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Experience replay is widely used in AI to bootstrap reinforcement learning (RL) by

enabling an agent to remember and reuse past experiences. Classical techniques

include shuffled-, reversed-ordered- and prioritized-memory buffers, which have different

properties and advantages depending on the nature of the data and problem.

Interestingly, recent computational neuroscience work has shown that these techniques

are relevant to model hippocampal reactivations recorded during rodent navigation.

Nevertheless, the brain mechanisms for orchestrating hippocampal replay are still

unclear. In this paper, we present recent neurorobotics research aiming to endow

a navigating robot with a neuro-inspired RL architecture (including different learning

strategies, such as model-based (MB) and model-free (MF), and different replay

techniques). We illustrate through a series of numerical simulations how the specificities

of robotic experimentation (e.g., autonomous state decomposition by the robot, noisy

perception, state transition uncertainty, non-stationarity) can shed new lights on which

replay techniques turn out to be more efficient in different situations. Finally, we close

the loop by raising new hypotheses for neuroscience from such robotic models of

hippocampal replay.

Keywords: hippocampal replay, reinforcement learning, neurorobotics, model-based, model-free

1. INTRODUCTION

For a reinforcement learning (RL) agent (Lin, 1992; Sutton and Barto, 1998), experience replay
consists of storing in (episodic) memory a buffer containing a series of observations (i.e., a
quadruplet composed of the previous state, the action, the new state, and the reward) and
periodically replaying elements from this buffer to bootstrap learning during offline phases
(i.e., between phases where the agent acts and samples new observations in the real-world)
(Fedus et al., 2020).

Several important parameters have an impact on the performance of RL agents with experience
replay, such as the size of the memory buffer (Zhang and Sutton, 2017), the relative time spent
learning from replay vs. the time spent collecting new observations in the world (Fedus et al.,
2020), or whether to shuffle the memory buffer and uniformly sample elements from it or prioritize
elements as a function of their associated level of surprise (e.g., the absolute reward prediction error
associated to a given quadruplet observed from the environment) (Moore and Atkeson, 1993; Peng
and Williams, 1993; Schaul et al., 2015).

To our knowledge, these replay techniques have their origin in the 1990s, when Long-Ji Lin at
Carnegie Mellon University proposed solutions to enable RL reactive agents [i.e., model-free (MF)
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agents such as Q-learners Watkins, 1989] to bootstrap their
learning process in large dynamic (non-stationary) discrete
simulation environments (Lin, 1992). One of the investigated
solutions was to use the Dyna-Q architecture (Sutton, 1990) to
learn action models and use these models to sample hypothetical
actions. Another tested solution consisted of storing the agent’s
experience in a memory buffer and replaying it to bootstrap
learning. Interestingly, one of the main results was that the best
performance was obtained by reversing the order of the replay
buffer, what we will call backward replay (i.e., replaying first the
most recent observation, then the second-to-last one, and so on
until the oldest observation). This is because each time the buffer
contains a rewarding observation, replay leads to increasing the
value of the action performed in the previous state, followed
by replaying precisely that previous state at the next iteration
(because the buffer is in reverse order), and thus increasing the
value of the preceding action, and so on. As a consequence,
single processing of the memory buffer results in reward value
propagation from rewarding states along the whole sequence of
actions that the agents had experienced to get the reward.

In parallel, other researchers further investigated the efficiency
of model-based (MB) techniques to sample hypothetical actions
rather than replaying experienced actions from a memory buffer.
One example is prioritized sweeping and consists of replacing
uniform model sampling with a prioritization that depends on
the absolute value of the reward prediction error (Moore and
Atkeson, 1993; Peng and Williams, 1993). While MB methods
can be conceived as ways of planning, thus different from MF
learning, they can nevertheless be seen as an alternative way
to perform offline Q-value updates. Even further, there is a
mathematical equivalence between the sequence of Q-values
obtained with MB updates and with MF methods with replay
(van Seijen and Sutton, 2015). This is why throughout this
paper, we will discuss both model-based and model-free replay,
in the sense that they represent alternative offline reactivation
mechanisms to update action values. We will refer to model
sampling as Simulation Reactivations (SimR) and sampling from
a memory buffer asMemory Reactivations (MemR).

Strikingly, neuroscience research has found that the
mammalian brain also seems to perform some sort of
experience-dependent reactivations of neural activity, in
particular, in a part of the brain called the hippocampus (Wilson
and McNaughton, 1994). These reactivations occur either when
an animal is sleeping (Ji and Wilson, 2007) or during moments
of quiet wakefulness between trials of the task (Karlsson and
Frank, 2009). Most importantly, these reactivations play an
instrumental role in learning and memory consolidation,
since blocking these neural reactivations leads to impaired
learning performance (Girardeau et al., 2009; Ego-Stengel and
Wilson, 2010; Jadhav et al., 2012), while new memories can be
created by stimulating reward circuits during these reactivations
(De Lavilléon et al., 2015).

The computational neuroscience literature has recently
compared the different replay techniques from machine
learning with the properties of hippocampal replay recorded
experimentally (Pezzulo et al., 2017; Cazé et al., 2018; Mattar
and Daw, 2018; Khamassi and Girard, 2020). Interestingly,

the reactivation of a sequence of states experienced by the
animal during the task sometimes occurs in the same forward
order and sometimes in backward order (Foster and Wilson,
2006; Diba and Buzsáki, 2007). Nevertheless, a large part of
hippocampal reactivations occur in apparent random order, and
the underlying computational principle remains to be explained
(see for instance the proposal of Aubin et al., 2018). Moreover,
computational investigations recently found that prioritized
sweeping can also explain some properties of hippocampal
reactivations (Cazé et al., 2018; Mattar and Daw, 2018). But
it is not yet clear whether a single unified computational
principle can explain hippocampal replay or whether the brain
alternates between different types of replay (backward, shuffled,
prioritized/MF vs. MB) in different situations (sleep vs. quiet
wakefulness, depending on the difficulty of the task, the level of
noise/uncertainty).

Thus, a new field of neurorobotics research is currently
dedicated to integrating offline reactivations in the RL processes
to improve and speed them up. As mentioned above, this
focus on offline reactivations is both inspired by the machine
learning techniques created in the 90s and now commonly used
in DeepRL and by the neuroscience results on hippocampal
reactivations and the probable cohabitation of MB and MF
RL systems in the brain. With robotic applications as an
aim, these contributions need to bridge the gap between
perfectly controlled discrete state simulations and real embodied
robotics experiments in continuous environments. The goal
of this research is to understand which replay techniques
give the best learning performance in different situations
(constrained corridor-based vs. open maze environments;
non-stationary goal locations and maze configurations) and
whether robotic tests lead to different conclusions than
simple perfectly controlled simulations (physical vs. abstract
simulations, autonomous state decomposition by the robot,
noisy perception). For instance, a recent neural network-
based simulation of a rat maze task highlighted that shuffled
experience replay was required to break the data temporal
correlations to be able to learn a neural internal world model
(Aubin et al., 2018). Importantly, while neurorobotics research
during the last 20 years had already studied hippocampus
models for robot navigation (Arleo and Gerstner, 2000;
Fleischer et al., 2007; Dollé et al., 2008; Milford and Wyeth,
2010; Caluwaerts et al., 2012; Jauffret et al., 2015), to our
knowledge, the impact of different types of replay on the
performance of these models has only recently started to
be investigated.

In this paper, we illustrate this line of research by
presenting a series of numerical simulations of laboratory
mazes (used to study rat navigation in neuroscience) as
benchmark tasks for robotic learning. These simulations are
presented in order of increasing complexity toward real-world
robotic experiments. At each step of this presentation, we
simulate and compare different replay techniques in either
MF or MB RL agents. We discuss the properties of these
simulations, how they contribute to improving learning in
robots, and how they can also help generate predictions
for neuroscience.
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2. SIMULATION OF INDIVIDUAL REPLAY
STRATEGIES IN A PREDEFINED DISCRETE
STATE SPACE

In this section, we present a series of numerical simulations
in a simple deterministic maze task with predefined state
decomposition. The task mimics the multiple T-maze of Gupta
et al. (2010), where rats have to follow constrained corridors
and make binary decisions (go left or go right) at specific T-like
decision points (Figure 1A). This will enable us to first illustrate
the properties of different replay methods in the same conditions
as the perfectly controlled simulations usually performed in
computational neuroscience work. Then in the next sections, we
will study what happens in more openmazes where moreover the
robot will autonomously build its state decomposition.

The work presented in this section contains two main
differences from our previous computational neuroscience
simulations of the multiple T-maze task (Cazé et al., 2018;
Khamassi and Girard, 2020)1: (1) in previous work, following
experience replay techniques in machine learning, we had
allowed the agent to perform a series of replay iterations
after each action; here, because it would be energy- and time-
consuming for a robot to stop after each action, we allow the
simulated robot to perform replay only at the end of the trial,
while it is waiting for the next trial at the departure state;
(2) we had simulated a version of MB prioritized sweeping
where the memory buffer contained one element per state;
here, we test whether it is also efficient to have an element for
each (state,action) couple, thus filling the memory buffer with
multiple elements for the same state (as long as they represent
different actions).

2.1. Methods
We simulate the multiple T-maze task as a Markov decision
problem (MDP), where an agent visits discrete states s ∈ S ,
using a finite set of discrete actions a ∈ A. States represent
here unique locations in space, equally spaced on a square grid
(Figure 1A), a piece of information expected to be provided by
place cell activity in the hippocampus (O’Keefe and Dostrovsky,
1971). The actions allowed the agent to represent moves in the
four cardinal directions: north, south, east, and west. During the
first 100 trials, the reward will always be located on the left arm.
Then during the next 100 trials, the reward will be on the right
arm and the agent will have to adapt its decisions accordingly.

Here, we simulate three model-free RL algorithms and one
MB one: MF without replay, MF with backward replay, MF with
shuffled replay, and MB prioritized sweeping (Table 1).

For each Markovian state-action couple (s, a) in the
environment, MF-RL agents use Q-learning (Watkins, 1989) to
learn the Q-value of performing action a from state s, as follows:

Q(s, a)← Q(s, a)+ α[R(s, a)+ γ max
a′

Q(s′, a′)− Q(s, a)] (1)

1The updated code for these simulations is available at https://github.com/
MehdiKhamassi/RLwithReplay.

Where R(s, a) is the reward obtained from the environment when
performing (s, a), and s′ is the arrival state after executing action
a in state s.

At the next timestep, deciding which action to perform is
computed by drawing the next action a from a probability
distribution given by the softmax Boltzmann function applied to
the Q values:

P(a|s) =
eβQ(s,a)

∑

i∈A eβQ(s,i)
(2)

With A being the set of all the possible actions from state s
and β being the inverse temperature parameter that regulates
the compromise between exploration and exploitation: the closer
to zero, the more the differences between the Q-values will be
attenuated, and thus the more the selection will be uniform
(hence exploratory); conversely, large values (that can go up to
infinity) will enhance the contrast between the Q-values and will
thus favor exploitation of the largest one.

In MF-RL backward replay and MF-RL shuffled replay and
for all the other RL replay algorithms tested in this section and
the next one (Section 3), we enable the agent at each timestep
to store in a memory buffer the quadruplet describing the
current observation: the previous state s from which the agent
performed action a, the resulting state s′ and the scalar reward
r obtained from the environment (1 when the rewarding state
has been reached, 0 elsewhere). This memory buffer progressively
increases in size, timestep after timestep, but is limited by the
maximal size N (N being chosen to correspond to the number
of states in the environment, see Table 1). When the maximal
size has been reached, adding a new element to the buffer is
accompanied by throwing away the oldest element in it.

When the agent has finished the current trial and reaches the
departure state again, a replay phase is initiated where at each
replay iteration one element from the buffer is processed and the
corresponding Q-value is updated following Equation 1. This is
repeated until the sum of variations of Q-values over a window
of N replay iterations is below a certain replay threshold ǫ, which
indicates that the Q-values have converged and do not require to
be updated anymore.

In the MF-RL backward replay algorithm (Lin, 1992), at the
beginning of a new replay phase, we simply reverse the order of
elements in the buffer and then start to perform replay iterations
following the procedure explained above. In the MF-RL shuffled
replay algorithm, we simply shuffle the elements of the buffer
before starting the replay phase.

We also test an MB algorithm where the learning process
aims at building a world model, i.e., a model of how the
perceived world changes when actions are taken. This model
is conventionally composed of a transition function and a
reward function. The transition function T(s, a, s′) represents the
probability of observing s′ next if action a is taken while in
state s. In the present discrete case, it is built by storing the
number of times each (s, a, s′) triplet was encountered and by
dividing by the number of times (s, a) experienced, as shown in
the equation below:
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FIGURE 1 | (A) Discrete state-space simulations in the multiple T maze task (Cazé et al., 2018; Khamassi and Girard, 2020). The reward is on the left side for 100

trials and then shifted to the right side for the next 100 trials. In the present simulations, replay is only allowed in the departure state, before starting the next trial.

Despite this constraint, the figure shows that after only 3 trials (2 correct / 1 error), the MF-RL algorithm with backward replay has already learned a full gradient of

Q-values across the maze. (B) Comparison of the performance (reward rate) and computation time (Napierian logarithm of the number of iterations during replay

phases) for 4 different algorithms. The thick lines represent the average, and the area around represents the mean square error. The figure illustrates that MF-RL

without replay requires 60–70 trials to reach optimal performance and does not manage to adapt to the change in reward location within only 100 trials. All the other

algorithms perform similarly in terms of reward rate: fast increase in performance; brief drop in performance after the change in reward location; fast re-increase of

performance afterward. These algorithms mainly differ in the required duration of the replay phases: MF-RL with random replay and MF-RL with backward replay both

show a strong peak in the number of replay iterations after the change in goal location. The state-based version of MB-RL prioritized sweeping shows a smaller peak.

TABLE 1 | Algorithm parameters used to generate the results in this section.

MF no replay MF backward

replay

MF shuffled replay MB prioritized

sweeping

α 0.2 0.2 0.2 -

γ 0.99 0.99 0.99 0.99

β 3 3 3 3

ǫ - 0.001 0.001 0.001

N - 54 54 54

They have been taken from Cazé et al. (2018) without retuning. α is the model-free (MF)

learning rate. γ is the discount factor. β is the inverse temperature in the softmax for

decision-making (Equation 2). ǫ is the threshold for Q-values convergence during replay.

N is the maximal size of the episodic memory buffer.

T(s, a, s′) =
VN(s, a, s′)

VN(s, a)
(3)

where VN(s, a) stands for the number of visits of state s when
action a is then chosen and VN(s, a, s′) is the number of
transitions from state s to state s′, having performed action a. The
reward function R(s, a, s′) represents the average reward signal
experienced when effectively performing the (s, a, s′) transition.
For the MB-RL prioritized sweeping algorithm that we simulate
here (Moore and Atkeson, 1993; Peng and Williams, 1993), we
add to each element in the memory buffer the absolute reward
prediction error 1 measured when experiencing (s, a, s′, r) in
world. This 1 can also be seen as representing the magnitude
of change in Q(s, a) which resulted from this observation. The
memory buffer is sorted in decreasing order of 1, thus giving a
high priority to be replayed to elements representing surprising

events in the world that resulted in important revisions of Q-
values. In fact, Mattar and Daw (2018) have formally shown that
deriving the Expected Value of (Bellman) Backup (in other words
an expected value of doing a replay) leads to maximizing a gain
term which is higher for transitions that have been associated
with larger reward prediction errors (hence larger surprise) when
the agent was experiencing the real world.

During the replay phase of MB-RL prioritized sweeping, we
start by considering the first element (s, a) of the buffer with
the highest 1. We use the world model learned by the agent to
estimate the virtual reward r and arrival state s′, and then apply
one iteration of the Value Iteration algorithm (Sutton and Barto,
1998) to update the Q-value of (s, a), where k is all the possible
actions starting from the arriving state s′:

Q(s, a)← R(s, a)+ γ
∑

s′

T(s, a, s′)maxk∈AQ(s′, k) (4)

From Equation 4, we can compute the new 1 for the couple
(s, a) and reinsert it within the memory buffer with 1 as the
new priority level. Finally, we use the world-model to find
all possible predecessors of (s, a), i.e., couples (s′′, a′′), which
according to the model enable the agent to reach state s. Because
the predecessors of a given state s can be difficult to determine
in a stochastic world, Moore and Atkeson (1993) propose to
consider as predecessors all the states s′′ which have, at least
once in the history of the agent in the current task, performed
a one-step transition s′′ → s. The priority associated to a
predecessor s′′ can thus be the corresponding absolute prediction
error 1pred and determined in which position it will be inserted
in the memory buffer, as introduced by Peng and Williams
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(1993). The replay phase then continues by processing the next
element in the buffer with the highest priority level, and so on,
until one of the stop conditions described above is met. For the
sake of terminological clarification, what we call here a replay
phase for an MB algorithm corresponds to an inference phase.
This is because MB-RL prioritized sweeping does not replay
memorized past experience, but rather generates SimR through
model sampling combined with the value iteration algorithm
described above. Thus, to transpose from MF to MB, the replay
phase stop conditions described above, the size of the replay
budget N (which could also be called an inference budget in the
case ofMB) represents here amaximumnumber of iterations that
can be inserted in the prioritized memory buffer and replayed
through the value iteration algorithm.

2.2. Results
With the two changes that we made here compared (Cazé et al.,
2018; Khamassi and Girard, 2020) (i.e., (1) only allowing the
simulated robot to do replay at the end of the trial when reaching
the departure state and (2) storing distinct (state, action) couple
in the memory buffer forMB-RL prioritized sweeping rather than
a single element per state), we found consistent performance
results and only a difference in terms of a reduced computational
cost during replay phases, which we describe below.

Figure 1B shows that the three algorithms with replay (i.e.,
MF-RL backward replay, MF-RL shuffled replay, and MB-RL
prioritized sweeping) quickly reached the optimal reward rate of
1 at the beginning of learning and then experienced only a brief
drop in reward rate after the change in reward location at trial
#100. In contrast, MF-RL without replay took longer to reach
the optimal rate (approx. 60 trials) and then barely managed
to re-increase its reward rate within 100 trials after the change
in reward location. So, the first conclusion is that any replay
technique is equally useful in enabling fast learning in such a
simple maze task with predefined state decomposition.

The second interesting observation has to do with the
transient and nearly discrete increases in replay time that are
produced in responses to task changes (Figure 1B). All replay
techniques enable the agent to avoid spending time performing
replay during the majority of the task. They moreover show a
sharp increase in replay time after a change in reward location.
Importantly, this property was also true in our previous work
where replay was not restricted to the end of the trial but rather
allowed in any state of the task (Cazé et al., 2018). Thus, it is
interesting to note that such a way to generate replay events is
not only compatible with neurobiological data (Cazé et al., 2018;
Mattar and Daw, 2018) but also shows properties that could be
useful for autonomous robots: bursts of replay could be used by
the robot as a way to automatically detect new task conditions
(but here the robot does not need to explicitly label these events;
it just needs to adapt and maximize reward). The rest of the
time, the agent starts each new trial without pausing, as if not
showing any hesitation, similar to what is classically observed in
well-trained rats in similar tasks (Gupta et al., 2010).

In addition, it is interesting to compare the duration of replay
phases between the different replay techniques. While there is
no difference in the average number of replay iterations after

the change in reward location at trial #100 (Figure 1B), MB-RL
prioritized sweeping performs drastically fewer replay iterations
than MF-RL backward replay and MF-RL shuffled replay during
the initial learning phase (first 5-10 trials of the task). Now that
we restricted these algorithms to perform replay only at the end
of each trial, rather than after each action during the trial, MB-
RL prioritized sweeping performs even fewer replay iterations
than what we previously obtained in the same task (Cazé et al.,
2018), without affecting its reward rate. The new proposal to
restrict replay to the inter-trial interval thus seems promising
for real robots. In Dromnelle et al. (2020b) (where we had not
implemented any replay mechanism yet), the robot indeed took a
few seconds after each trial to go back to the departure state. This
short moment seems ideal to let the algorithm perform a replay
without affecting the performance of the robot during the trial.

In the next section, we keep these principles and compare the
same replay algorithms in a more open environment where the
robot autonomously learns to decompose the task into discrete
states, to verify that these algorithms still perform well under
these more realistic conditions.

3. SIMULATION OF INDIVIDUAL REPLAY
STRATEGIES WITH AN AUTONOMOUSLY
LEARNED STATE DECOMPOSITION

The neural activity of hippocampal place cells is often observed as
showing transients and increases after surprising events (Valenti
et al., 2018). During maze navigation, surprising events mostly
occur at locations in the environment that are associated with
positive or negative outcomes. From these locations, reverse
replay, in particular, could reinforce spatial learning by occurring
during awake periods, after the spatial experiences (Foster and
Wilson, 2006). They can potentially reinforce the surprising
experience by propagating the outcome of the event to states that
have been encountered by the animal on its way to the reward
or punishment site. Moreover, rewarding states are also very
likely to initiate replay activity in the hippocampus to enhance
the memory consolidation of novel information (Michon et al.,
2019). During these events, the reactivation of the hippocampus
neural activity is thought to be initiated by rewarding outcomes
to bind this positive unexpected experience to the events that
preceded it (Singer and Frank, 2009).

To study these and others phenomena related to spatial
navigation learning in rodents, one of the first and most relevant
experimental protocols is theMorris Water Maze (Morris, 1981).
In this work, rats were introduced to a circular pool with opaque
water and were removed from the pool only after reaching a
hidden platform, located just below the water surface. Even
though the rats could not see the platform, they were still able
to spatially localize it. This was found even in cases where their
starting point changed within the pool, thus indicating a robust
spatial memory.

In this section, the same MF-RL and MB-RL replay strategies
(MemR and SimR, Sections 1, 2) are tested in a more realistic
robotic set-up, where the discretization of the environment in
multiple Markovian states is autonomously performed by the
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robot.2 Similarly to the experiment in Section 2 and to what
has been experimentally observed by Foster and Wilson (2006),
the replay phase takes place once the agent has reached the
reward state to enable offline learning of Q-values, as previously
done by Mattar and Daw (2018). Neurobiologically, even though
Vicarious Trial and Error (VTE) plays an important role in
animals’ reasoning and decision-making (Tolman, 1939; Redish,
2016), it usually happens in uncertain moments, such as at
beginning of the experiment, at the decision points or surprising
spots (Cazé et al., 2018; Khamassi and Girard, 2020) and can
also be unconsciously constrained by the attempt to limit the
opportunity cost (Keramati et al., 2011).

This aspect is particularly crucial for the robotic experiment
because it allows the agent to spend the Inter Trial Interval
(ITI) updating the Q-table, based on a replay of its past
experience. Usually, this time interval does not require expensive
computations for the robot, since it does not need to take any
decision on its way back to the starting position, and by replaying
past experience, the learning speed could be enhanced without
losing important experimental time.

The addressed research question is whether MF-RL or
MB-RL replay strategies could enhance spatial learning for
artificial agents and robots. We found it interesting to first
test our proposed algorithm in a simulated version of an
experimental task (Morris, 1981) and eventually investigate
if there were any differences between replaying reverse
sequences of actions, random transitions, or the most
surprising transitions, similarly to what has been done in
Section 2.

Like in the previous section, the presented simulated
experiment investigates the role of diverse replay strategies
relative to a changing reward condition. Moreover, the aim is
also to investigate whether replays are relevant when transitions
between the states of the task are stochastic. These simulations
thus bring us to more realistic robotic experiments, in stochastic
and dynamical environments.

3.1. Materials and Methods
To study the implications of offline learning in spatial navigation,
from rodents’ behavior to robotics, we have first investigated
the role of two MF- and one MB-RL replay techniques (as in
Section 2) in a circular maze, consistent with the original Morris
water maze task (Morris, 1981) in terms of environment/robot
size ratio. The learning performances of the analyzed replay
techniques are discussed in two main conditions:

• A deterministic version of the task, where an action a
performed in a state s will always lead the robot to the same
arrival state s′ with probability 1.
• A stochastic version of the task, where performing action a in

state s is associated with non-null probabilities of arriving in
more than one state.

2The code for these simulations is available at https://github.com/esther-
poniatowski/Massi2022.

TABLE 2 | Algorithm parameters are used to generate the results in this section.

No replay MF backward

replay

MF shuffled replay MB prioritized

sweeping

α 0.8 0.8 0.8 0.8

γ 0.9 0.9 0.9 0.9

β 15 15 15 15

ǫ - 0.001 0.001 0.001

N - 90 90 90

α is the learning rate, optimized as shown in Figure 4 and Equation 6, and γ is the

discount factor. β is the inverse temperature in the softmax function for decision-making

(Equation 2), and its values were found by optimizing both the convergence time and the

performance of the tested algorithms. N is the maximal length of the episodic memory

buffer. This value was selected to replay the entire real experience during the first trials of

the experiment and to replay experiences from several past trials later in the simulation.

Finally, ǫ is the convergence threshold as for Sections 2 and Cazé et al. (2018).

3.1.1. Learning Algorithm and Replay
As in the previous series of simulations (Section 2), the
simulated agent is learning using either classical MF-
RL Q-learning (Watkins, 1989) (Equation 1) or MB-RL
prioritized sweeping learning (Moore and Atkeson, 1993;
Peng and Williams, 1993). The values of their parameters
(learning rate α and the discount factor γ ) are shown
in Table 2.

The first implementation of offline learning techniques that
we tested is the MF backward replay. Similar to the double
T-maze experiment in Section 2, the offline learning phase
happens once the agent has reached the reward state, which
indicates the end of a trial. During a trial, the Q-values Q(s, a)
of the state-action couple (s, a) are updated with Equation 1 and
once the rewarding state has been reached, they are updated
again in reverse order, starting from the reward state. These
backward sequences can be up to N updates long if the agent
has gained enough past experience and stored it in its memory
buffer. The reverse sequences are then replayed until the sum
of variations of Q-values over the last replay repetition is
below a certain replay threshold ǫ (Table 2). Given the size
of the environment (36 states), these N long backward replay
sequences can also involve experiences that happened during
the previous trials of the same agent (i.e., during the previous
attempts to get to the reward). In this way, the robot can
transfer the acquired knowledge through different trials and learn
more efficiently.

The second replay strategy that has been tested isMF shuffled
replay; in this case, in the ITI, the internal values Q(s, a) are
randomly ordered and then updated by Equation 1. As for
the MF backward replay, the memory buffer, that is accessible
to initiate the reactivations, keeps in memory the latest N
transitions (Table 2). Also, in this case, the agent can benefit
from the experience acquired during the latest trials and learn
to extract more general and useful knowledge from its recent and
uncorrelated past actions (because of shuffling). The ITI replay
phase lasts until the convergence of the sum of the Q-values
under an ǫ value given in Table 2.

As for Section 2, we compared the learning performance of
the above-explained MF replay strategies to an MB prioritized
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sweeping algorithm (Moore and Atkeson, 1993; Peng and
Williams, 1993). The implementation of the latter is the same as
described in Section 2.1, and the convergence criterion is reached
when the prioritized replay buffer, which can be maximum N
transitions long, is empty.

3.1.2. The Experimental Set-Up and Implementation
The simulated experimental set-up intends to replicate a Morris
water maze task: the agent is introduced in a new circular
environment, and it has to learn how to reach a particular
location associated with a positive reward (Morris, 1981). In our
set-up, the agent is a Turtlebot3 Burger, simulated with the Robot
Operating System (ROS) middleware and the Gazebo simulation
environment (Quigley et al., 2009). The watermaze is represented
as an empty circular arena surrounded by high walls (Figure 2B).

The robot discovers and defines the different discretized
areas in the maze by autonomously navigating within the
environment. Despite the odometry and the laser sensor being
installed on the robotic device, the acquired space representation
is allocentric. This is an emergent property of the automatic
clustering process when applied to robot sensor data in a
task where the robot can only move in a horizontal plane, as
found in previous neurorobotics work (Caluwaerts et al., 2012).
The robot, in fact, explores by selecting between 8 directions
of motion that are defined in the global reference frame of
the environment, and its current position and orientation are
also elaborated in the maze reference frame. This allocentric
description of the robot movements and the states of the maze
is possible thanks to a re-mapping of the relative position of
the robotic agent and the discretized states to the reference
coordinate system of the map. This is possible thanks to the
360 Laser Distance Sensor of the robotic platform, combined
with the use of a classical SLAM technique. Note that such
an allocentric space representation is not only compatible with
neurophysiology (hippocampal place cell activity) but can also
be combined with egocentric representations to account for
a variety of experimentally observed animal behaviors during
navigation tasks (Khamassi and Humphries, 2012). The discrete
MDP, presented in Figure 2A, is obtained thanks to a Rao-
Blackwellized particle filter that builds gridmaps from laser range
data (Grisetti et al., 2007). The simulated implementation of this
Simultaneous Location andMapping Algorithm (SLAM) on ROS
Gazebo is called GMapping.

This state decomposition process makes the robot able to
immediately create new states if necessary, but in our work,
the aim was to create the finest and most robust possible
discretization of the maze to be then employed in all the
simulation experiments where we tested the different replay
strategies. As observed by Khamassi (2007), Chaudhuri et al.
(2019), and Benchenane et al. (2010), rats could re-explore the
whole maze every day before doing a learning task and that
could reflect their need to rapidly acquire and stabilize a state
representation before starting an extra learning process.

For these reasons, the robot performs a long autonomous
exploration phase to acquire its state representation before
starting the learning phase. During the first 48-min-long
exploration in Gazebo, the SLAM algorithm estimates the current

robot coordinates, and whenever it is more than 15 cm further
away from any existing state, it creates a new state, whose
reference position is the current position. This results in a
Voronoi partition of the space, composed here of 36 states
(Figure 2A). This 15 cm state radius was chosen to be similar to
the robot footprint of 13,8 x 17,8 x 19,2 (L x W x H, cm). The
action space A instead contains 8 homogeneously distributed
directions of motion, defined with respect to the world reference
frame (same as for Section 4, Figure 8A, top right).

Then, we ran another free exploration of the arena by the
simulated Turtlebot3 robot to automatically learn the transition
probabilities p(s′|s, a) that can be approximated from randomly
executing different actions a in different states s and observing the
arrival state s′. This second free exploration phase was chosen to
be 5,357-action long, the same duration as for the results that will
be presented in Section 4. Lesaint et al. (2014) found that when
an agent was progressively learning its transition function during
the task, the RL model was better at accounting for rat behavior
than a model with a prior given transition function.

In practice, the transition probabilities autonomously learned
by the robot during free exploration in Gazebo is stochastic: the
same action a performed in the same state s can lead to more
than one state with non-null probabilities. For instance, moving
north from state #31 alternatively leads to states #0,5,6,16, and
even sometimes to state #31 itself when the robot initiated
its movement from the bottom part of this state (Figure 2A).
Such stochasticity results from several properties: (1) because
the states autonomously decomposed by the algorithm are not
evenly distributed; (2) because the experiments are performed
in a simulated physical environment, which includes frictions
between the robot’s wheels and the floor, and where the robot
sometimes moves too close to the walls, thus triggering its
obstacle-avoidance process, hence resulting in a different effect
of the same action performed without obstacle-avoidance.

The actual level of uncertainty of the stochastic version of the
task is displayed in Figure 10A, where each state s has an entropy
Henv(s) computed as in Equation 5, where A is the set of all the
possible actions a from state s, s′ are all the possible arrival states
from the original state s, and p(s′|s, a) is the probability that the
agent arrives in state s′ after starting from state s and performing
action a:

Henv(s) = max
a∈A

∑

s′

−p(s′|s, a) log2 p(s
′|s, a) (5)

Finally, in order to obtain a deterministic version of the same
task from these autonomously learned transition probabilities
p(s′|s, a), for each (state,action) couple (s, a), we search for
the state s′ with the highest probability of arrival (i.e., s′ =
argmax

x∈S
[p(x|s, a)]), and set p(s′|s, a) = 1 while setting p(s′′|s, a) =

0 for all other states s′′(s′′ 6= s′). The deterministic version
of the task consists in fact the simplification of the interaction
between the robot and the environment, meaning that the
trajectories that the robot can cover in the same environment
are reduced. To quantify the simplification of the resulting MDP,
we have performed an analysis of the trajectories which have
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A

B

FIGURE 2 | Description of the experimental set-up. (A) Map of the discrete states of the maze, identified by the robot during the exploration of Gazebo. The initial

state and the two rewarding states are also highlighted. (B) The ROS Gazebo simulated Turtlebot 3 in the center of the circular environment.

been taken by the four different algorithms, in the two different
environments. We compute the pairwise Fréchet distance of
these trajectories to the optimal one, found by following a greedy
optimal policy. Figure 3 shows this analysis during the first
half of the experiment when the reward is fixed in state #22.
The results from this analysis show that, for all the adopted
strategies, in the stochastic environment (Figure 3B), the sparsity
of the trajectories around the optimal path is generally higher
compared to the same deterministic case Figure 3A). To assess
the difference among these distance distributions, we did a
Kruskal-Wallis H-test (Kruskal and Wallis, 1952)), finding
them significantly different from each of their corresponding
distribution of in the other environment. The conversion of the
environment in a deterministic MDP is then intrinsically limiting
the level of exploration of the agents, resulting in two very
different scenarios. However, it is very important to investigate
this transition, given our intent to study the role of RL replay
strategies in robotic navigation, from a theoretical to a more
realistic robotic outline.

To replicate a non-stationary task similar to the one in the
original experiment (Morris, 1981), we changed the reward
location from state #22 to state #4 at trial 25, and we tested the
learning performances of the agent with four different replay
strategies (no replay, MF backward replay, MF shuffled replay,
andMB prioritized sweeping) and in two different environments:
a deterministic and a stochastic version of the task.

3.2. Results
To assess the real contribution of the tested replay strategies to
the learning process of the described spatial navigation task, an
unbiased learning rate αbest has to be found. Since αbest could be
different depending on the unpredictability of the MDP which
simulates the task (i.e., deterministic or stochastic), we simulated

100 robotic agents performing 50 trials to get to the rewarding
states, for a set of uniformly distributed α values between 0 and 1
(Figure 4). For each value of α, we looked at the average value
action(α) along the trials, with action(α) being the number of
actions needed by the robot to get to the rewarding states. These
values are computed for both the deterministic (Figure 4A), the
stochastic worlds, considering the entirety of the experiment,
and the minimization of the sum of these two values is used to
identify the final αbest (Figure 4B and Table 2) as described in the
equation below:

αbest = argmin
α∈A

(actiondeterministic(α)+ actionstochastic(α)) (6)

whereA is the set of tested α values.
Once identified the most appropriate value for the learning

rate α, the following four replay conditions have been tested in
the task:

• MF-RL no replay
• MF-RL backward replay
• MF-RL shuffled replay
• MB-RL prioritized sweeping

and the other relevant parameters for the experiment are
described in Table 2.

The main results are shown in Figure 5. The four different
RL algorithms (no replay, backward replay, shuffled replay, and
prioritized sweeping) are compared in terms of the number
of model iterations to get to the rewarding state (Napierian
logarithm of the first, median, and third percentiles over the
behavior of 100 robotic agents). The task changes at trial #25
when the reward switches from state #22 to state #4 (Figure 2).
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FIGURE 3 | Analysis to investigate the level of the sparsity of the explored trajectories by the agent. The Fréchet distance has been computed for the first half of the

simulation. ** Stands for p-value lower than 0.001 and * for p-value lower than 0.05. (A) The extension of the Fréchet distance to the optimal trajectory in the

deterministic case for all the algorithms. (B) The same extension of Fréchet distance in the stochastic environment.

When the task is deterministic (Figure 5A), all three
RL algorithms with replay learn a short path to the reward
significantly faster than the MF-RL no replay learner
(Figures 5A,B, Trials 1-5). The same situation occurs when
the reward position is switched at trial #25, assessing the role of
RL replays in improving the speed of learning after such a task
change (Figures 5A,B, Trials 26-30). When the environment
is stochastic, the situation is similar and, in particular, the
prioritized sweeping algorithm is learning significantly faster
than the other replay strategies (Figure 5B, Trials 26-30)
reflecting the importance of an MB strategy (with MB replay) to
faster adapt to dynamical tasks, when the transition model is not
deterministic. This suggests that moving toward more complex
robotic tasks, MB-RL models of replay may be preferred, since
the higher information processing regarding the model of
the environment, at the beginning of the task, can save real
experimental time, when the robot would need to adapt later in
the experiment.

Moreover, the logarithmic scale makes it easier to notice that
the no replay agent, even if it is slower at the beginning of the
task, can converge to paths that are significantly shorter than
the one covered by the other strategies, before the change in
reward location (Figures 5A,B, Trials 20-25). In the stochastic
environment, in particular, the MB-RL prioritized sweeping
algorithm reinforces the experience of a sub-optimal path,
resulting in performance significantly different from the ones
obtained from the other two replay strategies (Figure 5B, Trials

20–25). This shows that, even if the stochastic environment leads
the MF-RL replay strategy to explore more the maze, the MB-
RL prioritized sweeping algorithm, that can learn the transition
model from the beginning of the task, is not subjected to this
“push” toward exploration and keeps reinforcing the shortest
path previously found.

Instead, in the second convergence phase (Trials 45–50),
we highlight the fact that the no replay agent is not showing
any more statistically better performances than all the replay
algorithms (Figures 5A,B, Trials 45–50). In the deterministic
case, it is still reaching the shortest path to the reward, but
the prioritized sweeping agent is also being significantly better
than the MF-RL shuffled replay strategy (Figure 5A Trials 45-
50). On the other hand, in the stochastic case, the MB-RL
prioritized sweeping’s knowledge of the environment makes it
attain performances that are compatible with the ones from
the no replay strategy. In this particular case, we can notice
that the replay strategies perform differently, with the shuffled
replay which performs worse than the other two replay strategies.
This re-adaptation phase gives to the agents the opportunity
for more exploration, in particular to the replay agents, which
have strongly reinforced their previous experienced trajectory to
maximize the reward and propagate this knowledge throughout
the environment. As already happened in the second learning
phase (Figure 5B, Trials 26–30), the MB-RL prioritized sweeping
algorithm significantly exceeds the performance of the other
replay algorithms and converges to a shorter path to the reward.
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FIGURE 4 | Performed analysis to find out the best learning rate α for all the replay strategies and the two environments (deterministic and stochastic). For different

values of α, the figure shows the first, median, and third percentile of the number of actions to get to the reward, over 100 agents completing the simulated

experiment over 50 trials. The average minimum number of model iterations to get to the reward is found for α equal to 0.8, and it was used for all the presented

experiments (Table 2). (A) Performances of the tested algorithms across the α values in the deterministic version of the maze. (B) Final selection of α considering the

mean performances between the deterministic and the stochastic version of the maze.

This gives insights into the need for a more consolidated
knowledge of the environment (and so of the interaction of
the agent with it) for adaptive tasks. As a consequence, we can
predict that animals would need to retrieve knowledge about
their experienced and learned model of the world to adapt more
efficiently to dynamic circumstances.

Following the results shown in Figure 5, we have further
investigated the learning and replay dynamics of the proposed
strategies. In Figure 6, the level of propagation of the Q-
values (Equation 1) over the environment is shown for the
different tested RL algorithms and for both the deterministic
(Figure 6A) and the stochastic (Figure 6B) environments. The
shown learning dynamics are representative of the different
strategies since they show the behavior of the individual which is
the closest to the median performances of all the 100 individuals
for each strategy.

In both cases (Figures 6A,B, Trials 1,2 and 25), the presence
of replay provides a drastically larger propagation of the Q-
values, starting from the first reward state (22). This explains
the significantly faster learning performances observed in the

algorithms with replay compared to theMF-RL no replay method.
In both environments, the no replay method is slower to learn,
but it explores more in the first trials (Trial 1 and 2) and that
leads it to generally find a shorter path to the reward location in
the end (Trial 25) compared to the other learning strategies (as
shown in Figure 5A and, Trials 20–25).

By comparing the two types of environments, we can
understand that the level of stochasticity of the MDP leads to
a more important exploration of the environment for all the
strategies (Figure 6B, looking at the explored trajectories and
the replayed transitions). This results in a larger propagation
of the Q-values in the maze, in particular, in the prioritized
sweeping algorithm. As in the deterministic case, the MB-RL
prioritized sweeping is replaying a broader range of transitions
after the first trial compared to the other strategies. With
this MB-RL replay strategy, the replay activity is led by the
surprise of the experienced events. This results in longer
replay phases at specific surprising moments of the task, for
instance after the first discovery of the reward location (at
trial 1 in Figure 6) and after the discovery of the changed
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FIGURE 5 | Performances of the simulated robot, learning the non-stationary task, and a post-hoc Wilcoxon-Mann-Whitney pairwise comparison test on the relevant

trial intervals among the different curves. The post-hoc test has been performed following a Kruskal-Wallis H-test (Kruskal and Wallis, 1952) to reject the null

hypothesis that the population median of all of the algorithms’ average performances was equal. ** Stands for p-value lower than 0.001 and * for p-value lower than

0.05. (A) Deterministic environment. (B) Stochastic environment.

rewarding state (at trial 26 in Figure 6). This happens in
both environments also thanks to the implementation of the
algorithm which examine also the predecessor of the surprising

state (Section 3.1.1) and to the acquired knowledge of the
environment (in particular in Trials 26, when the reward
position changes).
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FIGURE 6 | Learning dynamics of the most representative individual: covered trajectory and replay at some critical trials. Also, for each state s, the maxQ(s, ai ),

among all the ai , with i from 1 to 8 (Figure 8A, top right), is represented. The initial state and the reward state are also represented in the figure. (A) Experiments in the

deterministic MDP. (B) Experiments in the stochastic MDP.

In both environments, as expected from the previously
analyzed learning performance in Figure 5, there is no effective
difference in terms of Q-value propagation between MF-RL
backward replay and MF-RL shuffled replay. The explored
trajectories and the replay are also very similar, resulting in
not significantly different performances (Figure 5). These results,
which simulate a spatial learning experiment for rodents (Morris,
1981) in a robotic framework, suggest some first advantageous
properties of using replay-inspired strategies in neurorobotics.
Our results imply that MF-RL replays could be sufficient to speed
up learning and adaptation to non-stationarity (Figure 5, Trials
1–5 and 26–30), but MB-RL replay strategies could improve

the adaptability of the system even more, with a higher level
of stochasticity which often characterizes real robotic scenarios
(Figure 5, Trials 26–30).

The proposed models and experiments contribute to a deeper
understanding of the advantages and limitations of the existing
RL models of replay in such robotics tasks. This experimental
comparison, examining either a deterministic or stochastic
version of the same environment (which implies a significantly
different level of explored trajectories in the maze, see Figure 3)
was useful to observe that RL replay gives an important
contribution to a robotic spatial learning task, even if the model
of the robot-environment interaction is stochastic. Nevertheless,
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a good compromise between the exploration capability of MF
replay strategies and the adaptability of MB ones has not yet been
found within these experiments. The next section will illustrate
the performances of RL replay strategies in spatial learning when
they are tested in combination in an MF-MB RL hybrid learning
architecture in a more complex environment with obstacles,
higher stochasticity, and non-stationarity.

4. COMBINING MB AND MF REPLAY IN A
CHANGING ENVIRONMENT

Hippocampal replay has not only been interpreted as a memory
consolidation process from past experience (Foster and Wilson,
2006; Girardeau et al., 2009), putatively MF, but also as a possible
MB planning process that enables the mental simulation of
hypothetical actions (Gupta et al., 2010; Ólafsdóttir et al., 2018;
Khamassi and Girard, 2020). Along these lines, it has been argued
that model sampling can not only be used for planning but
also to update action values (van Seijen and Sutton, 2015; Cazé
et al., 2018; Mattar and Daw, 2018). Moreover, some sequences
of reactivated hippocampal neurons cannot be accounted for
as a simple MF reactivation of past experience, and rather
seem to represent creative combinations of past and experienced
trajectories which can only be accounted for by a MB process
(Gupta et al., 2010).

This suggests that both MFMemR and MB SimR are required
to account for the diversity of hippocampal replays. Importantly,
state-of-the-art models of RL processes in the mammalian brain
assume a co-existence of MB and MF processes (Daw et al., 2005;
Dollé et al., 2010, 2018; Keramati et al., 2011; Khamassi and
Humphries, 2012; Pezzulo et al., 2013; Collins and Cockburn,
2020). Hence, neurorobotics constitutes a promising research
area to study replay in robot control architectures that combine
MB and MF RL processes.

With the experiments presented in the two previous sections,
the complementary properties and performances of MF replay
and MB replay have been analyzed. In our presented tasks, RL
agents with MB replays tended to be slower to converge to
an optimal solution but eventually, they reached a faster path
to the reward location. On the other hand, the same agent
with MF replay learned faster but converged to a suboptimal
solution. In this section, in addition to pushing robot simulations
toward more complex environments with stochasticity and non-
stationarity, we want to examine the benefits of combining SimR
and MemR in a robot control architecture which includes both
MB and MF RL3. We thus investigate the effects of including
replay in the algorithm proposed in Dromnelle et al. (2020b),
which coordinates a MB and a MF RL expert within the decision
layer of a robot control architecture. Interestingly, this algorithm
had been previously tested in a navigation environment that
includes open areas, corridors, dead-ends, a non-stationary task
with changes in reward location, and a stochastic transition
function between states of the task. In these conditions, previous
results showed that the combination of MB and MF RL enables

3The code for these simulations is available at https://github.com/elimas9/
combining_MB_MF_replay.

to (1) adapt faster to task changes thanks to the MB expert
and (2) avoid the high computational cost of planning when
the MF expert has been sufficiently trained by observation of
MB decisions (Dromnelle et al., 2020b). Nevertheless, replay
processes have not been included in this architecture yet, and the
present paper is the opportunity to do it.

The results that we are going to illustrate and discuss in
the following subsections present the combination of SimR
and MemR as a critical resource to optimize the trade-off
between the increase in performance and the reduction of
computational cost in a hybrid MB-MF RL architecture when
solving a more complex non-stationary navigation task than the
two previous sections.

4.1. Materials and Methods
The robot control architecture proposed in Dromnelle et al.
(2020b) and also successfully applied to a simulated human-robot
interaction task in Dromnelle et al. (2020a) takes inspiration
from the mammalian brain’s ability to coordinate multiple neural
learning systems. Such ability is indeed considered to be key to
making animals able to show flexible behavior in a variety of
situations, to adapt to changes in the environment, while at the
same time minimizing computational cost and physical energy
(Renaudo et al., 2014). The proposed architecture in Figure 7 is
composed of a decision layer where a MF expert and a MB expert
compete to determine the next action of the system. Both experts
pass through three different phases: learning, inference, and
decision. A meta-controller (MC) determines which proposed
decision will be executed, following an arbitration criterion that
we describe below.

4.1.1. Model-Based Expert
The model-based algorithm is implemented to learn a transition
model T and a reward model R of the specific task. Thanks to
these two learned models, it can predict the consequences of a
given action several steps ahead and can adapt faster to non-
stationary environments. Yet these computations are very costly
(i.e., 1,000 times higher than the computations of the MF expert
in Dromnelle et al., 2020b).

During the learning process, the transition model and the
reward model are updated at each timestep after observing
the departure state s of the robot, the action a that it has
performed, the arrival state s′, and the scalar reward r that
this transition may have yielded. The transition model is
updated by estimating T(s, a, s′), the probability of arriving
in s′ from (s, a), considering the past Ttw actions (Table 3).
This probability is computed as already shown in Equation 3.
Besides, the reward model R(s, a, s′) is updated by considering
the most recent reward rt associated to the transition (s, a, s′),
multiplied by the probability of the transition itself in
Equation 3.

The inference process estimates the action-value function via
the value iteration algorithm (Sutton and Barto, 1998), and it
operates as an offline planning phase that is continuously called
every decision step, just before a decision is made by the agent
about which action to perform. The maximal duration of this
planning process can be determined either by setting a finite
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FIGURE 7 | Robot control architecture. The agent-environment interaction can be described by (1) the state and the reward, as perceptual information (continuous

arrows) from the environment, and (2) by the action (dashed lines) that the agent operates in the environment. The perceptual information is used by the model-free,

the model-based expert, and the meta-controller (in purple). Based on this information and memory of their previous performances, the meta-controller estimates the

entropy and computational cost of the experts, consistently with the criterion in Equation 13, and thus choose the expert that will be allowed to infer the probability

distribution of the next agent’s actions. This distribution, and the times consumed to compute it (dashed arrows), are then sent to the meta-controller. Different from

Dromnelle et al. (2020b), both experts here have a ’replay’ (reactivation) budget (limited or until convergence) that will affect both their performance and computation

time and thus impact the meta-controller’s arbitration. Here, shuffled memory reactivations (MemR) are integrated with the Q-learning algorithm of the MF expert, while

simulation reactivations (SimR) constitute the offline MB inference iterations in the value iteration algorithm of the MB expert.

budget for the number of transitions over which the agent will
evaluate its decision or by employing a convergence criterion
based on the sum of the absolute action-value function estimation
errors. More precisely, the planning terminates at iteration c if

∑

s,a

∣

∣δcs,a

∣

∣ < ǫMB where (7)

δcs,a =
∑

s′

p(s′|s, a)[Rcs,a + γV(s′)c]− Q(s, a)c (8)

Here, Rcs,a is the reward function of performing action a from
state s at the offline reactivation c and V(s′) is the value function
of the arriving state s′ at reactivation c, from state s and action a.
γ is the discount factor (Table 3).

Finally, the decision process chooses the next action to
be performed by the robot by converting the action-value
function into a probability distribution using a softmax function
(see Equation 2), with an exploration/exploitation trade-off
parameter β given in Table 3.

4.1.2. Model-Free Expert
The model-free algorithm does not learn any transition or
reward model of the task, in contrast to the MB expert. Rather,
it locally updates the current action-value function Q(s, a) at
each timestep. This property of the MF expert makes it save
computational cost, compared to the MB expert, at the expense
of slow adaptability to task changes, given the expert’s lack of
topological knowledge of the environment.

The inference process simply consists of reading from the Q-
table the line corresponding to swhich is then used by the decision
process. The latter chooses the next action from the Q-values,
also converted to a probability distribution with a β trade-off
parameter in Table 3.

For the MF-RL expert, the learning process is defined as a
tabular Q-learning algorithm in which the action-value function
Q(s, a) is updated according to Equation 1. Following the online
learning phase, shuffled replay is performed, using the (s, a, s′, r)
tuples experienced by the agent in a given time-window of past
transitions Rtw (Table 3). As for the MB expert, these offline
updates stop when either the maximal predefined budget is
exhausted or when the Q-values have converged. Since the MF
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TABLE 3 | Parameters used to generate the results in this section.

Model-based Model-free Meta-controller

α - 0.6 -

γ 0.95 0.9 -

β 50 50 50

ǫ 0.01 0.1 -

RB - 100 -

Rtw - 100 -

Ttw 30 - -

They are taken from Dromnelle et al. (2020b) as a starting point for this work. α is the

learning rate, γ is the discount factor, and β is the exploration/exploitation trade-off

parameter. For the MF expert, the converge threshold ǫ and replay constant RB have

been introduced to design the convergence criterion, while ǫ for the MB expert is the

same as in Dromnelle et al. (2020b). Rtw is the number of the last (s, a, s′, r) tuples that the

MF expert can replay. Ttw is the number of the last (s, a, s′, r) tuples considered to built

the transition model T for the MB expert.

expert does not know the transition probabilities of the task, a
convergence test is computed for every offline learning iteration

c as in Equation 9, where actcs,a = τ · actc−1s,a , with act
c̃s,a
s,a = RB

during the first time c̃s,a when that specific transition is selected
for replay and with act0s,a = 0. act is an activation function
defined for each couple (s, a), and it is 0 if (s, a) has not been
replayed before or otherwise it decays from RB (Table 3) along
the replay iterations c with a time constant τ (Equation 11).

∑

s,a

δcs,aact
c
s,a < ǫMF where (9)

δcs,a = |Q(s, a)
c − Q(s, a)c−1| (10)

The principle behind the design of this convergence criterion
is that the importance of each δs,a (Equation 10) starts as RB
and decreases over the offline learning iterations c, following the
decay constant τ (Equation 11). This strategy does not constrain
the number of needed replay iterations, because the agent would
still perform replays due to high

∑

s,a δcs,aact
c
s,a. Nevertheless, this

value will slowly decrease the need for more replay iterations
along with the offline learning phase. RB is a value representing
one of the possible replay budgets needed to obtain performances
that are comparable to the maximum amount of reward that the
expert can collect, thus not inhibiting the offline learning phase
when needed. Finally, the convergence threshold ǫMF is an order
of magnitude larger than ǫMB (Table 3 which is the same used
in Dromnelle et al., 2020b). The MF expert does not know the
probabilities contained in the transitions model in Equation 3
and for this reason, its convergence criterion is based on the
actual update of the action-value function Q(s, a). This means
that, in theMF case, the δcs,a are not multiplied by any probability,
derived from the world model, and thus their values will usually
be an order of magnitude larger than the δcs,a of the MB case,
multiplied instead by the probability of a given (s, a, s′, r) tuple.

τ = RB

√

ǫMF

RB
(11)

4.1.3. Meta-Controller
The meta-controller selects, which expert will take the control of
the next action, by following a specific criterion that is a trade-off
between the learning performances and the computational cost
of the inference process of the two agents and it is called Entropy
and Cost (EC) (Dromnelle et al., 2020b).

On the one hand, the quality of learning is computed by
Equation 12 where f (P(a|s,E, t) is a low-pass filtered action
probability distribution with a time constant τ = 0.67, previously
used as an indicator of the learning quality in humans (Viejo
et al., 2015).

Hexp(s,E, t) = −
|A|
∑

a=0

f (P(a|s,E, t)) · log2 (f (P(a|s,E, t))) (12)

On the other hand, the cost of the process C(s,E, t) is the
computation time needed to perform the inference phase for the
expert E, at time t, and it is also filtered as the action probability
distribution above.

Eventually, the MC chooses which expert will take control of
the next decision by following the equation below (Dromnelle
et al., 2020b):

EX(s,E, t) = −(Hexp(s,E, t)+ κC(s,E, t)) (13)

EX(s,E, t) is the expertise value of the expert E, which is then
converted into a distribution of probabilities using a softmax
function. κ weights the impact of time in the criterion by
assigning greater importance to the computation time when the
entropy component Hexp(s,E, t) of the MF experts is low.

After applying Equation 13, the MC draws the winning expert
from the softmax of the distribution of their expertise EX(s,E, t)
(with a trade-off coefficient β shown in Table 3) and inhibits the
inference process of the expert that is not selected.

4.1.4. The Experimental Set-Up and Implementation
This new hybrid MB-MF RL architecture with replay is tested
in a dynamic navigation task where the robot has to learn how
to reach a unitary rewarding state. The task remains stationary
during the first 1,600 over 4,000 iterations and then the reward
is moved to another state (from state 18 to state 34, Figure 8).
In this experiment, an extra element of non-stationarity is
represented by the starting state of the robot being uniformly
selected with the same probability between state 0 and state
32 at the beginning of each trial (Figure 10). Different from
Dromnelle et al. (2020b), experiments where the reward is fixed
or where a new obstacle is introduced have not been performed
for this work.

First, the real Turtlebot autonomously navigates within the
environment using a SLAM Gmapping algorithm (Figure 8)
and creates a discrete map of the maze (38 Markovian states
are identified and shown in Figure 8A). This autonomous state
decomposition process is identical to the one used in the previous
experiment described in Section 3.1.2. The robot-environment
ratio is very similar to the one of the previous experiment in
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FIGURE 8 | Description of the experimental set-up. (A) Map of the discrete states of the maze. The eight-pointed star indicates the cardinal directions in which the

robot can move. These directions are the same used for the experiment in Section 3 (B) Photo of the real Turtlebot approaching the initial rewarding state 18,

highlighted in the figure. Adapted from Dromnelle et al. (2020b).

Section 3.1.2: the state radius is 35 cm, in this case, and the robot
size is 35,4 x 35,4 x 42 (L x W x H, cm).

Then, during a second free exploration phase, the robot learns
the transition model of the environment, that is, the probability
that the robot starts its move in one state s performs an action a
and arrives in another state s′. This second phase of the creation
of the transition model is also conducted as in Section 3, but with
the real robot in this case.

After these exploration phases, the subsequent experiments
involving a reward were performed in simulation to test the
impact of different parameters of the algorithm and study the
effect of replay on total performance and computation cost.
During these simulations, the agent experienced the MDP based
on the transition map that was empirically acquired with the real
robot (as was done in Dromnelle et al., 2020b).

Figure 10B shows the maximum level of uncertainty for each
of the 38 states of the environment. This uncertainty is computed
in the same way as for the other experiment in Equation 5, and
the transitions map is used to guide the robotic exploration in the
simulation environment.

The action space is also discrete and consists of 8 possible
cardinal directions equally distributed around the agent. Given
the discrete and probabilistic nature of the state and action
spaces, the transition model T(s, a, s′) (Equation 3) and
the reward model R(s, a) of the MB expert are probability
distributions.

4.2. Results
To evaluate the contribution of combining MB and MF replay in
terms of performance and computational cost, we tested several
algorithms. First, we are interested in simulating the two baseline
cases, pure MF and pure MB algorithms, and how they perform
with the respectiveMemR and SimR and limited budgets. Finally,
we want to test the combination of the two strategies by using
the criterion proposed in Dromnelle et al. (2020b), with either an
infinite or a limited reactivations budget. Here are the relevant
combinations of the same controller that we tested in this task:

• MF only agent, no replay
• MF only agent with MF replay (infinite replay budget)
• MF only agent with MF replay (budget: 200 replay iterations)
• MB only agent with MB replay (infinite inference budget)
• MB only agent with MB replay (budget: 200 inference

iterations)
• MB+MF agent with MB replay (infinite inference budget)
• MB+MF agent with MB budget (budget: 200 inference

iterations)
• MB+MF agent with MF replay (budget: 100 replay iterations)

and MB replay (budget: 100 inference iterations) (a fair
comparison with the previous cases because here the
reactivation buffer is split in a maximum of 100 iterations per
expert)

All the MB+MF agents use the EC coordination criterion
described in Section 4.1.3. This criterion was taken from
Dromnelle et al. (2020b) which showed that it allows for
advantageous coordination between MB and MF experts and
significantly reduces the computational cost of the inference
phase, without relevantly impacting the amount of gained
reward. Table 3 shows the values of the parameters that we used
for these experiments.

The speed of learning of all the above-listed agents was
impacted when the reward’s position changed at iteration #1600
(Figure 9A). It is interesting to notice that the MB - inference
budget 100 + MF - replay budget 100 agent, which exploited the
EC criterion with a limited budget for the two experts, shows
a faster increase in the cumulative reward compared to all the
other agents, from around actions #2500. As observed in the
previous experiment (Section 3), replay contributes to increasing
the speed of learning and by combining the action of both
MF and MB replay, it is possible to better account for both
adaptability and generalization, drastically leading to a steeper
accumulated reward over time slope of the proposed strategy,
without having the same growth on the computational cost
side (Figures 9A,B). Concerning the cumulative costs, Figure 9B
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FIGURE 9 | Overall performances of the different agents during their first 4,000 actions in the environment. The vertical black line highlights the trial when the reward

switch (1,600). (A) The dynamics of the reward’s accumulation. (B) The dynamics of the computational cost’s accumulation. (C) An overview of the algorithms’

position within a normalized reward × cost space. The central polygons represent the median of the performance over 50 simulated experiments. Cumulative rewards

and costs have been normalized considering that the MF medians of the cumulative rewards and costs correspond to 0 and that the MB medians of cumulative

rewards and cost correspond to 1.

Frontiers in Neurorobotics | www.frontiersin.org 17 June 2022 | Volume 16 | Article 864380

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Massi et al. Model-Based/Model-Free Replay

shows that it rapidly increases for the MB - inference budget
inf agent when the environment changed, and eventually, by
action #4000, its cumulative cost has doubled the ones of the
other agents.

Thus, considering the final overview of the performances
and computational costs in Figure 9C, deeper analyses and
comparisons of the tested algorithms can be presented. The
results are represented in terms of first, median, and third
percentiles over 50 experiments. The cumulative reward is
the amount of reward each agent has accumulated over the
entire experiment, which is composed of 4,000 iterations of the
learning, inference, and decision processes together (Section 4.1).
The cumulative inference cost represents the time (in seconds)
needed to perform the inference phase.

As expected, reward-wise, the best performing agent is the
pure MB, with an infinite inference budget (black triangle, on
the top-right, in Figure 9C). However, this agent is also the most
costly in terms of computation during the inference phase. This
issue can be partially fixed by reducing the MB replay budget
to 200 iterations (blue triangle, in Figure 9C). In this case, the
inference phase will be stopped either if the action values have
converged or if the number of inference iterations has reached
the maximal budget (in this case 200).

On the opposite side of the figure, the pure MF agent (pink
square, on the bottom-left, in Figure 9C) shows the minimum
cost of the entire set of experiments, but also the lowest
cumulative reward. Adding replay to the MF expert, with an
infinite replay budget (dark violet square in Figure 9C) or a 200-
iteration budget (light violet square in Figure 9C) doubles the
reward accumulation performance, with a limited increase in the
computational costs (compared to the MB costs), in particular
when adding the budget of 200 iterations.

From the results in Figure 9C, we can deduce that for both
the MF and the MB experts, most of the time, the number
of needed reactivations is in the same order of magnitude
as the proposed finite budget of 200 (since the cumulative
costs are comparable). As already shown in Dromnelle et al.
(2020b), with an MB expert with an infinite inference budget,
the coordination of MB and MF experts via the EC criterion
produces agents which are halfway between MB-only and MF-
only experts, regarding performances and costs (yellow diamond
in Figure 9C). Nevertheless, when limiting the MB inference
budget to 100 and adding the contribution of 100 replay
iterations for the MF expert (red diamond in Figure 9), the
cumulative reward increases, and the inference cost diminishes,
moving the performance of the agent closer to the optimal
point (star in Figure 9). Moreover, the arrows highlight the
progressions of the MF-only (pink), the MB-only (blue), and
the MB+MF (orange) agents. Looking in more detail, the
performance of the MF-only agents is improved by adding
a budget of 200 MF replays and on the other hand, the
performance of the MB-only agents is slightly decreased by
limiting the inference budget to 200 iterations, but the cumulative
computational cost is significantly decreased. Starting from the
performance obtained in Dromnelle et al. (2020b), in yellow
in the figure, we obtain similar performances but decrease the
computational cost when we limited the inference budget to 200

inference iterations for the MB expert, producing agents which
are halfway between MB-only and MF-only experts. After this
analysis, we have tested the combination of the two best strategies
tried so far: the MB expert with a limited inference budget and
the MF one with a limited replay budget and we have combined
them through the EC criterion (Equation 13). In this case, to
have the same total reactivations budget as the other tested
algorithm, we have shared the initial 200 reactivations budget to
100 SimR for theMB expert and 100MemR for theMF one.With
this combined replay effort, the overall performance reached an
optimal compromise between performance and cost since the
inference cost is substantially decreased while the cumulative
reward was significantly raised, compared to the results obtained
by Dromnelle et al. (2020b).

Given that the aim of each agent and its EC meta-
controller is composed of two objectives: (1) maximizing the
cumulative reward and (2) minimizing the cumulative inference
cost, we compute the pareto front (black dotted line in
Figure 9C), which represents the solutions that approximate
the set of all optimal trade-offs of the two given objectives.
As expected, the pure MB and MF experts are pareto optimal
solutions, very specialized in one of the two objectives, while
by reducing and splitting their budgets we can have agents
that interestingly converge closer to the OptimalPoint (star
in Figure 9C). To rank all the agents ag, the Chebyshev
distance (Cantrell, 2000) from their median performance to
the OptimalPoint is computed as shown in the following
equation:

Chebyschev distance (ag) = max
obj
| OptimalPointobj −median(agobj) |

(14)
where obj are the 2 normalized objectives of the solutions
space (cumulative inference costs and cumulative reward). The
computed Chebyshev distances are shown in Figure 9C, on the
side of each algorithm point, and show a clear picture concerning
the proposed solutions; the agent sharing the reactivations budget
between the MB and MF is the closest to the optimal point,
followed by the MB expert with limited SimR budget. MF with
MemR and MB + MF without MemR have very similar distances
to the optimal points, meaning that the contribution of the MB
expert is key to adapting to a dynamical environment, but the cost
of this computation can largely decrease just when it cooperates
with an MF agent with replay, that can learn faster also from the
Q-values update of the MB expert.

These results open new possibilities for the design of RL
control architectures in robotics.When dealing with probabilistic
environments, MF replay might focus mainly on rare and
not relevant transitions, leading to interesting exploration
and computational economy, but misguiding the memory
consolidation of relevant experience, when changes happen in
the task (as also seen in Section 3). When the transitions
model is stochastic, the combination of the computationally
competitive MF replay with the general knowledge of the
environment, acquired by MB replay, can bring artificial
agents and robots to better deal with a non-stationary
RL task.

Frontiers in Neurorobotics | www.frontiersin.org 18 June 2022 | Volume 16 | Article 864380

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Massi et al. Model-Based/Model-Free Replay

FIGURE 10 | Representation of the navigation environments for the previous experiments, Section 3 and Section 4, organized in, respectively, 36 and 38 discrete

Markovian states decomposed from the data acquired during the autonomous navigation of the robot, when no reward was present in the mazes. The initial and

reward states for the tasks are also highlighted in the figure. In these heatmaps, the lighter the color of the state, the greater the maximal entropy of that specific state,

according to Equation 5. The represented scale of entropy values (0.87–2.23 a.u.) has been selected to cover the whole range of the computed entropies. Moreover,

in both environments, the robots have navigated for 5357 actions. (A) In the case of the circular maze (Section 3), the navigation and the transition model are acquired

after simulated navigation on ROS Gazebo. (B) In the second experiment (Section 4), the navigation and the transition model are instead computed after the real robot

navigation, which generated a wider range of maximal entropy values, sometimes also very low due to the presence of walls that categorically constrained certain

states of the environment.

5. DISCUSSION

In this paper, our research question was whether RL strategies
using neuro-inspired replay methods, based on neuroscience
knowledge about the hippocampal replay, could improve the
speed and the adaptability of robotic agents engaged in spatial
navigation tasks. MF, MB, and no replay RL techniques were
compared in three simulated robotic experiments of increasing
complexity and realism. Our results showed that in all levels of
abstraction, the neurorobots learned the spatial task faster when
the replay was involved in the process, and more efficiently when
a MB method replay method was used. Conversely, we show
how a synergy between MB and MF replay methods can be more
effective in a more realistic and stochastic experimental setup.

The application of RL techniques to robotics requires coping
with some specificities of operating in the real world (Kober et al.,
2013). First, making actual movements in the real world takes
time, wares out the robotic platform, and also has the potential
of damaging it. Acquiring new data requires the robot to move,
and thus to incur those costs. Online learning processes therefore
have to be as much parsimonious on data use as possible. Second,
making decisions also takes time, especially when using limited
embedded computation systems, while operating in a dynamic
world may require the ability to react extremely rapidly to avoid
damage. Learning systems should thus be as computationally
cheap as possible. Finally, moving and computing both consume
the robot’s energy, which is always available in limited amounts.
This highlights the importance of developing robotic controllers
that can (1) maximize their learning capabilities over experience
and energy scarcity and (2) reduce the complexity of their

algorithm to meet the computational limitations of embedded
platforms.

All along with this paper, we have presented simulated
experiments (sometimes based on data like transition maps
first generated with a real robot) to investigate the possible
advantages of equipping neurorobots with offline learning
mechanisms inspired by hippocampal place cells’ reactivations.
These advantages are, first, to extract as much information
as possible from the already gathered data, and, by mixing
the multiple types of learning processes with the multiple
types of reactivations, to limit deliberation time, and to limit
the aforementioned costs intrinsic to robotics. Starting with
simpler and deterministic environments, as the double T-maze
experiment presented in Section 2, this research illustrates that
as the complexity of the state-action spaces increases, MB SimR
become more strategic for the learning capabilities of the agent
(Section 3). In Section 4, the combination of MF MemR and
MB SimR is presented as an interesting proposal to merge the
benefits of both techniques: prioritizing the MB expert when the
task requires more inference and generalization effectiveness to
be solved (for example facing non-stationarity), while on the
contrary giving priority to the MF expert when an effective
solution can be found relying only on recent experience.

When simulations increase in complexity, thus getting closer
to a real robotic experiment, the challenges regarding the internal
representation of the world (in particular the state-action space
and the reward) increase. As presented in Figure 10, where
the environments of the two last experiments (presented in
Sections 3, 4 respectively) are displayed in terms of maximum
entropy per state, it is visible that the transition probability
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matrix created by the navigation of the real robot (Figure 10B)
results in a representation of the environment which is less
homogeneous and more uncertain than the one learned with
the simulated robot (Figure 10A). Often, in mobile robotics,
localization may depend on a few sensory information, as in
the case of the mobile robots used in our experiments. Such
limited information is however fundamental for the acquisition
of a solid representation of the environment. For these reasons,
the entropy maps in Figure 10 reflect the nature of the two
mazes: the uncertainty is more homogeneous in the circular maze
(Figure 10A) since the environment is an open space which gives
the agent an even chance to end up visiting the neighboring
states. In contrast, the second environment (Figure 10B) is
longer in one dimension and presents inner walls that result
in a fuzzier level of uncertainty on the transitions model of
the environment.

Future works in this research direction would include the
comparison with the RL algorithms performing forward replays,
which are of crucial importance in standard rodents navigation
tasks, such as the multiple T-maze (Johnson and Redish,
2007). These forward-shifted spatial representations have been
demonstrated to happen largely at decision points to predict the
consequences of the next actions. Their effect has already been
successfully modeled in neurorobotics by Maffei et al. (2015),
where they implemented the extractions of relevant policies by
consulting memory. On the other hand, van Seijen and Sutton
(2015) argued that it is mathematically equivalent to update Q-
values in a MF way combined with replay and to update Q-values
in a MB way, given that the elements in the memory buffer, used
for replay, are the same than those used to build the model.
Moreover, RL-based replay strategies can also generate forward
replay events (Khamassi and Girard, 2020) and enable RL-based
models to still account for neurobiological data (Cazé et al., 2018;
Mattar and Daw, 2018).

In summary, this work presented new and crucial results
concerning the advantages and the limitations of different
RL-based replay techniques for robotics, gradually testing
them in more and more complex and realistic circumstances.
Additionally, this research paves the way for new studies on
the role of replays in neurorobotics, in particular, in spatial
navigation tasks where generalization effectiveness and time
efficiency are key.

Finally, the addition of RL techniques, inspired by
hippocampal replays, shows an improvement in the performance
of the presented navigation task, in particular, concerning the
exploitation of the past experience, knowledge propagation,
and as a consequence, the speed of learning. MB SimR
significantly contributed in the case of non-stationarity, but a
fruitful coordination with MF MemR became crucial in terms of
computational cost reduction. All these insights, found in robotic
experiments, implemented with different levels of abstraction,
can encourage new neuroscientific experimental protocols and
shed light on a better understanding of the phenomenon of
hippocampal replay.
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