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With the increasing demand for the dexterity of robotic operation, dexterous manipulation

of multi-fingered robotic hands with reinforcement learning is an interesting subject

in the field of robotics research. Our purpose is to present a comprehensive review

of the techniques for dexterous manipulation with multi-fingered robotic hands, such

as the model-based approach without learning in early years, and the latest research

and methodologies focused on the method based on reinforcement learning and its

variations. This work attempts to summarize the evolution and the state of the art in

this field and provide a summary of the current challenges and future directions in a way

that allows future researchers to understand this field.

Keywords: dexterous manipulation, multi-fingered robotic hand, reinforcement learning, learn from

demonstration, sim2real

INTRODUCTION

Robotics has been a topic of interest for researchers for decades, and dexterous manipulation is
one of the hottest these days. Although some simple tasks in the industrial environment have been
solved, we also wish the robot can help us in some unstructured environments such as the domestic
environment (e.g., helping blind people with daily routines) and some dangerous environments
(e.g., nuclear decommissioning). Hence, the ability to operate with the dexterity of the robot is
necessary. There are several definitions of dexterous manipulation problem, among which the
one proposed by Bicchi (2000) is thorough and widely accepted: dexterous manipulation is the
capability of changing the position and orientation of themanipulated object from a given reference
configuration to a different one, arbitrarily chosen within the hand workspace.

In a structured environment where the shape of the objects is unaltered, the simple gripper is
sufficient for simple tasks such as the pick-and-place task, and the gripper has more advantages in
these tasks on account of its low price, easy control, and strong robustness. However, the dexterity
of parallel claws is limited and they are not adapted to various objects and tasks. One solution is
designing specific end-effectors for different objects and tasks. In a structured environment, this
method is effective, but when facing a complex unstructured environment where one robot needs
to deal with a lot of tasks and one robot needs to carry different end-effectors for different tasks,
it is unpractical. Also, someone people argued that a dexterous arm with a simple gripper may
be sufficient (Ma and Dollar, 2011). They pointed out that in some cases where the hand is for
simple grasping and the arm is for manipulation, a dexterous arm with a simple gripper is sufficient
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and appropriate for many manipulation tasks. However, for
some complex tasks such as in-hand manipulation, a simple
gripper is not sufficient and a multi-fingered dexterous hand
is, therefore, necessary. Figure 1 shows the typical tasks of
dexterous manipulation with multi-fingered robotic hands
including pouring (Qin et al., 2021), dexterous grasping (Li
et al., 2014), object relocation (Rajeswaran et al., 2018), and
so on, which are difficult or impossible to be accomplished by
simple manipulators.

A dexterous hand can greatly improve dexterity and increase
the workspace of the system. Additionally, the application of the
dexterous hand can reduce the energy required for the task due
to the lower feedback gains required as opposed to a full arm.

FIGURE 1 | Typical tasks of dexterous manipulation with a multi-fingered hand. (A) Relocation, (B) Reorientation & Relocation, (C) Tool use, (D) Door opening, (E)

Valve turning, (F) In-hand manipulation, (G) Screwing, (H) Dexterous manipulation, and (I) Pouring.

When mentioning a dexterous manipulator, the first thing
that comes to mind is the human hand. Even some philosophers
deem that it is the dexterity of the human hand that leads
to human intelligence. Therefore, it is no surprise that most
robot hands designed for dexterous manipulation are similar to
the human hand in both shape and structure. The past several
decades have seen the emergence of many dexterous multi-
fingered hands. In 1984, the Center for Engineering Design at
the University of Utah, and the Artificial Intelligence Laboratory
at the Massachusetts Institute of Technology designed the
UTAH/MIT hand with three fingers and a thumb aiming at
machine dexterity (Jacobsen et al., 1986), and later HIT developed
the DLR/HIT Hand II (Liu et al., 2008). Also, there are some
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TABLE 1 | Typical dexterous hands.

Name TriFinger

(Wüthrich et al.,

2021)

Dclaw (Zhu H.

et al., 2018)

Utah/MIT

(Jacobsen et al.,

1986)

Allegro (Allegro

hand)

Shadow (Shadow

Hand, 2005)

DLR/HIT II (Liu

et al., 2008)

Picture

Fingers 3 3 4 4 5 5

DoF 9 9 16 16 24 15

commercial products such as the Shadow Hand (2005) and
SimLab (Allegro hand). Apart from the dexterous humanoid
robotic hands, some simpler robotic manipulators with fewer
fingers and a lower dimension of freedom (DoF) are also designed
for better robustness and lower price (Zhu H. et al., 2018;
Wüthrich et al., 2021). Some common multi-fingered robotic
hands and some important parameters are shown in Table 1.
However, up to now, the dexterity of the human hand is still
unparalleled and it is scarcely possible to emulate the level of
its functionality.

The current applications of robotic hands in the factories still
use traditional engineering and analysis techniques. Typically,
some robots with simple end-effectors are widely used in the
manufacturing industry for packaging and palletizing. Similarly,
agricultural robotic hands with several end-effectors and painting
robotics are good examples for the application of robotic
hands in the structured industry environment. Although the
dexterous manipulation problem has been studied extensively,
the application of the learning-base methods in this review
still remain at the laboratory level, which is not sufficient for
unstructured environment such as businesses and homes.

Although the mechanical design of smart manipulators has
improved greatly, the actual dexterity of the robotic hands is
far inferior to that of the human hand. On the one hand, lots
of sensors and actuators of the human hand makes it almost
impossible to design a robotic hand which is similar to the
human hand (Billard, 2019), and on the other hand, the control
of the robotic hand to realize dexterous manipulation is still an
urgent problem to solve. Before 2000, the approach was based
on the kinematics and dynamics of manipulating an object with
the fingertips dominating the area. This approach requires the
complete information of the manipulator kinematics, dynamics,
interaction forces, high-fidelity tactile, and/or joint position
sensors available on-board the robot. However, the accurate
model of the environment and the object is not or partly available
in the real world. Moreover, even though the information
is available, the algorithm must change as the object or the
manipulator changes. Hence, in the real world, the model-based
approach has certain limitations.

Recently, the power of artificial intelligence has attracted
the attention of many researchers. Deep learning has even
reached a level that exceeds that of humans in certain fields,

such as computer vision, so the robot can extract generalized
features autonomously (LeCun et al., 2015; Duan et al., 2021;
Wei et al., 2021, 2022; Li et al., 2022). Deep learning is
better at classification and prediction problems and so on. But
the application of deep learning is still short of the entire
system model. In contrast, reinforcement learning (RL) is
more suitable for dealing with the sequential decision problem.
Therefore, the combination of deep learning and reinforcement
learning called deep reinforcement learning is proposed to realize
more complicated problems involving perception and decision
making. Dexterous manipulation is a typical decision-making
problem, so deep reinforcement learning, as it were, dominated
the area in recent years. However, the application of deep
reinforcement learning to dexterous manipulation has some
disadvantages. First, the sparse reward makes the training hard,
and for complex tasks, it is time-consuming and the requirement
of computing power is high. Furthermore, deep reinforcement
learning requires many samples obtained by trial and error,
which are nearly unavailable in a robotic system. To solve this
problem, besides the improvement of the RL algorithm, usually
two solutions are considered: learning from demonstration and
transferring the policy learned in simulation to reality. These two
approaches will greatly enhance the efficiency of the algorithm.

There are already several works reviewing the robot
manipulation domain (Billard, 2019; Cui and Trinkle, 2021),
reinforcement learning for the robot (Hua et al., 2021; Zhang
and Mo, 2021), and dexterous manipulation only (Prattichizzo
et al., 2020). However, as far as we know, a survey focusing on
dexterous manipulation with multi-fingered robotic hands with
reinforcement learning has never been presented before. Here,
we present a review of this domain including the method based
on dynamic analysis in the earlier years and the reinforcement
learning-based method in recent years. Although the method
based on reinforcement learning is the core of this paper, we think
the method based on dynamic analysis is necessary for readers to
understand the dexterous manipulation problem.

The main contribution of this paper is presenting a state-of-
the-art review focused on the dexterous manipulation problem
of multi-fingered robotic hands with reinforcement learning.
The paper first reviews the model-based approach without
learning including the basic modeling, planning, and control.
Further, the methods based on deep reinforcement learning,
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FIGURE 2 | Overall presentation of this work.

FIGURE 3 | Method based on an accurate model of multi-fingered hand and object.

reinforcement learning from demonstration, and transfer
learning from simulation to reality are summarized and analyzed
thoroughly. Finally, challenges and future research directions
are proposed. The main topics discussed in this article are
shown in Figure 2.

The rest of this article is organized as follows. After this
introductory section, in Section Dexterous Manipulation
for Multi-Fingered Robotic Hand Based on Modeling,

Planning, and Control, we introduce the basic theory of
dexterous manipulation including the model of the multi-
fingered robotic hands and the object and the model-based

approach for dexterous manipulation. Section Dexterous
Manipulation for Multi-Fingered Robotic Hands With
Reinforcement Learning focuses on the dexterous manipulation
with reinforcement learning, including the application of
reinforcement learning, the combination of reinforcement
learning, and learning from demonstration and deploying the
learned policy in simulation to the real world. At the same
time, we also discuss the characteristics of the approaches
mentioned in this paper. Section Challenges and Future
Research Directions describes the current limiting factors in
manipulation and look forward to the further development of
dexterous manipulation.

DEXTEROUS MANIPULATION FOR
MULTI-FINGERED ROBOTIC HAND BASED
ON MODELING, PLANNING, AND
CONTROL

The dexterous problem can be described as determining the
contact points and the forces/torques that should be exerted
upon the object and planning a trajectory to control the end-
effector to accomplish a specific task. In this section, we will
introduce the basic theories of dexterous manipulation including
the models of contacts, positions, forces, and velocities; motion
planning and the control framework for dexterous manipulation.
The progress of the model-based approach including modeling,
dexterous motion planning, and control are depicted in Figure 3.

Modeling of Multi-Fingered Robotic Hands
and Objects
Usually, an object-centered point of view is adopted for
describing the dexterous manipulation problem. The
formulations are in terms of the object to be manipulated,
how it should behave, and what forces should be exerted upon
it. Therefore, the relationship of the desired forces/torques on
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the object and the required contact forces and the relationship
of the required contact forces and the joint torques is required.
Typically, the model of contact between the object and the
fingertip can be seen as point-contact and the model of the
robotic hand can be seen as a set of kinematic chains consisting
of links connected by joints. The most popular method for
formulating the forward kinematics of robots is the D-Hmethod.
Specifically, four D-H parameters are used for the transformation
between two co-ordinate systems. More details about the D-H
convention and the point-contact model can be seen in (Spong
et al., 2006) and (Okamura et al., 2000), respectively.

In addition to maintaining the contacts during the
manipulation process, rolling and sliding may sometimes
occur during manipulation. Although sliding in some tasks is
not allowed, the sliding mode is necessary when exploring an
unknown object or changing the pose of a grasp to maintain
control of the object. More details about rolling and sliding
can be seen in Montana (1988) and Kao and Cutkosky (1992),
respectively. However, sliding is rarely considered in the early
years due to lack of reliable tactile sensors to keep track of the
contact locations on the fingertips and indicate the onset of slip.

Dexterous Motion Planning of
Multi-Fingered Robotic Hand
Typically, the dexterous manipulation problem can be
divided into two parts, namely initial grasp planning and
trajectory optimization which will be discussed, respectively, in
this subsection.

Grasp Planning of Multi-Fingered Robotic Hands
To deal with dexterous manipulation, the first thing to be
considered is stable grasping. Grasping generally consists of two
phases: a planning phase and a holding phase. In the planning
phase, the finger contact point locations are decided and the
object is grasped stably in the holding space. Two important
problems are considered for the two phases accordingly:
the selection of feasible locations of contact and optimal
contact forces.

Selection of Feasible Locations of Contact
Two important concepts describing the stability of a given
grasp are force-closure and form-closure. We refer the readers
to Bicchi (1995) for more details about force-closure and
form-closure. However, force-closure is only the bottom-most
condition to satisfy and not enough for a stable and desired
grasp. Furthermore, in a specific task, there would be many
configurations that achieve force-closure, so the problem that
which one should be adopted is very important. Being on the
safer side, an intuitive measurement is to apply less force on
the object, resulting in a better grasp effect. The first one who
proposed this idea was Kirkpatrick et al. (1992), and Ferrari
and Canny (1992) improved it later. Similarly, for different
consideration factors, a few metrics were proposed, such as task-
oriented metrics (Hsu et al., 1988), eigenvalue decomposition-
based metric (Bruyninckx et al., 1998), and metrics considering
different issues (Lin and Burdick, 1999; Lin et al., 2000; Roa
and Suárez, 2009). However, getting optimal contact locations

through appropriate metrics and optimization methods is
difficult due to that the quality measure is typically a non-convex
(and non-linear) function. Besides the optimization approach,
some researchers used a knowledge-based approach (Cutkosky,
1989; Stansfield, 1991) to get a suitable grasp.

Selection of Optimal Contact Forces
To generate a great grasp, we should plan not only the locations
of the contact points but also the force exerted to the object on
the contact. In early works, the friction constraint was linearized
and the coefficient of friction was estimated conservatively to
avoid instability and considering the problem as a non-linear
programming problem (Nakamura et al., 1989; Nahon and
Angeles, 1991; Al-Gallaf and Warwick, 1995). However, such
methods are offline, and considering the problem in a non-linear
context was also proposed for online implementation (Buss et al.,
1996). These computed forces are then used in the low-level
force servo mechanism to produce a desired force behavior in
the object.

Trajectory Optimization for Dexterous Manipulation

With a Multi-Fingered Robotic Hand
For relatively simple tasks, the contact points remain the same
during the manipulation, so after getting the desired grasp
configuration and contact forces, the task can be achieved by
controlling the robot arm. However, for more complex tasks such
as in-hand manipulation, one grasp is not sufficient. Therefore, a
trajectory of grasps which links the initial grasp and the desired
grasp is required.

The methods proposed in the dexterous manipulation
problem are typically derived from the legged locomotion
problem. However, the methods used in the legged locomotion
are not suitable for hand movement control due to the high
dimensions of the search space. A representative work proposed
by Mordatch et al. (2012a) is an extension of contact-invariant
optimization (CIO) (Mordatch et al., 2012b) which was used
for character animation originally. However, the CIO is an
offline method and time-consuming. In practice, online planning
(or Model-Predictive Control) is more desirable (Kumar et al.,
2014), where a trajectory of the control signal is optimized
and the joint space trajectories are obtained through inverse
kinematic (IK). For solving (Sundaralingam and Hermans,
2017) the in-grasp manipulation problem more directly, get
a joint space trajectory without the process of IK. However,
this approach requires maintaining the contacts, which is only
a part of the whole dexterous manipulation process. With
this in mind, Sundaralingam and Hermans (2018) presented a
planner for reorientation of the object through finger gaiting
and in-grasp manipulation alternately. Similarly, Chen C. et al.
(2021a) proposed TrajectoTree, a method based on contact-
implicit trajectory optimization (CITO). Unlike the optimization
method, the concept of motion primitives is also accepted widely
(Chen C. et al., 2021b; Yoneda et al., 2021). The phase of
motion planning is the core of dexterous manipulation. However,
only under certain assumptions can these approaches work,
such as assuming that the shape and mass of the object are
known and the contacts remain during the manipulation process
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(Sundaralingam and Hermans, 2017). Also, some approaches
can only be applied to planar objects (Chen C. et al., 2021a).
At the same time, most of these methods are only tested in
simulation. From what has been discussed above, the approaches
based on trajectory optimization have many limitations for
achieving dexterous manipulation with multi-fingered robotic
hands in the real world.

The Control of Multi-Fingered Robotic
Hand for Dexterous Manipulation
The control of multi-fingered robotic hands for dexterous
manipulation can typically be divided into three levels. The
high-level control includes grasp planning and motion planning
which have been discussed thoroughly. The middle-level control,
which is relatively unpopular compared to the other two levels,
includes event detections and phases transitions. Hence, only a
few researchers focus on this problem (Johansson and Westling,
1991; Eberman and Salisbury, 1994; Hyde et al., 1997; Hyde and
Cutkosky, 1998).

The low-level control is a primary part of the dexterous
manipulation problem and has received a lot of attention.
Trajectory tracking in free space and precise force control in
constrained space should be both taken into consideration.
During tracking in free space, position control is enough because
the robot hand does notmake contact with the object at this stage.
During the contact stage, position control and force control are
both important for precise force. Taking both position control
and force control into account, several control algorithms were
put forward such as simple hybrid position/force control which
is widely used (Raibert and Craig, 1981; Xiao et al., 2000),
impedance control (Hogan, 1984), and the combination of hybrid
position/force control and impedance control (Anderson and
Spong, 1988). The impedance control can solve the problem
of discontinuity by the change of the control mode, so it has
attracted much attention of researchers (Goldenberg, 1988; Kelly
and Carelli, 1988; Kelly et al., 1989). The combination can
furthermore be considered as the distinction between force-
controlled subspaces and position-controlled subspaces.

DEXTEROUS MANIPULATION FOR
MULTI-FINGERED ROBOTIC HANDS WITH
REINFORCEMENT LEARNING

Given that the complete model of the objects and robotic
hand is difficult to obtain in an unstructured environment
and programming robots require a high degree of expertise,
the methods mentioned above are not sufficient for a more
complicated environment and tasks. The development of
machine learning, especially reinforcement learning, provides
new solutions to the problem of dexterous manipulation with
multi-fingered robotic hands. The whole progress of solving
dexterous manipulation with reinforcement learning is shown in
Figure 4. In this section, we will discuss dexterous manipulation
with reinforcement learning and its variations.

Reinforcement Learning
The reinforcement learning problem is a kind of machine
learning algorithm which learns mapping environment state to
action and obtaining the maximum cumulative reward in the
process of interaction with the environment. Q-learning is a
traditional solution to the problem, however, it is not sufficient
for more complicated problems today due to the high cost of
solving the q-valued function with lots of states and actions.
The combination of deep learning and reinforcement learning
called deep reinforcement learning (DRL) was proposed for more
complicated problems and it dominates the area now.

The method can be divided into the model-based method and
model-free method, the difference between the two is whether a
predictive model is used. The earliest model-based algorithm is
Dyna (Sutton, 1990), where the model is learned by data from
the real world and both the data from the real world and the
learned model are used in the training process. There are some
other model-based algorithms such as PILCO (Deisenroth and
Rasmussen, 2011), M-PGPE (Mori et al., 2013), PEGASUS (Ng
and Jordan, 2013), GPS (Levine and Abbeel, 2014), VPN (Oh
et al., 2017), MVE (Feinberg et al., 2018), STEVE (Buckman
et al., 2019), and MBPO (Janner et al., 2019). On the contrary,
in the model-free method, the agent learns the strategy directly
by interacting with the environment. The comparison between
the model-based method and model-free method can be seen
in Table 2. According to the characteristic of the model-based
method and model-free method, the selection between the
model-basedmethod andmodel-freemethod is a crucial problem
and should be taken into account.

Reinforcement learning also can be divided into three types
according to the variables iterated in the learning process: value-
based method, policy-based method, and actor-critic method.
In the value-based method, the value function is learned and
the policy is determined by a greedy strategy or a strategy.
Deep Q-learning (DQN) (Mnih et al., 2015) and its variations
(van Hasselt et al., 2015; Schaul et al., 2016; Wang et al.,
2016) are typical model-free value-based method. Although
DQN and its variants have achieved excellent performance in
discrete action space problems such as video games, and even
defeated human players by overwhelming advantage in some
games, they cannot cope with the continuous action space
problems that exist in many actual production and life such as
dexterous manipulation.

Different from the value-based approach, the policy is
straightly optimized in policy-based algorithms. REINFORCE
(Williams, 1992) is a monumental algorithm which provides the
state transition model-independent algorithm theoretically and
becomes the starting point of many algorithm improvements.
It plays a pioneering role in the algorithm system of policy
gradient series represented by TRPO (Schulman et al., 2015)
and PPO (Schulman et al., 2017). However, although TRPO
and PPO algorithms have excellent hyperparameter performance
and have gained attention in academic research as typical
on-policy algorithms, many samples under the current policy
need to be sampled for training and to ensure algorithm
convergence each time the policy is updated. Therefore, the
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FIGURE 4 | Dexterous manipulation with a multi-fingered hand through reinforcement learning (part of this picture comes from [89]).

algorithms have low sampling efficiency and need a large amount
of computational force to support, which greatly limits the
popularization of the algorithms in the application field. A survey
of the classification and corresponding comparison between the
advantages and disadvantages of RLmethods is shown inTable 2.
Furthermore, a more detailed comparison between typical value-
based algorithms and policy-based algorithms can be seen in
Table 3.

As we listed in Table 2, an important problem of the policy-
based method is high variance and the combination of the value-
based method and a policy-based method called the actor-critic
method can solve this problem to some extent. The state-of-the-
art algorithms at present are all under the actor-critic framework.
The typical RL algorithms under the actor-critic framework are
summarized in Table 4.

The actor-critic algorithm is mostly off-policy and can solve
the problem of sampling efficiency through experience replay.
However, the coupling of the policy update and value evaluation
results in the lack of stability of the algorithm, especially the
sensitivity to hyperparameters. In the actor-critic algorithm, it
is very difficult to adjust parameters, and the algorithm is also
difficult to reproduce. When it is promoted to the application
field, the robustness of the algorithm is also one of the most

TABLE 2 | Classification and corresponding advantages and disadvantages of the

RL methods.

Classification Advantages Disadvantages

Value-based RL 1. Easy to implement

2. High sample

utilization

1. Poor performance in

tasks of discontinuous

and large state space

2. High bias

Policy-based RL 1. Easier to converge

2. More directly

1. Easy to converge to local

optimum

2. High variance

Model-based RL 1. More data efficient

2. Faster convergence

1. Model accuracy has a

big impact on learning

tasks

Model-free RL 1. Easier to implement

2. No need of prior

knowledge

1. Demanding much data

3. High risk of damage

concerning core issues. Commonly, the data of reinforcement
learning are often incomplete, so we refer the readers to the
following literature (Shang et al., 2019; Luo et al., 2020; Wu D.
et al., 2020; Wu et al., 2020; Liu et al., 2021) for more details.
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TABLE 3 | Comparison between typical value-based algorithms and policy-based algorithms.

Algorithm Main characteristic Value-based/

policy-based

Limitations

DQN (Mnih et al., 2015) Approximating the optimal Q-value function with a deep

convolutional neural network. Target-network and Experience

replay

Value-based

Only capable of handling discrete

and low-dimensional action

spaces

Double DQN (van Hasselt et al., 2015) Two networks are used for dealing with the overestimation

problem of DQN

Value-based

DQN with prioritized experience

replay (Schaul et al., 2016)

Experience replay with priority is used to increase the learning

utilization rate of samples and increase exploration

Value-based

Dueling DQN (Wang et al., 2016) V(s)+A(s, a) is used to replace Q(s, a) to alleviate the

overestimation problem of DQN

Value-based

REINFORCE (Williams, 1992) The starting point of policy gradient algorithms Policy-based
Low efficiency and high

variance
TRPO (Schulman et al., 2015) Finding the right step size to stably improve the policy Policy-based

PPO (Schulman et al., 2017) An advanced version of TRPO which is easier to implement Policy-based

TABLE 4 | Summary of typical algorithms under the actor-critic framework.

Method Main characteristic Off-policy/

On-policy

A3C (Mnih et al.,

2016)

Adopting asynchronous training

framework

On-policy

DDPG (Lillicrap

et al., 2015)

Able to deal with continuous space of

action issues

Off-policy

TD3 (Fujimoto

et al., 2018)

An advanced version of DDPG solving

the problem of overestimation in

actor-critic and addressing variance

Off-policy

SAC (Haarnoja

et al., 2018)

Adopting Maximum Entropy Model to

improve the robustness of the algorithm

and speed up training

Off-policy

Dexterous Manipulation With
Multi-Fingered Robotic Hands Using RL
From Scratch
The success in various complex tasks such as reorienting
an object (Open et al., 2019), tool use (Rajeswaran et al.,
2018), and playing the piano (Xu et al., 2021) has shown the
power of reinforcement learning for dexterous manipulation.
For dealing with the dexterous manipulation problem under
the framework of RL, the problem is usually modeled as
a Markov decision process (MDP), where the states can
be the combination of internal states and external states,
and the action is typically the motor commands. In a
simulation, the states are available, however the needed
elements for states cannot be obtained directly. Under that
condition, visual sensors and tactile sensors are usually used
for inferring the state or using the raw sensor data as the
state (Katyal et al., 2016). The easiest way to think of is to
train the agent from scratch. The basic process of learning
dexterous manipulation by RL from scratch is depicted in
Figure 5.

Although learning-based methods are appealing to roboticists
for dealing with the dexterous manipulation problem, the need
for large amounts of data has always been a major obstacle to
the development of robotics. Hence, most researchers focused on

enhancing the sample efficiency but from various angles. Some
of the researchers focus on the algorithm itself and test only
in simulation (Popov et al., 2017; Haarnoja et al., 2019; Omer
et al., 2021). Popov et al. (2017) decouples the update from the
frequency of interaction and trades off between the exploration

and the exploitation by defining certain starting states and
shaping reward effortfully. Haarnoja et al. (2019) improved the

SAC for accelerating training and improving stability. Omer
et al. (2021) present MPC-SAC combining the Model-Predictive

Control (MPC) which is an offline learning method with online
planning, which can be seen as a model-based RL method.
Similarly, model-based methods are also adopted in (Kumar

et al., 2016; Nagabandi et al., 2020). Different approximators such
as time-varying linear-Gaussian (Kumar et al., 2016) and deep
neural network (Nagabandi et al., 2020) are used, respectively.

Moreover, the combination of local trajectory optimization and

RL is also attractive (Lowrey et al., 2019; Charlesworth and
Montana, 2021). Fakoor et al. (2020) centered around the
instability problem in RL and reduced the complexity in the
famous state-of-the-art RL algorithms. Some researchers also pay

attention to the problem of sparse reward which is a common
hindrance in RL causing sample inefficiency. To this end, HER
is a widely used algorithm which learns from failures and can
be combined with any RL algorithm. Li S. et al. (2019) just

incorporate HER in the hierarchical RL framework to achieve the
complex Rubik’s cube task. The introduction of HER in RL can

also be seen in (He et al., 2020; Huang et al., 2021).
Besides the problem of sample inefficiency, generalization is

another major obstacle yet to be bordered. As a rule, multi-task
RL is a popular concept to the researchers in autonomous
robots (Hausman et al., 2018; He and Ciocarlie, 2021; Huang
et al., 2021). Considering the inefficient exploration caused by
the high DoF of the dexterous robotic hand, which means
the high dimension of action space, He and Ciocarlie (2021)
proposed a lower-dimensional synergy space and multi-task
policy. In contrast to exploring in the raw action space with
high dimension, exploring in the synergy space can improve the
efficiency in exploring new environments or learning new tasks.
Similarly, Hausman et al. (2018) presented embedding space
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FIGURE 5 | Basic process of learning dexterous manipulation by RL from scratch (part of this picture comes from Open et al., 2019).

to the same end. What is different is that Huang et al. (2021)
focused on one task on various objects other than different tasks.
With the help of a well-designed object representation and multi-
task framework, the manipulation of 70 different objects can be
realized by one policy model achieving similar or better results
than single-task oracles. The success of this work is a big step
toward making robotic hands intelligent.

The previously mentioned works were only tested in a
simulation where data were easy to get, however, a great
performance in simulation cannot guarantee the performance.
Furthermore, the elements required for representing the state
are not available in the real world, so sensors are necessary
for representing the state. As a rule, the visual sensor is the
main consideration. For instance, Haarnoja et al. (2019) adopted
the raw image as a representation of the state. Experiences
implicate that the introduction of tactile information can
effectively improve the sample efficiency for training and the
performance in dexterous manipulation tasks (Melnik et al.,
2019). van Hoof et al. (2015) used the tactile sensor data
and introduced the non-parametric relative entropy policy
(NPREPS), which is well-suited to the sensor data. Falco et al.
(2018) used the visual sensor and tactile sensor together. The
visual sensor is used for representing the state in the RL
process and the tactile sensor acts as feedback in a low-level
reactive control aiming at avoiding slipping. Also, training on
a real robotic hand usually costs time and requires human
intervention. To alleviate the problem, Gupta et al. (2021)
proposed a reset-free reinforcement learning algorithm. They
pointed out that the learning of multi-task and sequencing
them appropriately can solve the problem naturally. The
algorithm achieved great performance both in simulation and the
real world.

All the details of the above works are listed in Table 5,
including the specific method, the environment (e.g., simulation
or real world or from simulation to real world), the manipulator,
sensors utilized, and the tasks.

Dexterous Manipulation With
Multi-Fingered Robotic Hands Using
Reinforcement Learning From
Demonstration
Apart from improvement on the RL algorithm, some researchers
were inspired by the way learners paid attention to learning

from demonstrations, which is also called imitation learning.
An intuitive idea is following the expert demonstrations in
a supervised way, namely behavior cloning. However, the
policy depends on the expert data too much in this way.
Another common method in imitation learning is inverse
reinforcement learning where the reward function is learned.
The introduction of demonstration data in reinforcement
learning is an effective approach for enhancing the sample
efficiency and the generalization performance in behavior
cloning only.

The sources of demonstrations can be kinesthetic teaching,
teleoperation (Zahlner S. et al., (n.d.); Handa et al., 2019;
Li T. et al., 2019; Li et al., 2020), raw video, and so
on. The problem of learning from demonstration has been
studied a lot in recent years and a comprehensive survey
can be seen in Ramírez et al. (2021). Ramírez et al. (2021)
divided the use of the demonstrations into two types of
knowledge: prior knowledge and online knowledge. In the
case of the former, the demonstration data were stored before
the RL process and acted as source of knowledge such as
being added to the reward function for bringing the policy
closer to the demonstration. In the case of the latter, the
demonstrations are used occasionally to provide a trajectory. The
process of the two types of combination can are depicted in
Figure 6.

Here we follow the same sort of classification and go further
into the application in dexterous manipulation with multi-
fingered robotic hands. In the first class, the demonstrations
can be utilized in various ways. For instance, a kinesthetic
demonstration is adopted as the desired position trajectory
as prior knowledge to get an initial force profile and then
optimized through RL (Kalakrishnan et al., 2011). Prieur
et al. (2012) decomposed the whole dexterous manipulation
problem into a sequence of canonical-grasp-type identified
in the humans. Although the introduction of human
motion helps the problem, the motion of the robot is
limited to these grasp types. Conversely, an “object-centric”
demonstration which only demonstrated the motion of the
object was adopted due to the special end-effector used in
the work of Gupta et al. (2016). Also, the demonstrations
can be used to per-train an initial policy (Rajeswaran et al.,
2018; Alakuijala et al., 2021). For further improving the
sample efficiency, Alakuijala et al. (2021) adopted residual
reinforcement learning.
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TABLE 5 | Overview of the dexterous manipulation solved by RL from scratch.

References Method Manipulator Sensors Environment Tasks

Popov et al. (2017) Improved DDPG Jaco arm - Simulation only Lego assembly

Fakoor et al. (2020) DDPG++ ADROIT hand - Simulation only Door opening

He and Ciocarlie (2021) DisoSyn (based on

PPO)

Shadow hand - Simulation only Multi-tasks

Huang et al. (2021) DDPG+HER+Multi-

task

learning

Shadow hand - Simulation only In-hand rotation

Katyal et al. (2016) DQN Modular Prosthetic

Limb (MPL)

- Simulation only In-hand manipulation

Li S. et al. (2019) DDPG+HER Shadow hand - Simulation only Solving a 2*2*2 Rubik’s

Cube

Omer et al. (2021) MPC-SAC Dclaw and Shadow

hand

- Simulation only Valve-turning and

manipulating a cube

He et al., 2020
Soft HER Shadow hand - Simulation only Hand manipulate block and

others

Xu et al. (2021) SAC Allegro hand tactile sensors Simulation only Playing piano

Kumar et al. (2016) RL with linear-Gaussian

controllers

(model-based RL)

Adroit platform pressure sensors

and piston length

sensors

Simulation and

real robot

Hand positioning and object

manipulation

van Hoof et al. (2015) NPREPS (van Hoof

et al., 2015)

An under-actuated

compliant robot hand

Tactile sensor Real world Rolling an object between

fingertips

Nagabandi et al. (2020) PDDM (model-based

RL)

Shadow hand Camera tracker Real world Baoding balls

Haarnoja et al. (2019) SAC Dclaw Visual sensor Real world Valve rotation

Zhu H. et al. (2018) TNPG Dclaw and Allegro

Hand

- Real world Valve Rotation and Door

opening

Gupta et al. (2021) MTRF D’Hand - Real world Pipe insertion and In-hand

manipulation

FIGURE 6 | Two types of combination of RL and demonstration.

The demonstration data also can be stored to provide
an auxiliary part in the reward function. Considering the
state-action pairs trajectories are not available all the time,
Radosavovic et al. (2020) proposed State-Only Imitation
Learning (SOIL) where an inverse model is also learned to

infer the action for the demonstrated state. An important
work combining reinforcement learning and imitation learning
is generative adversarial imitation learning (GAIL), which is
used widely in the domain of dexterous manipulation (Zhu
Y. et al., 2018) DexMV (Qin et al., 2021). Orbik et al.
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(2021) adopted the inverse reinforcement learning method
and improved the original algorithm to the problem that the
learned rewards are strongly inclined to the demonstrated
actions using statistical tools for random sample generation and
reward normalization.

In the second class, the demonstrations are usually stored

in the replay buffer and act as online knowledge to provide
guidance. Jeong et al. (2021) used a set of waypoints (pose)
tracking controllers as a suboptimal expert. The demonstration
data were used in the exploration process occasionally by
intertwining with the online interaction data. And, the
combination of the exploration strategy and the Relative Entropy

Q-Learning (REQ) algorithm called REQfSE outperformed the
DDPG from demonstrations (DDPGfD) (Vecerik et al., 2018)
and MPOfD (Jeong et al., 2019) on several tasks, such as single-

arm stacking in the simulation environment. Garcia-Hernando
et al. (2020) used the imperfect estimated hand pose as a
demonstration. The action was combined between the hand
pose estimation from inverse kinematics (IK) and the output
of the residual policy network for imitating the hand pose in

the real world more accurately. Because of its sheer volume and
availability, a raw video is an appealing form of demonstration
data. DexMV (Qin et al., 2021) just adopted this idea. They
estimated the hand-object pose from raw video and used the
estimation as demonstration data to learn robust policy with
imitation learning. This work is a great beginning for further
research in dexterous manipulation or any other vision-based
research related to imitation learning.

According to the analysis previously, a summary of the works
in this section is listed in Table 6.

Dexterous Manipulation From Simulation
to Real Robotics
Benefiting from the parallel and powerful computations,
collecting data in simulators is easier and safer than that in
the real world. Therefore, learning in simulation and then
transferring the learned policy to a real robot is appealing
to researchers. However, the discrepancies between simulation
and real robot make the transformation challenging, which are
generally called “reality gaps” including dynamics differences
of engines, and so on. Transforming the policy directly to
the real world may cause various consequences, the lesser of
which is a decline in success and the more serious of which
is the instability of the system that may destroy the robotic
hands or the environment. Hence, closing the reality gap is
the main issue when mentioning the sim-to-real problem. For
narrowing the gap, some researchers focused on building higher
fidelity simulators such as MuJoCo (Todorov et al., 2012),
PyBullet (Coumans and Bai, 2016), and Gazebo (Koenig and
Howard, 2004). However, it is generally accepted that the
improvement of simulators will not bridge the gap completely.
The typical approaches for bridging the reality gap in the
domain of dexterous manipulation with multi-fingered robotic
hands with RL are depicted in Figure 7 and the application
of these approaches in this domain will be introduced in the
following part.

The sim-to-real problem is not unique to the field of
reinforcement learning or dexterous manipulation, but general
problem in machine learning. The main approaches widely
used for closing the reality gap are system identity, domain
randomization, and transfer learning including domain
adaptation and progressive networks. However, on account
of that the models of multi-fingered robotic hands and the
complex environment are impossible to be accurately built in
the simulators. The simplest system identity method is not
desirable and other approaches must be considered. Instead of
building an accurate model of the real world in system identity,
the main idea of domain randomization is to randomize the
simulation with disturbance. The elements can be randomized
and include many aspects which can be roughly divided into
parts visual randomization and dynamic randomization. For
instance, the randomization of lighting, textures of the object,
and the positions of the cameras belong to visual randomization,
and the randomization of surface friction coefficients, the contact
model, and the object mass belong to dynamics randomization.
Through exposure to various environments, the learner trained
in simulation can adapt to a wide range of environments. So
for the learner, the real world is just a disturbed environment.
More details of the sim-to-real problem can be seen in Zhu et al.
(2021).

The idea of randomization is widely adopted in the sim-
to-real problem of dexterous manipulation (Allshire et al.,
2021). For instance, in the work of Zhu H. et al. (2018), only
visual randomizations were adopted for zero-shot transfer from
simulation to reality. Unlike learning policies robust to senses
with high variation mentioned before, Kumar et al. (2019)
focused on the variation of object appearance and geometry
such as object mass, friction coefficients between the fingers
and object, PD gains of the robot, and damping coefficients
of the robot joints. Visual sensing is used to abstract away
the uncertainties into a succinct set of geometric features and
tactile sensors are adopted to compensate for the inaccurate
approximation. After training in the simulation, a zero-shot
transfer is achieved on the real robot for a grasping task.
Similarly, the idea of randomization of friction, object mass, and
object scale was also adopted by Allshire et al. (2021), where the
training process was carried out in IsaacGym (Liang et al., 2018).
The notable work accomplished by OpenAI (Andrychowicz et al.,
2020) also adopted the approach of domain randomization to
transfer the policy learned in the MuJoCo simulator to a real
Shadow hand. Apart from visual randomizations and physics
randomizations, a lot of other randomizations were adopted.
Through extensive randomizations, the learned policy got a great
performance in the real robot system without any fine-tuning.
The success of this work demonstrates that the gap between the
simulation and reality can be narrowed to a usable level. Later,
they improved the algorithm to solve a more complicated task of
solving a Rubik’s cube (Open et al., 2019). The concept of domain
randomization was also considered, however, they improved it
for a better format, namely automatic domain randomization
(ADR). The main improvement compared to classic domain
randomization lies in the automatic change of the distribution
ranges leaving out tedious manual tunning. Furthermore, unlike
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TABLE 6 | Overview of the dexterous manipulation solved by RL with a demonstration.

References Method Manipulator Sensors Environment Form of

demonstration

Tasks

Qin et al. (2021) DexMV Adroit Hand - Simulation only Raw video Relocating, pouring

and placing inside

Zhu H. et al., 2018
DAPG Dclaw and Allegro

Hand

- Real robot kinesthetic

teaching

Valve Rotation, Valve

Rotation and Door

opening

Orbik et al. (2021) IRL Adroit Hand - Simulation only CyberGlove Object relocation, tool

use, in-hand

manipulation and door

opening

Rajeswaran et al.

(2018)

DAPG Adroit hand - Simulation only CyberGlove Object relocation, tool

use, in-hand

manipulation and door

opening

Gupta et al. (2016) Learning from

demonstrations

algorithm based

on the GPS

RBO Hand 2 Phase space

Impulse system

Real robot LED marker

tracking the

motion of the

object

demonstrated by

human

Turning a valve,

pushing beads on an

abacus, and grasping a

bottle from a table

Jeong et al. (2021) REQfSE Bimanual Shadow

Hand

- Simulation only Waypoint

controllers

LEGO stacking

Alakuijala et al. (2021) RRLfD Adroit Hand - Simulation only Script or a

previously trained

RL agent

Object relocation, tool

use, in-hand

manipulation and door

opening

Radosavovic et al.

(2020)

SOIL Adroit Hand - Simulation only virtual reality

headset and a

motion capture

glove

Object relocation, tool

use, in-hand

manipulation and door

opening

FIGURE 7 | Category of approaches for sim-to-real in this domain.

Frontiers in Neurorobotics | www.frontiersin.org 12 April 2022 | Volume 16 | Article 861825

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Yu and Wang Dexterous Manipulation for Multi-Fingered Robotic Hands

TABLE 7 | Overview of the dexterous manipulation from simulation to reality.

References RL Sim2Real Manipulator Simulator Sensor Task

Andrychowicz et al. (2020) PPO Domain

randomization

Shadow hand MuJoCo physics

engine (Todorov

et al., 2012)

3D tracking

system and RGB

cameras

Manipulating a

block

Open et al. (2019) PPO Automatic domain

randomization

Shadow hand MuJoCo physics

engine (Todorov

et al., 2012)

3D tracking

system and RGB

cameras

Solving a Rubik’s

cube

Zhu Y. et al. (2018) A method based

on

GAIL(IL)+PPO(RL)

Domain

randomization

Jaco arm MuJoCo physics

engine (Todorov

et al., 2012)

RGB cameras Block lifting and

stacking

Kumar et al. (2019) Contextual RL

(PPO)

Domain

randomization

Allegro hand - RGB cameras and

Tactile sensor

Grasping

Allshire et al. (2021) PPO Domain

randomization

TriFinger IsaacGym RGB cameras In-hand

manipulation

Rusu et al. (2017) A3C Progressive net Jaco arm MuJoCo physics

engine (Todorov

et al., 2012)

RGB cameras Reaching to a

visual target

Fernandes Veiga et al.

(2020)

Hierarchical

control (RL+

tactile feedback

control)

Hierarchical RL Allegro hands PyBullet Coumans

and Bai (2016)

simulation

environment

Tactile sensor In-hand

manipulation

fixed distribution ranges in classic domain randomization, the
distribution ranges are allowed to change in ADR instead.

The intuition of transfer learning is leveraging the data from
a source domain where the data are abundant and sufficient
to help learn a robust policy in the target domain with little
data. The progressive network proposed by Deepmind (Rusu
et al., 2016) is a unique structure of a neural network with
the ability to use the knowledge of the previous task for the
new task without catastrophic forgetting. Later, they adopted
this idea for robot manipulation (Rusu et al., 2017). Also,
some researchers focused on the RL algorithm itself such as
hierarchical decomposition RL (Fernandes Veiga et al., 2020)
to bridge the reality gap. Considering that the privileged
state information is not available in reality, researchers usually
used rendered pictures as observation (Open et al., 2019;
Andrychowicz et al., 2020). However, the accurate privileged
state information in a simulator can accelerate the training
process and get a better policy. An idea of teacher-student
training which transfers the better teacher policy to a student
policy that only uses sensory inputs was adopted in (Chen
et al., 2021) for accelerating the training process in real
world. A summary of the works in this section is listed in
Table 7.

CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

Although the methods mentioned in this paper already solved
part of the dexterous manipulation problems, we are still a long
way from making the robotic hands as dexterous as human
hands. And the complexity of the multi-fingered robotic hand
system, such as uncertain models, dimensional disaster has
restricted the development of RL in dexterous manipulation with

multi-fingered robotic hand domain. In general, the challenges
the community is facing in this domain are as follows:

• Sample inefficiency: The demand of more data limits the tasks
which can be solved by RL from scratch to a narrow scope.

• Tradeoff between exploration and exploitation: Through
exploration, the robot can get more information about the
environment, but random behavior may not get rewards
in tasks with sparse rewards, which would not make the
algorithm converge. On the other hand, exploitation gives
more knowledge about the environment to make the best
decision, but the deficiency of information may lead to a
locally optimal solution. Therefore, two questions should be
answered: how to explore efficiently and effectively and when
to transition from exploration to exploitation.

• Choosing of suitable manipulator: High stiffness improves
precision but lacks flexibility and may damage the
environment, whereas low stiffness (i.e., soft robotic
fingers) improves robustness but suffers from inaccuracy.
Furthermore, there is a tradeoff between dexterity and
control simplicity.

• Reality gap: Despite the methods such as domain
randomization mitigating the gap to the extent of one-
shot transferring, the reality gap is also a problem that cannot
be ignored.

• High cost of time and resources: A long time is required
for obtaining a robust policy in terms of large-scale
experiments. Furthermore, the multi-fingered robotic hands
are so expensive and fragile that maintaining and repairing
these robotic hands costs much. The immense requirement
keeps such success at the laboratory level.

• Poor generalization ability: In general, the learned policy only
fits to the specific task and robot, generalizing the policy to
different robotic hands and tasks remains challenging.
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• Hardware limitations: The high demands on the sensors makes
it challenging to achieve the dexterity of a human hand.
Moreover, the rigid plastic and metal components of the
current robotic hands are the main reasons for the lack of
dexterity. Although a variety of commercial products are
available, their touch sensors are rigid and their placement is
limited to the fingertips and along the limb segments, which is
not desirable.

• Complex manipulation is still unavailable: Although some
simple tasks such as pick-and-place, throwing, sliding,
pivoting, and pushing can be done, some more complex tasks,
especially those that change the shape of objects (cutting,
crushing) are unavailable. A model of the deformation and
advanced perception to monitor the changes is required.

To meet the challenges and accelerate the process of robotic
hands intelligence, the future directions for researchers can be
summarized below:

� More advanced simulators: Although some great simulators
can be as fast as realistic or even faster in many cases, the
existing simulators have certain limitations for emulating
some elements of the environment. The more advanced the
simulators are, the better performance in transferring the
policy learned in simulation to reality. Furthermore, more
manipulation scenarios are more desirable.

� Fusion of sensors: For more accurate information about
the system, the visual sensing information used widely in
the previous works is not sufficient, so multimodal sensory
signals which include, but are not limited to, tactile and
temperature signals should be used to represent the state of
the system.

� Improvement of the algorithm: The rewards in the existing
algorithms are typically designed carefully and only simple
tasks such as reaching and pushing can be accomplished with
sparse rewards. For this problem, informed exploration may
be helpful. Furthermore, the adaptation to the variations of
both the robot variations and variations in the environment is
essential for working gracefully. Therefore, more sophisticated
methodologies must be found for dealing with these problems
and accelerating the training process.

� Semantic understanding: Learning to understand the
environment and the task and following the human order are
also vital skills for a robot to work with more intelligence. For
a given order from voice or other forms, a robot should know
what to do and how to do the task.

� Improvement of robotic hands: Although there have been
many robotic hands in this domain, the limited dexterity of the
simple end-effector and the fragility and characteristics that

are not conducive to controlling the complex dexterous multi-
fingered hands hinder the development of the domain. The
tradeoff of the dexterity and the complexity of control should
be balanced.

� Manipulation in media such as water or oil: The existing
successful examples of dexterous manipulation are all
in the air. However, for some special tasks, such as
underwater operation, the ability to manipulate in the water
is especially important.

� Deeper study in basic theoretical: Currently, the model of soft
point-contact and stability rules for both point contacts and
surface contacts, which are vital for modeling the system,
are not available. Although the model is not essential for
a learning-based approach, the emphasis on theory may be
conducive for a better simulator.

CONCLUSION

In this paper, we present a brief overview of the reinforcement
learning solutions for dexterous manipulation, focusing
mainly on reinforcement learning, reinforcement learning
from demonstration, and transfer learning from simulation to
reality. The application of reinforcement learning in dexterous
manipulation with the multi-fingered robotic hand is mostly
hampered by the high cost of collecting sufficient data for a great
policy. At present, the common and effective ways for mitigating
data inefficiency issues are learning from demonstration and
transferring the learned policy in simulation to the real world.
However, compared with the tasks that humans can handle
easily, what the multi-fingered robotic hands can do is still
very limited. Despite this, we believe that the reinforcement
learning-based solution can do a lot as the research goes further.
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