and readied for the simulation. As previously
stated in Section 3.1.1, the experiments consists of 6 trials, each
lasting 5 s, with a 3 min break in between. Signals are first
transferred into frequency domain, rendering 7 spectrograms
per experiment, corresponding to the 7 muscles of interest. The
spectrograms are then summed into a single muscle activity
spectrogram (Figure 4, top) which, in turn, is collapsed into a 2D
plot (Figure 4, middle) by further summing the amplitudes over
all frequencies at any given time point. Each time the activity plot
is greater than a threshold determined by the SNR, an activity
event is marked in time domain. Since it is known that each
experiment has 6 trials, the K-means algorithm is used to find
the trial origin of each activity event by clustering them in 6

clusters. Finally, the median time point of a trial’s activity events
determine its central time-wise occurrence (Figure 4, bottom).
Since each trial is executed for 5 s according to experiment
instructions, we identify each trial’s onset and offset as its origin
±2.5 s.

4.1.2. Signal Preprocessing
The data contains noise components which have to be filtered
out. Moreover, only a specific bandwidth may offer relevant
information for further analysis. By observing the signals in
frequency domain, it becomes evident that most high amplitude
activity occurs in the lower end of the spectrum, as seen in
Figure 5. Therefore, to increase the signal analysis reliability,
we need to find a heuristic that automates calculating a cut-
off point that is tailored to our data set. The FFT analysis
showed that lower frequencies are of higher amplitude and are
in fact a minority when compared the rest of the spectrum,
a property which has proven useful in analyzing the signal
from a statistical angle. The proposed heuristic is as follows:
After averaging the FFT values across all study experiments and
creating an amplitude-wise histogram of the frequencies, we fit
a binomial distribution envelope to said histogram. We then
find that the first outlier outside the standard deviation acts as
a good amplitude threshold. The highest frequency reaching this
threshold will therefore be considered the cut-off point.

4.1.3. Feature Extraction
To be consistent with the study experiment, muscle activation
data has to be inferred from the EMG signals. It is known
that a muscle unit (MU) exerts a muscle unit activation
potential (MUAP) when activated. An increased firing rate of
a neuron translates into a higher stimulation of the muscle
fibers, resulting in a sustained force (tetanic contraction) in the
MU. Furthermore, due to the size principle in MU recruitment
(Mendell, 2005), larger neurons, associated with a higher firing
threshold are activated with the increase of force, which can be
observed as an increase of voltage in the EMG recordings. Taking
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FIGURE 4 | EMG data knee extension trial localization: (top) Activity spectrogram of all muscle recordings: Frequency spectograms for all recorded muscles are

added up to identify overall muscle activation during a participant trial session. (Middle) Summed activity spectrogram: Frequencies are added up at any given time

point to spot knee extension trial durations. (Bottom) Identified knee extension trials in original recorded EMG data (colors represent individual muscles): a participant

executes several trials of knee extension in a row, we apply signal processing to identify trial duration (vertical lines) and centers (crosses). Y-axes values are in arbitrary

units unless stated.
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FIGURE 5 | Frequency domain plot: The FFT-generated data is averaged over

all trials, which shows that the most prominent frequencies lie within the lower

end of the spectrum. All frequencies higher than the computed cut-off point

will be ignored in further analysis.

FIGURE 6 | Knee torque evaluation on the simulated musculoskeletal model in

the Neurorobotics Platform: Muscles are activated (muscle color coding:

blue—no activation, red—maximal activation) by either processed EMG

signals or a Genetic Algorithm and results in a muscle generated knee torque

(red arrow). A counter acting knee torque (yellow arrow) is iteratively increased

until the goal knee angle is reached.

these into account, our heuristic to approximate muscle forces F
equates to

F =

high∑

f=low

f × v(f )

A weighted sum where each constituent frequency component f
is multiplied by its amplitude v(f ).

4.2. From Muscle Activation to Simulation
Control
Once the EMG recordings have been converted to muscle
activation scalars, these values are normalized and applied on the

TABLE 1 | Genetic Algorithm operators and parameters.

Operation: Crossover Mutation Selection

Type: cxTwoPoint mutFlipBit selTournament

Parameter: Crossover

probability = 0.5

Mutation

probability = 0.2

Tournament

size = 3

Independent

probability = 0.05

The Genetic Algorithm executed the three steps of Crossover, Mutation, and Selection

iteratively until the predefined fitness is reached.

NRP leg model muscles. Consequentially, the virtual muscles are
contracted and the leg is extended with a resulting knee torque.
The NRP does not provide a way to directly measure a muscle
generated torque in a given joint. However, it does allow dynamic
interaction with the model via its Python API. Therefore, by
applying an increasingly stronger virtual torque opposing the
muscle generated one (shown in Figure 6), once the leg reaches
its original bent position it can be inferred that the artificial force
equals the muscle driven one. The approach of applying torques
that are increasing is supported by Beltman et al. (2004).

4.3. Genetic Algorithm to Compute Optimal
Muscle Activation
Having extracted the knee torques from the original EMG
recordings, using the NRP simulation, we can test whether the
same rotational force can be achieved through different synergies.
To do this, a GA is used in conjunction with the simulation to
evolve an activation pattern that matches the target torque. The
GA makes constant use of the simulation to measure the fitness
of its population. In this problem context, each individual has 7
genes representing the activations for the controlledmuscles. The
initial individual is generated randomly. In every generation the
fitness of each individual is defined by cos (|acurrent − atarget|),
where acurrent is the knee angle observed in the simulation using
the current individual’s activations and atarget is the target angle
of the algorithm. We implemented the GA based on the DEAP
Python library (Fortin et al., 2012), the selected operators and
parameters can be found in Table 1.

While this evolutionary approach can find muscle
configurations that match the target study experiment torques, it
is not guaranteed that any given solution has at least a fully tensed
muscle. Each gene within an individual is created randomly with
a value between 0 and 1. This means that the configuration does
not represent maximal voluntary effort. To mitigate this, the
genes of an individual are scaled to the maximal value which
becomes 1, while the others increase proportionally.

5. RESULTS

5.1. EMG Data Analysis
The muscle activation approximation heuristic described in
Section 4.1.3 demonstrates results in accordance with physical
expectations. We examined the Pearson correlation of muscle
groups to target knee angles, the results are shown in Figure 7 for
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FIGURE 7 | Muscle to knee angle Pearson correlations for multiple patients: Different colors refer to data of different study participants, the Pearson correlation is

shown clustered by examined muscle groups. We observe a strong negative muscle activation correlation with the given angle for RF, VL, and VM, contrary ST and TA

show a weak positive correlation and no definite correlation can be found common for all participants for BF and MG.

all study participants clustered by muscle groups. The quadriceps
muscles (Rectus Femoris, Vastus Lateralis, Vastus Medialis) are
inversely correlated with the knee angle, while the posterior
muscles (Semitendinosus, Biceps Femoris) show weak positive
or no correlation as they don’t take an active part in the leg
extension effort. Tibialis Anterior muscles of the lower leg show
a tendency for positive correlation, and no common correlation
among participants is prominent for Medial Gastrocnemius.

5.2. Simulated Knee Extension
The NRP has proven crucial in analyzing the resulting knee
torque by applying the EMG derived muscle activations. The
balancing torque required was different for each subject, which
reflects different anatomical configurations. Also the angle
at which the maximal force was induced varied, indicating
different strategies of executing the knee extension task among
participants. Figure 8 shows balancing forces for an exemplary
subject with mostly increasing balancing force with increasing
knee angle. While difficult to extract from the raw EMG data,
using the simulation results we receive a clear picture of which
trials the subject might not have performed the maximum
voluntary effort study experiment correctly. Here in trial number
2 balancing forces for 20 and 60 degree are significantly lower
compared to other trials of the same study participant.

5.3. Comparison of EMG Derived and GA
Generated Muscle Activation
Our experiments have shown that the GA reaches a conclusion
fairly rapidly after around 20 generations. However, since the
fitness function waits a couple of seconds for the simulation to

FIGURE 8 | Knee torque for a single subject: generated torques show a

common pattern across trials and non-optimal trial executions can be

identified.

reach a stable position with the evaluation of a new individual,
the entire process may take up to tens of minutes.

Comparing natural (extracted from the experimental study
data) and evolved muscle activations achieving the same
extension torque, configurations are not linearly correlated
for any given subject and angle. This is to be expected, as
even comparing two experiments belonging to two different
subjects, recorded at the same angle does not present any
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FIGURE 9 | Positive comparison of natural (extracted from the experimental study) vs. evolved (computed by the Genetic Algorithm) synergies: The Genetic Algorithm

computes synergies that recreate the muscle activation of processed EMG data of the participant study closely. (A) Subject aac Angel 90. (B) Subject aad Angel 20.

FIGURE 10 | Negative comparison of natural vs. evolved synergies: The Genetic Algorithm recreates the knee torque of study participants but identifies different

synergies to reach the same torque. (A) Subject aad Angel 60. (B) Subject aad Angel 90.

relevant similarity. We investigated evolutionary generated
muscle activations for all participants, and indeed found very
different strategies to provide the given balancing torque. The
only consistent characteristic that holds true throughout all
subjects for both approaches is the overall dominance of the
quadriceps extensor over the posterior contracting muscles.
We therefore will present two examples for the corner cases
here with each examples from two participants: First, the GA
finds a very similar activation pattern as the one extracted
from the EMG data, and second the GA finds a very
different solution for muscle activation while reaching the same
knee torque.

Figure 9 shows a detailed comparison between the natural
and the evolved synergies for two exemplary subjects at a given

angle. The GA found a suitable muscle activation pattern to
recreate the extension force which closely resembles the original
recorded values, in particular we observe the dominance of
the VM muscle and on the left we also observe the moderate
support of VL and MG muscles in both the natural and evolved
muscle activation.

In contrast, Figure 10 shows that the GA is able to reach a
valid extension effort end state while its results end up quite
distinct from the original, natural configuration. On the left we
observe a strong activation of all muscles, on the right a mix of
muscles with a strong and weak activation is found.

As a conclusion we observe that the same results, both in
pose and in extension torque, can be achieved by different
activation patterns.
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6. CONCLUSION

In this paper we introduced a simulation framework that uses
a virtual musculoskeletal model in the NRP for calculating
effective joint torques of recorded surface EMG data. The model
skeleton is simulated with rigid body dynamics in Gazebo
and extended with hill type muscles of OpenSim. Within our
framework we implemented two different control components
to actuate the virtual model. First, we analyzed surface EMG
data and computed normalized muscle activation to control the
simulated model. We could replicate the experimental study
virtually and inspected the physical impact of muscle forces
and joint torques by applying increasing counteracting torques.
Both force values are highly relevant research objectives (Zhou
et al., 2011; Zhu et al., 2017) but could only be accessed
invasively so far (Roberts and Gabaldón, 2008; Disselhorst-
Klug et al., 2009). Furthermore, our implementation makes
use of a physics simulated model in a virtual environment
and hereby is more generic than other approaches with,
e.g., LabView in Zuchruf et al. (2021). Using this model
in a second step we implemented a Genetic Algorithm that
computes optimal muscle control configurations that can
reproduce observed joint torques. Overall, the framework is
implemented using ROS interfaces and design tools provided
with the NRP and hereby is highly modular and can
easily be applied to a variety of musculoskeletal models and
experiment scenarios.

In this work, we demonstrated the capabilities of our
framework and its advantages for EMG evaluation with specific
data from a human knee extension study. For this purpose
we integrated a human musculoskeletal model of the lower
limbs into the NRP and hereby replicated the physical study
setup in-silico. In line with the physical constraints applied in
the human participant study the simulated leg in the NRP is
restricted to motions in a vertical space. However, the simulated
model can easily be extended (e.g., in terms of number of
muscles, Degrees of Freedom and limb) and hereby opens up
the introduced framework for a variety of further studies in
the future. Previous work with musculoskeletal models in the
NRP focused on rodent motion control paradigms to study
stroke rehabilitation in the cortex (Mascaro et al., 2020). We
investigated neural activation signals to muscles, the lowest
level of neural activation in the motion control hierarchy
contributing to a better understanding of the descending
pathways of motor control. The data analysis showed that
quadriceps muscles are inversely correlated with the knee angle,
while the posterior muscles show weak correlations. With the
simulated model we demonstrated that even with the same goal
knee angles participants applied different muscle configurations
to achieve these.

With our GA approach, we can reproduce this variability
of synergies from the study even with a generalized
simulation model and showcase additional control
strategies leading to the same knee torque. The GA
suggests solutions that match the experimental outcomes,
but also some unlike what the subjects produced—e.g.,

in individuals there is maximal activity in primary
muscles while the GA also finds solutions with increased
activity across multiple muscles. This is maybe because
GA is unbiased and not working within the human
biomechanical constraints.

Overall, the NRP allowed us for the first time to know and
reproduce the effective joint torques and muscle synergies that
are generated during a task. The observed variability supports
the idea that the muscle interactions are not all hardwired or
predefined but fairly flexible even if the endpoint or the torque
generated is almost the same across all individuals. The observed
muscle recruiting requires a neural control system that is less
rigid and responsive to the specific needs, as predicted by York
et al. (2022) recently, where they show that the proprioceptive
inputs are capable of affecting the muscle recruitment pattern
depending on the need.

The NRP is designed to foster understanding of neural control
paradigms by the in silico development of and experimentation
with spiking neural networks controlling (musculoskeletal)
models interacting in virtual environments. Future work of
various research groups will focus on the implementation of such
embodied closed-loop computational neural network models
in the NRP that mimic neural motion control in the spinal
cord. Our introduced pipeline provides a basis to validate
resulting muscle activation and biomechanical motion patterns
generated by these computational models. To validate such
functional models with our proposed methods we provide the
muscle activation of the biological ground truth (EMG data)
as well as any possible reference solutions (Genetic Algorithm)
to achieve the same motion behavior for the given knee
extension use case or any other application our method may be
transferred to.
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