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Electromagnetic actuation is a new technique for non-invasive manipulation, which
provides wireless and controllable power source for magnetic micro-/nano-particles.
This technique shows great potential in the field of precise mechanics, environment
protection, and biomedical engineering. In this paper, a new quadrupole electromagnetic
actuated system was constructed, which was composed of four electromagnetic
coils, each coil being actuated by an independent DC power supplier. The magnetic
field distribution in the workspace was obtained through finite element modeling and
numerical simulation via COMSOL software, as well as the effect of the current flow
through the coil in the field distribution. Moreover, parameters of the electromagnetic
system were optimized through parametric modeling analysis. A magnetic field map was
constructed for rapidly solving the desired driving current from the required magnetic
flux density. Experiments were conducted to manipulate a micro-particle along the
desired circular path. The proposed work provides theoretical references and numerical
fundamentals for the control of magnetic particle in future.

Keywords: electromagnetic actuated system, system optimization, micro-manipulation, map-based control,
numerical simulation

INTRODUCTION

Micro-manipulation aims to control the movement and assembly of micro-particles in the
target workspace for some specific applications including micro-processing (Li et al., 2015),
environmental governance (Wang et al., 2015), and drug targeted delivery (Gao et al., 2016).
Since the size of the manipulated particle is in micro-scale, it is hard to directly integrate a
traditional embedded energy supply device. Thus, non-invasive mechanisms are introduced for
micro-manipulation technology, including dielectrophoresis (Chu et al., 2015; Huan et al.,, 2016)
generated by non-uniform electric field, optical tweezers (Cheah et al., 2014; Xie et al., 2019)
induced by focused laser beam, and magnetic driving force (Ma et al., 2017; Niu et al., 2017;
Meng et al., 2019) generated by gradient magnetic field. Compared with dielectrophoresis and
optical tweezers, magnetic actuated technology has its advantages in biological compatibility and
micro-flexibility (Pankhurst et al., 2003; Ma et al., 2020), which has been widely investigated in
recent years.

The actuators of magnetic actuated systems are usually composed of permanent magnets
or electromagnetic coils. Permanent magnets have relatively high magnetic energy product per
unit volume, which could efficiently and economically generate magnetic field of large strength
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(Mahoney and Abbott, 2014). However, the magnetic field
induced by permanent magnet is difficult to be removed
beyond the working state. The variation of the magnetic field
could only be achieved by adjusting magnetic pole interval
in the workspace (Wright et al, 2017). The magnetic field
generated by the electromagnetic coil could be controlled
with variable currents flowing in the coils (Yesin et al,
2006). The electromagnetic system could provide a remote
controllable driving force for magnetic particles in a relatively
large workspace, which is convenient for system modeling and
control law design (Wang et al., 2018). Electromagnetic actuated
system has been reported by many researchers. Kummer et al.
introduced an electromagnetic driven system consisting of eight
electromagnetic coils with iron cores, which could provide three
dimensions of translation and two dimensions of rotation for
magnetic particles in the workspace (Kummer et al., 2010). An
electromagnetic driven system composed of two pairs of saddle
coils with different geometric parameters was designed by Jeon
et al. (2010), which could enlarge the effective workspace for
the manipulation. Li et al. proposed an electromagnetic actuated
system with four intersecting electromagnetic coils in the plane.
The end of the core near the workspace was designed as a probe,
and the other end of the core was attached with a thin iron
sheet (Li et al., 2020). This could not only increase the generated
magnetic field gradient but also enlarge the effective workspace.
In this paper, a new quadrupole electromagnetic actuated
system is proposed, which could provide real-time adjustable
magnetic field distribution in its workspace with external
programmable current suppliers. Structure was designed to
achieve an adjustable workspace. Parameters of the system
were optimized through parametric modeling and finite element
simulation. Moreover, based on the magnetic field data value
of the discrete reference points, a magnetic field map in the
workspace was constructed to obtain the inverse solution of
the required current value rapidly in real time. Experiments
were conducted for manipulation of micro-particles with the

proposed setup. The proposed work provides a foundation
for manipulating micro-particles and improving the control
response speed of the electromagnetic actuated system.

MATERIALS AND METHODS

System Design

A quadrupole electromagnetic actuated system was designed
to generate a gradient magnetic field for manipulating micro-
particles. As shown in Figure 1A, the basic structure of the
system consists of four electromagnetic coils, which is constituted
by scaffold, copper coil, and iron core. The coils are further
connected to the power suppliers. Thus, a square magnetic
workspace is provided in the center of the system.

As shown in Figures 1B,C, the entire system is settled within
an aluminum frame. Each electromagnetic coil is fixed with
an adjustable supporter, as shown in Figure 1D. As illustrated
in Figure 1E, the connection supporters consist of one H-type
bracket and two guide rails. With these supporters, the relative
distance of the four electromagnetic coils is alterable. Since the
generated magnetic field is related to the structure of the system,
the induced magnetic field could be further adjusted according to
certain applications.

In order to enhance the induced magnetic field, DT4-core
was utilized for the electromagnetic coils, which has excellent
electromagnetic performance. Meanwhile, the characteristic of
electrical pure iron DT4 is also friendly with manufacturing and
could be fabricated according to the designed structure easily.
The DT4-core has a large area of liner part which could be
used for our electromagnetic system. DT4 has relatively low
coercive force (H. < 96 A/m) and high magnetic conductivity
(i > 7.5%x1073 H/m), which benefits the generation of a precise
magnetic field.

To avoid electromagnetic interference, the entire setup was
settled on a non-magnetic optical vibration isolation platform.
A commercial three-dimensional (3D) printer (M3D) was

workspace

electromagnetic coil

copper coil [ ¢©

ron core
4
’
’
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system; (D) fixation for the electromagnetic cails; (E) H-type bracket and guide rail.

FIGURE 1 | Configuration of the electromagnetic actuated system. (A) Combination of the electromagnetic coils; (B) structure of the entire system; (C) top view of the
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used to fabricate the core-scaffold with standard polylactic
acid (PLA) filaments. The 3D models of scaffold were
first built with Solidworks. Each scaffold was designed with
several grooves along the axial direction for promoting heat
dissipation of coils during the operating process. Enameled
copper wires were wrapped and stacked around the scaffold
forming electromagnetic coils, with a diameter of 1.3 mm. The
electromagnetic coils were fixed on the aluminum profile bracket
constituting a quadrupole electromagnetic system. An aluminum
stage was installed right under the workspace, which could be
used for placing the experimental chip. The observation system
was composed of optical microscope, charge-coupled devices
(CCD) camera, and computer, in order to record the movement
of micro-particles. Programmable power suppliers (GWinstek
GPD 3303S) were connected to each coil to control the current
input of the manipulation system.

Electromagnetic Actuation Mechanism

As a magnetic micro-particle suspended in the gradient magnetic
field, both force and torque will be induced on the particle which
are related to the magnetic property of micro-particles and the
distribution of the magnetic field. The induced force and torque
could be obtained from the following equations:

T = (6 . V) B (1)
T=0xB @)
where, E) = (BX,B),,BZ)T is the magnetic flux density of

the magnetic field in Cartesian coordinate system, _Q) =
(Qx> Qs QZ)T is the magnetic moment of the magnetic particle,
and V is the gradient operator.

For aliner, isotropic, and homogeneous magnetic particle with
volume V), and susceptibility yx, the magnetic moment 6 could
be defined as (Huan et al., 2021b):

Q=Voirn ? ®

where, 11y = 47 x 1077 Tm/A is the free-space permeability.
Substituting (3) into (1), the magnetic force could be
written as:

— X — —
F:\/i(BoV)B 4)
ot + )
Since the magnetic field of the electromagnetic coils is generated
by current-carrying coils, the magnetic flux density could be
calculated with the Biot-Savart law. With current _I), the induced
magnetic flux density could be given as:

— ol
B =50 =l (5)
4 - =
’P — P
=3 T . e .
where, P = [px,py,p.]" is the position of the manipulated

- —
micro-particle, P is the magnetic field source position, d [

is the current element in the magnetic coils, and ¢z =
- dTx(B-B

wy % is related to the position of the particle.

P-P

According to Equations (4) and (5), the magnetic force
induced on the micro-particle placed in the magnetic field is

related to the coil current I and the particle position B.
Generated magnetic field for a certain magnetic coil is linearly
related to the coil current, which could be obtained from
Equation (5). As we_l)lave four electromagnetic coils, the magnetic

field in position P is a vector superposition of each coil’s
contribution, which could be written as:

4 4
E; (xy.2) = ZB—"; (xy.2) = Z (HBI") (6)

n=1 n=1

where, By, (x,),z) is the contribution in position P of any
one electromagnetic coil, and I, is the current input for each
coil, separately.

RESULTS AND DISCUSSION

Parameter Optimization

In order to evaluate and optimize the magnetic field distribution
of the proposed electromagnetic system, an FEM model was
constructed via the COMSOL software. The 3D model structure
of the quadrupole magnetic system was first built in Solidworks.
Four coils were aligned orthogonal to each other in X-Y plan.
The model was then converted and imported into COMSOL for
further analysis.

As given in Equation (6), the magnetic field within the
workspace could be calculated through the principle of vector
superposition. Thus, the magnetic field generated by a single coil
was analyzed in the first place. According to the Biot-Savart law,
the induced magnetic field is related to the design parameters
of the electromagnetic coil system, such as diameter of core,
distance between coils, and number of coil turns. Parameterized
model of the system was built for optimization, as shown in
Figure 2A. In the simulation, coil 1 is applied with 1A current,
and there is no current going through the other coils. Magnetic
field distribution in the central axis of coil 1 is exported.
Simulation results with different parameters are illustrated in
Figures 2A-C.

As illustrated in Figure 2B, different distances between two
concentric coils were set for the simulation. The distribution
curves of magnetic field show that the closer to the core, the
larger is the gradient of magnetic field. Moreover, as the distance
between two concentric coils increases, the magnetic field around
the center of workspace and its gradient obviously decrease.
For better driving characteristics, the distance between two
concentric coils should be small enough. However, when we
reduce the distance, the workspace would also be compressed.
Thus, in order to guarantee a 10 mm x 10 mm valid workspace,
20 mm was chosen as the distance between two concentric coils.

The number of coil turns is also an important factor for
magnetic field. The magnetic field distribution along Y-axis was
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FIGURE 2 | Parameter optimization of the electromagnetic system. (A) Parameterized model; (B) magnetic field distribution with different distance between coils; (C)
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analyzed with different coil turns, as shown in Figure 2C. The
magnetic field and its gradient could be enhanced by increasing
the number of coil turns. This result could also be predicted
theoretically from Equation (6). Nevertheless, for the limitation
of size, coils are spooled multi-layered which will cause heat
dissipation. To avoid excess thermal effect during long running
operations, the number of coil turns was chosen as 200.

Figure 2D summarizes the magnetic field distribution with
different diameters of iron core. As we reduce the diameters,
the magnetic field and its gradient in the central axis gradually
increase. A smaller iron core is preferred according to the
simulation results. In addition, if the diameter of iron core is
smaller than 10 mm, the difficulty of manufacturing and coil
spooling process is increased significantly. Based on overall
consideration, the diameter of the iron core was set as 10 mm.

Magnetic Field Analysis

The parameters of the system were optimized along the central
axis. In order to investigate the magnetic field distribution in the
workspace, the model was constructed according to Figure 2A.
A current value of 1 A was then applied to each electromagnetic

coil. It should be noted that the current flows in the opposite
direction in coil 1 and coil 3, as well as in coil 2 and coil 4, while
the current flow is in the same direction for coil 1 and coil 4.

The magnetic field distribution in the 10mm x 10mm
x 10mm workspace could be calculated with finite element
analysis. The 3D steady state magnetic field distribution is
proposed in Figure3A. In order to show more details, the
magnetic field distributions in two-dimensional (2D) cross
section are exported in Figures 3B-D. It is evident that the
magnetic field in each 2D plane is symmetrically distributed.
As illustrated in Figure 3B, the magnetic field strength near the
coils with opposite currents is much higher compared with the
rest of the region. As we can observe from Figures 3C,D, the
field strength decreases along the Z-axis significantly. Thus, the
magnetic field in the center plane is the strongest, which is the
most suitable for target manipulation. Our experiments could be
further conduced within the center plane of the workspace.

After the simulation, we reconstructed the system with
optimized parameters. A gaussmeter (LZ-610) was used to
measure the magnetic field distribution along the central axis of
coil 1, to which a current of 1 A was applied. The probe of the
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FIGURE 3 | Simulation of the electromagnetic system in the workspace. (A) Three-dimensional (3D) magnetic field distribution; (B) magnetic field distribution in
XY-plane; (C) magnetic field distribution in XZ-plane; (D) magnetic field distribution in YZ-plane; (E) comparison between magnetic fields evaluated with COMSOL and
measured with gaussmeter in X-axis.

gaussmeter was fixed on a triaxial micromotion platform, and the
value was recorded with a distance interval of 0.5 mm. Figure 3E
shows the comparison between the results from software
simulation and real measurement for coil 1. The comparison
result shows that the simulation results are consistent with the
experimental results. Some minor error could be introduced by
the system disturbance and manufacturing process.

Map Construction

According to Equations (4) and (5), during the manipulation of
micro-particle, the applied current could be calculated from the
required driving force, which is given by the control algorithm.
However, partial differential equations should be solved in this
process and the solution is non-unique. The complex solution
process could introduce delay for the manipulation. One possible
solution is to prepare a magnetic field database for the workspace,
with which we could find out the specific current directly from
the given magnetic field strength. As illustrated in Equation (5),
the magnetic flux density is in direct proportion to the applied
current in case the magnetic core is not saturated. Furthermore,
the overall magnetic field depends on the vector superposition
of each electromagnetic coil’s contribution. We just need to
construct a unit-current magnetic field map for each coil.

In order to construct the unit-current magnetic field map,
the values of the magnetic flux density for each node in FEM
model were exported from COMSOL. The discrete reference
points were treated as the data source. During the manipulation,
the target particle could be anywhere in the workspace, whose
position was captured from the visual system. To determine
magnetic flux density in the target position, spherical search
method and inverse distance weighting algorithm were utilized.
For an arbitrary point in the workspace, a spherical region with
variable diameter was used for searching the data sample around

the target. The diameter is an auto-increment value ensuring
enough neighboring sample data are found.
The magnetic flux density in target position could be given as:

By= Y Bu 7)

a=x,y,z

where, By, is target magnetic flux density in axis_X, axis_Y, and
axis_Z, respectively. The value of each axis could be fitted by
the distance inverse weight method. The interpolation weights
were set as reciprocal of distance between the target point and
the sample data points.

n 1
Zi:l dTaBiu

Boa = no 1
Y,

®)

where, Bj, is the magnetic flux density in certain axis of sample
data point.

Manipulation Experiment
Experiments were performed with the proposed system to
manipulate magnetic micro-particle. A micro-particle along a
desired circular path was tracked with a PID controller. The
control schematic diagram is shown in Figure 4A. The real-
time position of the micro-particle was located by image process
with real-time captured images. Desired magnetic force was
obtained with PID controller. Since the input for electromagnetic
manipulation system is the current for each coil, the desired
current should be calculated with map-based calculation system
from the desired magnetic flux density. Magnetic micro-particle
was then actuated accordingly.

The radius of the micro-particle was 5pm, with a density
of 1.1 g/cm®. During the manipulation, the micro-particle was
suspended in salt water, which has a similar density, to avoid
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(C) att = 25s; (D) at t = 405s; (E) trajectory tracking error.
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FIGURE 4 | (A) Micro-particle control schematic. Captured images for manipulating a micro-particle along desired circular path at different moments: (B) att = 5's;

sinking or rising. The desired trajectory was provided with
a software interface. Real-time position of the target micro-
particle was detected by image process. Currents for each
electromagnetic coils were obtained by the position error-
based feedback controller. Required magnetic force could be
generated within the workspace. The micro-particle could then
be manipulated to track the provided trajectory automatically.
Figures 4B-D illustrates the captured images for manipulation
process, in 5s, 25s, and 40s, separately. Trajectory tracking
error was performed as in Figure4E. The maximum error
did not exceed 20 pm, which indicates that the whole system
demonstrated good control effect.

CONCLUSION

In this paper, a new quadrupole electromagnetic actuated system
has been presented to generate a gradient magnetic field for
manipulating micro-particles. The overall structure of the system
was constructed. The magnetic field distribution was simulated
with COMSOL. Furthermore, parameters of the electromagnetic
coils were optimized for enhancing the magnetic flux density

within the workspace. The magnetic field map of the workspace
was constructed via spherical search method and inverse distance
weighting algorithm. Experiments were conducted with the
map-based manipulation system. The proposed work provides
theoretical references and numerical fundamental for the control
of magnetic particle. Future work could focus on the precise
control method (Zhong and Xu, 2021; Zhong et al., 2021)
for micro-particle manipulation within this electromagnetic
actuated system.
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