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Maintaining a stable estimate of head direction requires both self-motion (idiothetic)

information and environmental (allothetic) anchoring. In unfamiliar or dark environments

idiothetic drive can maintain a rough estimate of heading but is subject to inaccuracy,

visual information is required to stabilize the head direction estimate. When learning to

associate visual scenes with head angle, animals do not have access to the ‘ground truth’

of their head direction, and must use egocentrically derived imprecise head direction

estimates. We use both discriminative and generative methods of visual processing to

learn these associations without extracting explicit landmarks from a natural visual scene,

finding all are sufficiently capable at providing a corrective signal. Further, we present

a spiking continuous attractor model of head direction (SNN), which when driven by

idiothetic input is subject to drift. We show that head direction predictions made by the

chosen model-free visual learning algorithms can correct for drift, even when trained on

a small training set of estimated head angles self-generated by the SNN. We validate

this model against experimental work by reproducing cue rotation experiments which

demonstrate visual control of the head direction signal.

Keywords: spiking neural network, pyNEST, head direction, predictive coding, localization, continuous attractor

1. INTRODUCTION

As we move through the world we see, touch, smell, taste and hear the environment around us.
We also experience a sense of our own self-motion through our vestibular system, which enables
us to keep balance and to maintain an internal estimate of our location and heading—pose—in the
world. Any drift in pose estimate incurred through the integration of self-motion cues alone (as we
walk with our eyes closed for example) is quickly corrected when we open our eyes and recognize
familiar features in the environment. This approach to self-localization has been adopted in many
fields of engineering that require an accurate and persistent pose estimate to operate effectively,
such as mobile robots and augmented reality devices.

The relative contributions of self-motion (idiothetic) and external sensory cues (allothetic) to
the firing properties of ‘spatial cells’ in rodents has been extensively investigated in neuroscience
(see below for review). The integration of idiothetic cues provides the animal with a rapid and
constant estimate of pose. This estimate not only aids navigation in the absence of allothetic
cues, but is also a learning scaffold to associate pose with novel visual scenes. This second
function has received little attention in prior models which often use the ground truth pose
of a learning mobile agent to associate sensory view rather than the drift prone estimate
provided from idiothetic cues. In mobile robotics this problem is addressed in the research field
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known as Simultaneous Localization AndMapping (SLAM) with
myriad solutions proposed, each with their own advantages and
limitations based on environmental, sensory and computational
constraints. In this study we are interested in modeling how this
problem has been solved in the mammalian brain.

The problem of accumulative error in idiothetic cue
integration implies that head direction estimates from early
explorations of a novel environment should be more reliable
than later explorations. Therefore, earlier experiences of an
environment should be used to learn associations between
heading and visual scenes, to correct for drift as the animal later
explores the same environment. From a learning perspective this
puts constraints on the size and richness of training sets. This
bi-directional learning problem is investigated here through a
series of controlled experiments using a simulated mobile robot
within a virtual environment. Our contribution is to model the
head direction cell system using populations of spiking neurons,
translating angular head velocity cues into a spike encoded
representation of head direction. To anchor head directions to
allothetic cues, we have trained three different model-free visual
learning algorithms: Convolutional Neural Network (CNN),
Variational Auto-Encoder (VAE) and Predictive Coding Network
(PCN), to associate distal natural visual scenes with the spike
based representation of head direction. We demonstrate that all
three models are capable of correcting the drift in pose estimate
from purely idiothetic cue integration evenwhen trained on small
self-generated training sets. This is evaluated further through cue
conflict experiments to reveal similar characteristics of the model
performance as recorded in rodents. The primary motivation
for this work is toward a deeper understanding of the complete
head direction system of the rodent through the integration of
components modeled at different levels of abstraction; namely,
spiking neural attractor network models, deep learning based
generative and discriminative models, and simulated robotic
embodiment. However, the integration of models at multiple
levels of abstraction also provides a framework for how energy
efficient neuromorphic hardware components (Krichmar et al.,
2019) can be usefully integrated into mobile robotic applications
in the near future. We contend that to fully exploit this
biologically inspired computing paradigm requires continued
biomimetic study of fundamental neuroscience as epitomized in
the field of neurorobotics.

1.1. Rodent Head Direction Cell System
Neural correlates of position (O’Keefe, 1976; Hafting et al., 2005),
environmental boundaries (Lever et al., 2009), heading (Taube
et al., 1990), speed (Kropff et al., 2015) and numerous other
spatial measures (see Grieves and Jeffery, 2017 for review) have
been extensively studied in the rodent brain and remain an
active topic in neuroscience research. Of these, head direction
(HD) cells—cells which exhibit high firing rates only in small
arcs of head angle—appear simplest, and have been a popular
target for modeling. Head direction cells have also been identified
in regions homologous to the rodent hippocampus in birds
(Ben-Yishay et al., 2021), fish (Vinepinsky et al., 2020), and
insects (Kim et al., 2017). Strikingly in Drosophila these cells are

arranged as a ring in the Ellipsoid Body, and have properties of a
continuous attractor.

Most models of head direction use a continuous attractor,
where a sustained bump of activity centered on the current
heading is formed and maintained through interactions between
excitatory and inhibitory cells. Many rely on recurrent excitatory
collaterals between cells in the Lateral Mammillary Nuclei (LMN;
Zhang, 1996; Page and Jeffery, 2018), however anatomical data
show no evidence of this type of connection (Boucheny et al.,
2005). Although head direction cells have been found in many
brain regions, including Anterior Thalamic Nuclei (ATN; Taube,
1995), Retrosplenial cortex (Cho and Sharp, 2001), Lateral
Mammillary nuclei (LMN; Stackman and Taube, 1998) and
Dorsal Tegmental Nucleus (DTN; Sharp et al., 2001; see Yoder
et al., 2011 for review), generation of the head direction signal
is thought to be in the reciprocal connection between LMN
and DTN (Blair et al., 1999; Bassett and Taube, 2001). As the
DTN sends mainly inhibitory connections to the LMN, attractor
networks exploiting connections between two populations of
cells appear more biologically plausible (Boucheny et al., 2005;
Song and Wang, 2005).

1.2. Control of HD by Self-Motion Cues
Self-motion cues can be derived directly from the vestibular
system but also from optic flow and motor efference copy.
Disrupting vestibular input to head direction cells abolishes
spatial firing characteristics and impacts behaviors which rely
on heading (Yoder and Taube, 2009, 2014). Cells sensitive to
Angular Head Velocity (AHV) have been recorded in several
regions including the DTN (Bassett and Taube, 2001; Sharp
et al., 2001). These cells are either sensitive to AHV in a single
direction (clockwise or anticlockwise; asymmetric AHV cells)
or the magnitude of AHV regardless of direction (symmetric
AHV cells). Methods of moving the bump of activity on
the ring attractor to follow head movement rely mainly on
asymmetric AHV input. Bump movement is achieved either
through imbalance between two populations of cells in the
attractor network (Boucheny et al., 2005; Bicanski and Burgess,
2016), or via conjunctive cells which fire strongly as a function of
both AHV and head direction (Sharp et al., 2001; McNaughton
et al., 2006). However, using imprecise self-motion cues in the
absence of vision results in drift in the preferred firing direction
of head direction cells (Stackman et al., 2003).

1.3. Visual Control of HD
Although HD cells still show some directional sensitivity in the
absence of visual cues or novel environments (Goodridge and
Taube, 1995; Taube and Burton, 1995; Goodridge et al., 1998;
Stackman et al., 2003), vision is clearly an important factor
for stabilizing the head direction system. During development,
head direction cells have much sharper tuning curves after eye
opening (Tan et al., 2015), but may use other types of allothetic
information, such as tactile exploration of corners of the
environment with whiskers, to stabilize head direction before eye
opening (Bassett et al., 2018). Even in unfamiliar environments,
visual information helps to stabilize head direction, suggesting
ongoing learning of visual landmarks (Yoder et al., 2011). In
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familiar environments, the preferred firing directions of head
direction cells become entrained to visual features and will
follow these cues over self-motion signals (Taube and Burton,
1995). When environmental cues are rotated, preferred firing
directions of many cells also rotate through the same angle,
resulting in “bilateral” preferred firing directions; Page and Jeffery
(2018) suggest these bilateral cells may be useful for assessing
the stability of environmental landmarks. Some head direction
cells won’t follow these big conflicts in cue location, suggesting
multiple populations of head direction cells that are more or
less strongly controlled by allothetic input (Dudchenko et al.,
2019). This visual control of head direction begins at the LMN
(Yoder et al., 2015), stabilizing the head direction signal at its
origin. Both the postsubiculum (PoS) and retrosplenial cortex
(RSC) are likely candidates for delivering this visual information
to the LMN (Taube et al., 1990; Vann et al., 2009). Head directions
cells (or compass neurons) have also been shown to follow visual
information in Drosophila (Fisher et al., 2019). In this case
visual inputs onto compass neurons are inhibitory, and plasticity
between cells encoding visual features and compass cells has been
directly observed (Kim et al., 2019).

There are two main methods of using visual information to
control the head direction bump position. The first is to use
visual information to fine tune the model of AHV through a
learning mechanism, whether that be by detecting error between
the estimated head angle and the expected head angle based on
the visual cue (Kreiser et al., 2020), or using a combination of
strategic behavior and landmark tracking to match the AHV
model to themovement of the cue within the visual field (Stratton
et al., 2011). The secondmethod is to influence the head direction
bump position directly by exploiting the attractor dynamics
and injecting current into the new bump position. This could
simply use Gaussian inputs into the ring attractor at determined
positions (Song and Wang, 2005), or by representing features
in multiple “landmark bearing cells,” learning the association
between head angle and visible features, and feeding back
expected head direction onto the head direction cells (Yan et al.,
2021). A combination of these two methods of visual control is
probably the answer to accounting for environmental or body
changes in the real world; in this study we begin with directly
influencing the bump position.

1.4. Models of Visual Input
In models of head direction stabilized by visual input, the visual
data used is often contrived. For example, adopting “visual cells”
that fire at specific head angles without any real visual data (Song
and Wang, 2005) and assume visual processing is performed
somewhere upstream. Where true vision is used (captured by
cameras), one or more cues positioned in the environment, such
as colored panels (Yan et al., 2021) or LEDs (Kreiser et al.,
2020), are identified, mapped to a “visual cell,” and learning
mechanisms associate this cue with a head angle (Bicanski and
Burgess, 2016). Natural visual scenes aremuchmore complex and
information rich than bold homogenous cues, with this richness
making real-world landmark identification more difficult. The
question remains, how does a visual scene become useful for

maintaining head angle? In this work we use natural scenes,
projected onto a sphere around a simulated robot (see Figure 1.
We assume this visual information is distal and invariant to
translation. We show that both generative and discriminative
model-free learning algorithms can be used to predict head angle
from natural visual information and correct for drift in a spiking
continuous attractor model of head direction cells, without the
need to identify specific landmarks in the environment.

1.5. On the Discriminative-Generative
Dichotomy
Machine Learning approaches broadly draw from two paradigms.
The first is a discriminative paradigm; models which aim
to partition the incoming data samples along meaningful
boundaries, often building a hierarchy of increasingly abstract
representations or increasingly broad sub-spaces, extracting
meaning through a bottom-up feedforward process. An example
would be Decision Trees, which learn to partition data
through recursive splitting on the data space by simple if-else
rules (Breiman et al., 1984).

The second is a generative paradigm, which approaches the
problem in the opposite direction. A generative model, often
also a probabilistic model, aims to instead learn the capability
of generating appropriate data samples like the training data in
the appropriate contexts. Like a discriminative model, it tries to
uncover abstract features in the data, but instead incorporates
this into a model of latent features, refining its hypotheses about
the underlying causes of the sensory data it is receiving. An
example would be Gaussian Mixture Models, which model the
problem space as a family of Gaussians with different parameter
values (Reynolds, 2009).

Although details between each model vary considerably, the
broad trend is that discriminative models are faster than their
generative counterparts, but can only work within the bounds of
the data they are provided. With the data space’s dimensionality
being potentially unlimited, this still provides a huge amount of
capability, but a training set that does not adequately reflect the
data space can lead to nonsensical outputs. Generative models,
on the other hand, typically tend to be slower to categorize and
slower to learn. However, by generating samples from a model
of latent causes of the data, they are not limited by their inputs
and can produce very different predictions from the data they
are provided. For the case of well-defined and well-bounded
problems, this is often surplus to requirements, but for many
situations, such as with unfamiliar or incomplete data, this can
be beneficial.

Many algorithms make use of elements of both. For
example, the Variational Autoencoder (Kingma and Welling,
2014) has hidden layers that extract features from the
data in a discriminative way, and use these features to
train a multidimensional Gaussian space, the output of
which is decoded by another discriminative layer stack to
produce a sensible reconstruction of the input. A Generative
Adversarial Network (Goodfellow et al., 2014) takes this
even further, using a generative and discriminative network
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FIGURE 1 | The WhiskEye robot used to capture visual and odometry data sets, as it moved within the simulated environment of the NeuroRobotics Platform. The

natural scenery (a panorama of the Chinese Garden in Stuttgart) was projected onto the inside surface of a sphere, surrounding a platform on which WhiskEye can

move. The behaviours expressed by WhiskEye during capture of the data sets analysed in this study are referred to as (A) rotating, (B) circling, and (C) random walk.

in a collaborative competition to produce ever-better data
samples. In neuroscience, particularly regarding the visual
system, aspects of cortical function have been explained as
both a discriminative and generative model, with exactly where
and how these approaches synthesize together an active area
of research (di Carlo et al., 2021); neural codes originally
found in hippocampal work have been hypothesized as a
unifying computational principle (Yu et al., 2021); see also
Hawkins et al. (2019).

In this study we remain agnostic to the debate, instead
choosing to evaluate a mix of generative and discriminative
algorithms for generating predictive head direction signals
from allothetic (visual) cues. As a purely generative model, a
Predictive Coding Network based on MultiPredNet (Pearson
et al., 2021), originally from Dora et al. (2018); as a hybrid
model, a modification of the JMVAE from Suzuki et al. (2017);
and as a purely discriminative model, a Convolutional Neural
Network (Lecun and Bengio, 1997).

2. METHODS

2.1. Experimental Apparatus
WhiskEye is a rat-inspired omnidrive robot, with RGB cameras

in place of eyes and an array of active whisker-like tactile
sensors as shown in Figure 1. In this study only the visual

frames from the left camera were considered. A simulated model

of WhiskEye was integrated into the Human Brain Project’s
NeuroRobotics Platform (NRP) as part of prior work (Knowles

et al., 2021; Pearson et al., 2021). The NRP integrates robot
control and simulation tools, such as ROS and Gazebo, with

neural simulators, such as NEST (Falotico et al., 2017). By
running these in a synchronized way on a single platform,
simulated robots can interact live with simulated neuron models,
allowing for experiments with biomimetic and bio-inspired
systems. Behaviors can also be specified in more controlled ways
using the familiar ROS framework, whilst capturing data from
both the robot and neural simulators for off-line analysis.
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Using the NRP allows arbitrary visual scenes to be constructed
within the environment. The visual scene in this experiment
consisted of a concrete-textured floor for WhiskEye to move
on; surrounded by an invisible collision mesh to contain the
robot in the environment; and with an outer sphere to display
the background. The sphere was made large enough so that
translation had no perceptible effect on the visual scene; barring
the concrete floor, all visual cues could be considered distal.
Within this environment, WhiskEye executed three different
behaviors: rotating on the spot, circling around the center of the
environment and a random walk (illustrated in Figures 1A–C).
This provided the odometry and visual data with which to
validate the performance of each model.

2.2. Spiking Neural Network Model of Head
Direction Cell System
The Head Direction system model is a spiking neural network
(SNN) model written in pyNEST (2.18; Eppler et al., 2009). All
cells are simulated using pyNEST’s standard leaky integrate-and-
fire neuron model (iaf_psc_alpha) which uses alpha-function
shaped synaptic currents. The simulation timestep was set to
0.1 ms for high accuracy with synaptic delay of 0.1 ms. The
network is composed of four equally sized rings of neurons: 180
Lateral Mammillary Nuclei (LMN) cells, 180 Dorsal Tegmental
Nuclei (DTN) cells, 180 clockwise conjunctive cells and 180
anticlockwise conjunctive cells. Constant input current of 450
pA to all LMN neurons results in spontaneous firing at a rate of
50 spikes per second prior to inhibitory input from the DTN. A
summary of the model can be found in Table 1.

Attractor dynamics emerge through reciprocal connections
between cells in the excitatory LMN population and inhibitory
DTN population. Each LMN cell e connects to a subset of
DTN neurons with declining synaptic strength as a function
of distance (Figure 2A). Reciprocal inhibitory connections from
each DTN cell i to LMN cells are arranged with synaptic strength
decreasing as a function of distance offset by a constant (µ). This
arrangement provides inhibitory input to the cells surrounding
the most active LMN cell, producing a single stable bump
of activity.

LMN and DTN cells are arranged as rings for the purpose
of defining synaptic strength based on distance; this gives the
attractor network periodic boundaries. Distances between cells
are found (D), accounting for the wrap around of the ring. Then
synaptic weight from each LMN neuron to DTN neuron (Wexc),
and return connections from DTN neurons to LMN neurons
(Winh) are defined as follows:

d1 =

∣

∣

∣

∣

e

Nex
−

i

Nin

∣

∣

∣

∣
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∣

∣
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− 1
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∣

TABLE 1 | Summary of the spiking neural network written using pyNEST.

Model Summary

Neuron model Standard pyNEST Leaky integrate-and-fire neuron

model

Synapse model static_synapse does not support any kind of

plasticity.

Plasticity -

Topology Populations arranged as rings

Measurements Spikes from LMN population

Populations

Name Size N

LMN Nex 180

DTN Nin 180

CW conjunctive Nex 180

ACW conjunctive Nex 180

Connectivity

LMN to DTN Wexc = bexcexp
(

1
2

−D2

σ2

)

where σ = 0.12 and bexc =

4000

DTN to LMN Winh = binhexp
(

1
2

−(D−µ)2

σ2

)

where σ = 0.12 and µ =

0.5 and binh = 450

LMN to CW conj One to one, w = 660

LMN to ACW conj One to one, w = 660

CW conj to LMN c[i] to e[i + 1], w = 169

ACW conj to LMN c[i] to e[i − 1], w = 169

Input

AHV input One step_current_generator per conjunctive cell

population connected to all cells in the population.

Allothetic input One step_current_generator per cell in the LMN

population connected one to one. Delivers current

matching the prediction from the PCN, VAE or CNN.

D = min{d1, d2, d3}

Wexc = bexcexp

(

1

2

−D2

σ 2

)

Winh = binhexp

(

1

2

−(D− µ)2

σ 2

)

where e and i are the index of the excitatory and inhibitory cell,
respectively.Nex andNin are the total number of cells in each ring.
bexc and bexc are the base weight between the two populations. µ
= 0.5 and σ = 0.12, which determine the position of the center
of the peak, and the width of the peak, respectively.

In the absence of input from the two conjunctive cell
populations, the bump of activity maintained by the attractor
network remains stationary. The initial position of the activity
bump is produced by applying a 300 pA step current for 100 ms
to a nominal LMN cell.
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FIGURE 2 | An overview of the SNN model of head direction, the information flows and experimental setup of this study. Visual data from WhiskEye (dark green arrow)

and the estimated head angle from the SNN (light green arrows) are used to train one of several model-free learning algorithms (black box). Once trained, these

algorithms return head direction predictions (represented as the activity in the array of light blue neurons) that are mapped one-to-one with HD cells in the LMN ring

(dark blue neurons) to correct for drift in the spiking HD ring attractor model. (A) Excitatory and inhibitory projections between the LMN and DTN respectively for the

current most active cell (green neuron). Attractor dynamics emerge from this connectivity to maintain the bump in a stable position in the absence of idiothetic input.

(B) Connectivity between anticlockwise conjunctive cells (black neurons) and head directions cells offset by one cell anticlockwise. With coincident head direction and

angular velocity input (yellow arrow) these cells drive the bump clockwise around the ring. (C) Connectivity between clockwise conjunctive cells (white neurons) and

head directions cells.

In order to track head direction based on the Angular
Head Velocity (AHV) the two populations of conjunctive cells
are connected one to one with a LMN cell, shifted one cell
clockwise or anticlockwise from the equivalently positioned
neuron (Figures 2B,C). Angular velocity of the head was
determined by taking the first derivative of the head position
captured from the simulated WhiskEye at a rate of 50 Hz, taking
the difference in head angle at each time step. Positive values
indicated anticlockwise head movements and negative values
indicated clockwise head movements. AHV was converted to
current (IV ) using the following formula:

IV = (θt+1 − θt) · S+ Imin

where θ is the head angle (radians) from the ROS topic
published by the robot, Imin = 150 pA, and S = 3500. A
step current generator supplies this current to the respective
conjunctive cell population. LMN cells also connect one to
one with the equivalent conjunctive cell in both the clockwise
and anticlockwise populations. Spiking activity occurs in the
conjunctive cells with coincident AHV and LMN spiking input.

Conjunctive cell input causes movement of the attractor network
activity bump to follow head movement.

2.2.1. Allothetic Correction
Head direction predictions from the visual learning models
trained on Laplacian shaped representations of head direction
(see below), are mapped one to one onto the respective head
direction cells. Negative values in predictions are removed by
adding the smallest value in the dataset, then prediction values
are scaled by a factor of 10 and supplied to the HD network as
a direct current injection. This simple method allows predictions
which are smaller in magnitude to have less impact on the bump
location. However, imprecise predictions, that may have multiple
peaks or a broader shape, will lead to current input intomore cells
compared to a perfectly reconstructed Laplacian.

2.2.2. Analysis of Network Output
To compare the spiking network bump position to the ground
truth, the most active cell in each 40 ms time window is found.
The difference between the estimated head angle and the ground
truth was used to show how accumulation of drift over time, with
total error measured as Root Mean Squared Error (RMSE). To
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illustrate drift in the estimated head angle, the preferred firing
direction was plotted using firing rate as a function of head
angle in polar tuning curves. The ground truth head direction
at each spike time was collected into bins (6◦) for the first and the
third minute, to show changes in preferred firing direction over
time. Differences between idiothetic only and the three correction
methods were compared using a one-way ANOVA combined
with the Tukey HSD post-hoc test. A synthetic set of random
uniform predictions, of the same shape and scale as the true
predictions, were used to show that reductions in drift were not
due to arbitrary current input. Statistical tests were performed
using SPSS statistics software.

2.2.3. Artificial Cue Rotation
To investigate the control of allothetic cues over the head
direction cell signal, we reproduced cue rotation experiments
used in rodent studies (Taube and Burton, 1995). To supply
current as if environmental cues were rotated by 90◦, the
predictions were manipulated by taking either the first 45 or
135 prediction values and shifting them to the end of the 180
element prediction, producing an artificial rotation. This rotation
was applied for 30 s after 1 min of standard predictions.

2.3. Model-Free Learning Algorithms
Applied to Allothetic Cue Recall
2.3.1. Dataset Preprocessing
Each dataset from WhiskEye contained both image data and
head direction data. The image data processing was fairly simple,
flattening each (width = 80, height = 45) RGB image into a
single 10,800 long vector. The head direction data was more
involved, being processed as follows:

• Head angle data was recorded at a much higher frequency
of 50 Hz rather than the 5 Hz image data. It was therefore
subsampled to match the timestamps of the image data.

• Head angle at each timestep from the odometry file was
mapped to the 180 cell LMN structure. For example, a head
angle of 120◦ would become a one-hot vector with the max at
cell 60.

• In the case of the Spiking Neural Network Estimate, the most
active cell in a given 40 ms window was chosen as the active
cell for the head direction vector.

• A set of Laplacian distributions was created with means being
the active cell of each head direction vector. The Laplacian
was chosen over the conventional Gaussian as it lead to better
performance overall for the three networks.

• These were rescaled so that the max value for each was 1.

2.3.2. Predictive Coding Network
This network was a modified version of the MultiPredNet
(Pearson et al., 2021) which was developed for visuo-tactile
place recognition. Here the 3 modules that made up the original
network (visual, tactile and multisensory modules) were re-
purposed as visual, head-direction and multisensory modules.
Compared to the conventional feedforward architectures of other

TABLE 2 | Model parameters and dataset details for PCN, VAE and CNN.

Parameter
Values

PCN VAE CNN

Visual input size 10,800 10,800 10,800

Visual hidden layers shape [1,000, 300] [1,000, 300] [32(3,3), 64(3,3)]

Odometry input/output size 180 180 180

MSI layer shape 100 [50, 50] N/A

Training epochs 200 5,000 50

Full set size 3,000 3,000 3,000

Single set size 390 390 390

SNN estimate size 390 390 390

Test set size 3,000 3,000 3,000

Validation set size N/A 2,000 2,000

Learning rule Hebbian Backprop Backprop

Optimiser N/A SGD Adam

PCN training epochs are low due to number of inner ‘cause epochs’ (50 for training,

500 for inference) that increase training time, though are strictly a modification of the

learning rule rather than extra training epochs. Note that the visual layers for the CNN

are 2D Convolution Layers with the kernel shape in brackets. Training epochs vary but all

networks were trained to convergence with a single epoch consisting of the entirety of the

data for that dataset variant (full, single or SNN estimate). Validation data was taken from

a separate set of data gathered with the WhiskEye Rotating behaviour. Hebbian learning

is as per Dora et al. (2018), Backpropagation as per Chollet (2015).

algorithms, the PCN relies on feedback connections toward the
input data. For each sample, the PCN outputs a prediction from
its latent layer that passes through the nodes of the hidden
layers to the input later. The weights between each pair of layers
transform the prediction from the upper layer into a prediction
of the lower layer’s activity. At each layer, the prediction from
the layer above is compared to the activity at the current layer
and the difference (error) calculated. Weights between layers
are then updated locally according to their prediction errors.
This eliminates the need for end-to-end backpropagation and
increases bio-plausiblity. Several network topologies were trialed;
the best performing network had direct odometry input into the
multimodal latent layer, hence the lack of hidden layers in that
stream (see Table 2 for summary).

2.3.3. Multi-Modal Variational Autoencoder
Based on the Suzuki et al. (2017) Joint Multimodal Variational
Autoencoder, the VAE works by compressing inputs via hidden
layers of decreasing size, encoding inputs into a bifurcated joint
multimodal latent space representing the means and variances
of Gaussians. These means and variances are used to generate
normally distributed random variables, which are then passed
through an expanding set of hidden layers to decode the latent
Gaussian output into the same shape and structure as the input
data. This encoder-decoder system is trained via conventional
error backpropagation, comparing the decoded output to the
‘ground truth’ input and adjusting weights accordingly, with the
addition of a KL-Divergence term to penalize divergence from a
µ = 0 Gaussian. As with PCN, the best performing network had
no hidden layers between odometry input and the latent layers, so
these were removed from both the encoder and decoder halves of
the network.
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2.3.4. Convolutional Neural Network
As a discriminative network, the CNN handles the task by
training its weights so that a given visual input produces the
corresponding correct head direction estimate Similarly, unlike
the other two networks, the CNN has no latent space to condition
and operates purely as a encoder, transforming visual scenes to
their appropriate head direction output, with weights updated
using conventional backpropagation. It is also the only network
that is designed specifically for processing images, with strong
spatial priors implicit in the way it processes visual scenes,
analyzing small areas of the image in parallel via convolutions
to produce translation-invariant image features. As the problem
exists within a small, bounded space in both the visual and
odometry domains for this experiment, the larger benchmark
CNNs—AlexNet (Keshavarzi et al., 2021), ResNets (He et al.,
2016) etc.—were not required. Instead, a lightweight, purpose-
built CNN was created.

3. RESULTS

3.1. Head Direction Cell Like Firing
Properties
Cells in the LMN, DTN and conjunctive cell populations all
showed directional firing specificity as observed in the rodent

brain. Figure 3A shows firing rate as a function of head
direction from the equivalent cell in each of the LMN, DTN
and conjunctive cell rings. The preferred firing direction of
these cells is taken at the peak firing rate, and the directional
firing range is the total range of angles each cell fires over. The
average directional firing range of cells in the LMN was 59.3 ±

0.63◦, DTN 275.7 ± 0.69◦ and conjunctive cells 59.2 ± 0.63◦

(Figure 3B). This is consistent with the directional firing range of
DTN head direction cells in rodents (109.43± 6.84◦; Sharp et al.,
2001) being greater than the directional firing range of LMN
head direction cells (83.4◦; Taube et al., 1990). Figure 3C shows
firing rate as a function of angular head velocity for an example
conjunctive cell that has similar form to asymmetric AHV cells
recorded in the DTN (Bassett and Taube, 2001).

3.2. Preferred Firing Direction of Cell Drift
With Only Idiothetic Drive
Ring attractor dynamics which emerge from reciprocal
connections between LMN and DTN cells maintain a stable
bump of activity centered on the current estimate of head
direction. When movement of the bump is driven only by
idiothetic angular velocity input from the two conjunctive cell
rings, the preferred direction of head direction cells drifted over
time. Figure 4A shows the ground truth (black) and estimated

FIGURE 3 | Cells from the DTN, LMN and conjunctive cell populations show HD-like firing characteristics. (A) Preferred head angle of one DTN, LMN and conjunctive

cell expressed as firing rate as a function of head angle, showing strong directional selectivity in the LMN and conjunctive cell and broader directional selectivity in the

DTN cell. (B) Histogram of the directional firing range of cells in each population, showing broader directional firing in DTN cells. (C) Firing rate as a function of angular

head velocity (AHV) from one example conjunctive cell.

Frontiers in Neurorobotics | www.frontiersin.org 8 May 2022 | Volume 16 | Article 867019

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Stentiford et al. Landmark Free Head Direction Calibration

FIGURE 4 | Plots showing drift in the head direction estimate over time. (A) Ground truth head angle (black) and the estimated head angle (blue) from the SNN as the

WhiskEye rotates on the spot. Over time the estimate gets further from the ground truth. (B) Error measured as the magnitude of the difference between the estimated

angle and ground truth increases over time. (C) Preferred firing directions of three cells (red, orange and green) in the first vs third minute of the simulation, showing a

change in preferred firing direction for all three cell of approximately 70◦.

head direction (blue) over time when the WhiskEye robot
rotates on the spot. The difference between the ground truth and
estimate grows over time (Figure 4B), ending with a maximum
difference of 94.5◦ after 3 min (RMSE = 58.4◦). Firing rate as a
function of time for 3 LMN cells in the first minute vs the third
minute are shown in Figure 4C. The shift in preferred direction
of these head direction cells from the first minute to the third
minute was 51.3 ± 10.4◦. However, the RMSE over the first full
revolution was fairly low (5.2◦).

3.3. Predicting Head Direction Using
Model-Free Learning Algorithms
Rodents use allothetic information, such as vision, to counter
this drift in head estimate. This requires forming associations
between visual scenes and the current head angle, so that the
estimated head angle can be corrected when this visual scene is
experienced again. Ground truth head direction is not available in
biology to form associations between visual scenes and heading.
As drift in the head direction estimate (RMSE) is minimal
during the first rotation (Figure 4), even when only idiothetic
information is available, these early head direction estimates
could be used for training the model-free learning algorithms.

This would be a much smaller training set; to test the viability of
using a such a reduced training set, we first used a single rotation
of the ground truth.

This gave us three datasets to train on:

• Full Set - the full 3 min run of ground truth data
• Reduced Set - a single rotation of ground truth data
• SNN Estimate - a single rotation of idiothetic data

Head direction predictions made by three models trained
on head direction/vision pairs are not equally structured. As
seen in Figure 5, the discriminative CNN is far superior
at generating a smooth Laplacian reconstruction, closely
approximating the ground truth equivalent for all three
variant datasets. The VAE reconstructions consisted of many
competing peaks of varying heights, whilst the PCN shows
qualities of both, maintaining a Laplacian-esque area of the
distribution with noise increasing after a certain distance from
ground truth head direction. Both generative models showed
a noticeable degradation in the structure of their predictions
on the smaller datasets; this is most apparent with the VAE,
which suffered further degradation when trained with the
SNN estimate.

Frontiers in Neurorobotics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 867019

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Stentiford et al. Landmark Free Head Direction Calibration

FIGURE 5 | Representative reconstructions of head direction predictions inferred by each algorithm (orange) at a given ground truth head direction (blue). The shaded

difference between the two curves illustrates magnitude of the RMSE, which is inversely proportional to the quality of the reconstruction.

Figure 6 shows the reconstruction error (mean RMSE) for
binned views of the visual scene taken from WhiskEye during
the rotating behavior. Although there are variations in the error,
the performance remains nominally uniform for all head angles,
suggesting that the models are not favoring particular features for
head direction estimate.

Figure 7 shows the overall reconstruction error (mean RMSE)
for all datasets and scenarios. For all three models, reconstruction
error was noticeably increased by a reduction in dataset quality,
but the absolute error remains small. Both the reduced dataset
and the SNN estimates were comparable in their error values,
demonstrating that the internally generated estimates of the SNN
model are a suitable substitute for ground truth odometry as a
teaching signal, provided the dataset (and therefore accumulated
drift) is small. Further to this, it demonstrates the effectiveness
of all three methods, and thus their representative paradigms, at
performing this task with limited data.

3.4. Drift Reduction Using Head Direction
Predictions as Allothetic Input
The predictions generated by the PCN, VAE, and CNN trained on
the full dataset were converted into one-to-one current inputs to
LMN cells to correct for drift using visual information. Figure 8
shows the ground truth head direction, idiothetic only estimate
and the corrected estimate for 3 example datasets (rotation, a
random walk, and circling), with the respective error over time.
In each case, the corrected head direction estimate (pink) is
much closer to the ground truth (black) than the estimate using

idiothetic input only (blue), which drifts over time. Across all
five random walk datasets, corrective input from the PCN, VAE
and CNN all significantly reduced drift (one way ANOVA with
Tukey HSD post-hoc testing: PCN p = 0.001; VAE p < 0.001;
CNN p < 0.001, Table 3). The smallest error after corrections
was achieved using predictions made by the CNN, which had
the lowest reconstruction error. Even thoughVAE predictions are
imprecise, it still performs comparably to the othermethods. This
may be due to current inputs onto HD cells far from the active
bump having less influence due to the attractor dynamics; only
current inputs close to the bump location have strong influence
over bump position. Although the drift was large for the circling
dataset (RMSE = 558.6◦), all three methods successfully corrected
for this drift. This was the biggest reduction in error for all
three model-free learning algorithms (difference in RMSE: PCN
549.5◦, VAE 555.2◦, CNN 556.3◦).

3.5. Drift Reduction Using a Reduced
Training Set
The PCN, VAE, and CNN were trained using a single
rotation of ground truth head directions, and the same
method used to convert the predictions into current input
to the head direction cells. In all cases, the RMSE between
ground truth and the estimate head direction was reduced.
Across all five random walk datasets, corrective input from
the PCN, VAE and CNN all significantly reduced drift (one
way ANOVA with Tukey HSD post-hoc testing: PCN p =

0.001; VAE p = 0.002; CNN p < 0.001, Table 3). Once
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FIGURE 6 | Reconstruction error for different viewpoints of the environment taken from the rotating test dataset. The reconstruction error for each 30◦ arc of view is

represented as a point with radial distance equal to the RMSE between the ground truth Laplacian and each model’s reconstruction (PCN, VAE and CNN trained

using each of the training sets). The panorama depicts the view of the robot as it rotates on the spot, with associated angular head direction labeled in register with

the error polar plots above.

FIGURE 7 | Reconstruction error (RMSE) for each model, during each behaviour, trained on each training set. The Random Walks columns represent the mean of the

5 Random Walk datasets, with error bars indicating the standard error.

again the largest error reductions were achieved using CNN
predictions. The VAE corrections were the least helpful,
reflecting the larger reconstruction error when training on the
reduced dataset.

3.6. Drift Reduction Using SNN Estimate as
Training Set
As the reduction in drift was comparable when the full 3 min
ground truth and a single revolution were used as training sets,
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FIGURE 8 | (Left) Plots showing estimated head angle from the SNN with idiothetic drive only (blue), the corrected estimated head angle from the SNN which also

receives allothetic input from the PCN (pink), and ground truth head angle (black). (Right) The difference between each estimate and the ground truth as also shown.

Examples are shown from the (A) rotating, (B) random walk 1, and (C) circling datasets. In all cases, the allothetic correction results in minimised drift and the

corrected estimate and ground truth are almost indistiguishable. As the PCN, VAE and CNN produce similar reductions in drift, only the PCN plots are shown.

TABLE 3 | RMSE (degrees) of the difference between the estimated head direction from the model and the ground truth using only idiothetic drive, and with corrections

from the PCN, VAE or CNN trained on each of the three training sets.

Full set RMSE (◦) Reduced set RMSE (◦) SNN estimate RMSE (◦)

Ideo only PCN VAE CNN PCN VAE CNN PCN VAE CNN

Rotation 69.64◦ 9.41◦ 3.44◦ 2.68◦ 9.41◦ 8.35◦ 2.31◦ 6.73◦ 6.99◦ 2.71◦

Circling 558.81◦ 9.58◦ 3.72◦ 2.24◦ 14.21◦ 9.44◦ 2.47◦ 14.21◦ 14.86◦ 2.49◦

Random 1 63.33◦ 7.02◦ 5.47◦ 4.24◦ 8.64◦ 15.70◦ 4.32◦ 9.02◦ 15.98◦ 3.22◦

Random 2 58.18◦ 6.39◦ 4.71◦ 4.17◦ 8.73◦ 10.74◦ 4.64◦ 9.03◦ 18.97◦ 3.73◦

Random 3 126.90◦ 7.25◦ 6.35◦ 2.61◦ 9.27◦ 18.47◦ 2.88◦ 10.21◦ 16.50◦ 4.05◦

Random 4 203.09◦ 16.83◦ 13.21◦ 12.34◦ 14.36◦ 18.49◦ 10.62◦ 14.89◦ 16.83◦ 12.34◦

Random 5 65.03◦ 7.09◦ 5.91◦ 3.35◦ 8.72◦ 12.08◦ 3.49◦ 8.42◦ 15.83◦ 3.57◦

we trained each of the model-free learning algorithms on a
single revolution of the estimated head direction produced by the
spiking model.

Similar to the drift reduction seen for the previous two
training sets, drift was reduced by all three models trained
on each of the datasets. Across all five random walk datasets,
corrective input from the PCN, VAE and CNN all significantly
reduced drift (one wayANOVAwith TukeyHSD post-hoc testing:
PCN p = 0.001; VAE p = 0.002; CNN p < 0.001, Table 3).
The CNN produced the best error reduction, ahead of the PCN
and then the VAE, reflecting the reconstruction error of their

predictions. With each decrease in training set quality from
full ground truth, first to single revolution ground truth and
then to single revolution estimated head direction, the average
error across the random walks increased for both the PCN
and VAE, remaining stable only for the CNN. Figure 9 shows
a summary of drift reduction by all three model-free learning
algorithms trained on the full, reduced and SNN estimate
training sets. Compared to head direction estimates which rely
only on idiothetic input, or randomly generated predictions,
all methods and training sets produced a significant reduction
in drift.
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FIGURE 9 | Summary of drift reduction for each of the model-free learning algorithms and training sets across all 5 random walk datasets. Compared to idiothetic

input only and random predictions, drift is significantly reduced for all three methods trained on full, single and SNN estimate training sets. Bar plot shows average

error (degrees) ± standard error.

3.7. Cue Rotation
Head direction cells in rodents have been shown to follow
environmental cues over their idiothetic estimate of heading,
even when those cues are rotated within the environment
(Taube and Burton, 1995; Yoder et al., 2015). To replicate a
cue rotation experiment using the WhiskEye rotating behavior,
we provided unaltered allothetic predictions from each of the
model-free learning algorithms for the first minute, then rotated
90◦ either clockwise or anticlockwise for 30 s before returning
to unaltered allothetic predictions. Figure 10 shows the head
direction estimate against the ground truth, with the error
for clockwise (Figure 10A) and anti-clockwise (Figure 10B)
rotations of the allothetic input from the PCN, VAE and CNN
trained on the full ground truth. The green line shows an offset
of 90◦, which is the rotation of the cue and the value the error is
expected to reach.

For both clockwise and anti-clockwise rotations, the
PCN and VAE input strongly control the bump position.
After a short delay, the bump position moves the full 90◦,
error between ground truth and the estimate reaching
the green line. When the rotation is removed the bump
continues to follow the allothetic input after a delay. Some
drift may be required before the allothetic input can gain
control over the bump position, resulting in a delay. In the
case of the CNN, only when the idiothetic drive and the
rotation were in the same direction (Figure 10B) could the
allothetic input control the bump position strongly enough
to complete the full rotation. Because the allothetic and
idiothetic input are provided simultaneously, the bump is
more likely to move when both of these pull the bump in
the same direction around the ring rather than compete with
each other.

The CNN has consistently the lowest reconstruction error of
all three methods (Figure 5), producing predictions with a sharp
Laplacian peak. This prediction shape results in current input to
a small number of cells at a precise position, and produces the
most accurate head direction estimate. This is likely because the
amount of drift between each allothetic correction is small, and
the bump does not need to be moved far. Noisier predictions
from the VAE and PCN result in current injection to more
cells, making it less accurate for drift correction but more able
to move the bump large distances, as in this cue conflict case.
These data suggest a refined Laplacian peak is not the most
effective prediction shape for strong allothetic control over the
head direction estimate. In all cases, the current magnitude used
was high enough to correct for drift without impairing idiothetic
control. By varying the amount of current supplied, allothetic
input could have stronger or weaker control over the bump
position regardless of prediction shape.

4. DISCUSSION

With these experiments we have shown that, like head direction
cells recorded in rodents, a spiking continuous attractor model
of head direction cells driven purely by self-motion (idiothetic)
information is subject to drift. Taking inspiration from a number
of previous studies (Boucheny et al., 2005; Song andWang, 2005;
Shipston-Sharman et al., 2016), we exploit reciprocal excitatory
and inhibitory connections between the LMN and DTN to
produce attractor dynamics which maintain a bump of activity
at the estimated head angle.

Drift is thought to be caused by imprecise self-motion cues,
but may also be due to inaccuracies in the model of angular head
velocity (AHV). Variability within environments or the body,
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FIGURE 10 | Plots showing corrected estimated head angle (pink) compared the ground truth (black) during the artificial cue rotation experiments. The blue block

indicates the period of cue rotation either clockwise (A) or anticlockwise (B); the expected rotation (90◦) is indicated with a green line on the error plot. In both

clockwise and anticlockwise rotations, corrections by the PCN and the VAE move the bump to the rotated position after a delay. The CNN fails to pull the bump

contrary to the direction of bump movement.

such as injury (or in robots; inaccuracy in the odometry data
due to wheel slip), make maintaining a precise model of AHV
at all times unlikely. A prominent limitation of the experimental
apparatus is that the odometry from the robot being collected
from a simulated embodiment is not subject to inaccuracies.
However, the stochastic nature of a spiking model limits the
resolution and range of angular velocities which can be accurately
represented by a single neuron, this can be seen clearly in the
large drift accrued during the circling dataset where head angle
changes very slowly. Using a population code rather than single
cells may allow for a finer resolution of AHVs which can be
represented in spikes, and contribute to reducing drift.

In rodents, drift in the preferred firing directions of head
direction cells is seen mainly in the dark or when brain regions
providing allothetic input are lesioned (primarily visual; Yoder
et al. 2015), indicating these data are essential for stabilizing
the head direction signal. Using predictions from three different
model-free learning algorithms, we directly influenced the bump
position, minimizing drift. In some previous models of drift
correction, allothetic information contributes to calibrating the
model of AHV, rather than using allothetic input to directly
change the bump position. Kreiser et al. (2020) refine the AHV
model by detecting error between the estimated head angle
and learnt positions of landmarks, and altering firing properties
of AHV cells. Stratton et al. (2011) suggest a role for specific
behaviour patterns for learning new landmarks and calibrating

the AHV model. We show that predictions made after training
on the estimated head angle from the SNN during a single
revolution—a specific behavior—can be used to successfully
correct for drift.

Entrainment of the head direction signal to visual
information has been seen in cue rotation studies, where
external environmental cues are rotated in the environment
and a corresponding rotation is observed in the preferred
firing direction of the head direction cells. These large changes
in bump location are better solved by influencing the bump
position directly, rather than updating the AHV model. By
rotating the allothetic predictions, we have replicated shifts in
the bump position to match the rotation of the environment.
As AHV cell firing also shows some refinement when visual
information is available (Keshavarzi et al., 2021), going forward
a combination of optimizing the AHV model and direct bump
movement could be used.

A Laplacian-shaped input centered on the current HD was
used to train the three model-free learning algorithms. The CNN
reproduced this shape in its prediction whereas the VAE and
PCN produced broader, more Gaussian-like predictions. The
CNN consistently produced the most precise head direction
predictions even for the small SNN estimate training set. This
suggests a trivial learning problem for the CNN, likely because
the range of possible distal views observed by the robot is
small and bounded; the same frames used for training are
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likely to be reobserved as the robot rotates. However, even
with less precise predictions the PCN and VAE can reduce drift
significantly, likely due to the attractor dynamics dampening
current inputs far from the bump location. The artificial cue
conflict experiments revealed a precise Laplacian distribution not
to be suitable as a corrective signal due to the limited number
of cells current is injected into, and therefore the limited power
of this input to influence the bump location. In contrast, the
broader predictions made by the PCN and the VAE were able to
better control the bump position; refining the shape and strength
of the prediction would likely change the allothetic control
over the bump. Two populations of head direction cell have
been identified in rodents, those more controlled by allothetic
input and others more strongly controlled by idiothetic input
(Dudchenko et al., 2019); we can see how by varying the strength
or shape of allothetic input to the network, these two cell types
may emerge.

In previous work, correcting drift with the aid of visual
information has either assumed visual processing upstream and
provided correction based on the ground truth (Song and Wang,
2005), or learnt the orientation of arbitrary features, such as
LEDs or colored panels (Kreiser et al., 2020; Yan et al., 2021).
Here we show that corrective signals can be generated by
learning associations between natural visual scenes and a self
generated representation of heading, without identifying specific
environmental landmarks. However, we recognize that including
advanced visual processing and feature extraction may be useful
for online learning mechanisms to determine the reliability of
visual input. This type of corrective allothetic signal is presumed
to come from the postsubiculum; lesions of this region lead to
more drift than seen for control animals in the dark (Yoder et al.,
2015). This suggests that this region may be contributing more
than just visual correction, but also other sensory modalities. In
this paper, we have focused on the calibration of head direction
estimate by visual inputs; an intriguing direction for future
work would be the inclusion of other allothetic information,
such as tactile or olfactory. In visually ambiguous environments,
conflicting visual cues may cause the HD estimate to become less
accurate. Olfaction has great potential for detecting loop closures,
as rodents leave scent trails as the explore environments (Peden
and Timberlake, 1990), which can tell them if and how long ago
they visited a position. A recent study in mice has shown that
blind animals can use olfactory information to correct for drift in
the head direction estimate (Asumbisa et al., 2022).

All of the methods in this paper currently require batch
learning of head direction-image pairs, however, as rodents
continue to move within environments, they must continually
learn and refine associations between head angle and visual
scenes. Learning to place less weight on unreliable cues, such as
the position of the sun, which may initially appear as a useful
landmark but becomes unstable with time (Knight et al., 2014),
is key to reliable correction of head angle in dynamic natural
environments. The next step is to adapt these model-free learning
algorithms to learn continuously and adapt their predictions as
the robot explores its environment.

The three trained models, despite their differences in
reconstruction error, are all good candidates for generating

allothetic corrections for the SNN. Although some scenarios such
as cue conflicts show weakness of overly-precise estimates as by
the CNN, this is not a fault of the model itself; the robustness of
the PCN andVAE predictions to cue conflicts shows that learning
to minimize the RMSE from a Laplacian ground truth signal
is not ideal for the task at hand, and that better performance
could be gained by training to a broader distribution (such as a
Gaussian).

Where differences do lie is in their applicability to more
complex experimental setups. The environment the data is
gathered from is simple in structure despite the complexity
of the visual scene; there are no proximal cues to obscure
the environment and sensory input is limited to vision.
Previous studies have shown non- visual and multimodal
examples of CNNs (Ma et al., 2015; Dauphin et al., 2017)
and VAE architectures (Suzuki et al., 2017) can perform
well. Both, however, have issues with scaling: the multimodal
CNN requiring many stacked networks working together,
and multimodal VAEs requiring many intermediate uni-
modal latent spaces to perform the task successfully. It is
an open question as to how well PCNs will scale into
more than 2 modalities and whether they will run into
similar scaling issues as the VAEs. However, its method
of operation and learning rule are bio-plausible, with local
learning making it the best candidate for implementation
as a spiking model. Furthermore, prior work has already
shown that a PCN can use tactile information to inform
localization (Pearson et al., 2021).

This work has raised many important questions. How
robust are these model-free learning approaches to a changing
world, particularly with multiple environments, visually and
potentially tactually distinct from each other? How can these
be trained in a sequential manner, as an animal would
experience them, whilst avoiding the catastrophic forgetting
of earlier environments? Can the bio-plausibility of this
system be increased by making the learning fully online,
and is the SNN estimate of head direction reliable for
long enough to train one of these algorithms to produce
useful corrections? The experimental apparatus developed
and used in this study are well placed to address these
questions.

5. CONCLUSION

Idiothetic control of the head direction system is especially
important in new, ambiguous or dark environments; allothetic
control increases the accuracy of the head direction estimate
and may help refine idiothetic control or make large corrections
after a period of drift. We have shown that natural visual
scenes, without identifying specific landmarks, can be used to
predict the current head angle by training three model-free
learning algorithms; this on a limited and imprecise training
set of estimated head angles, produced by a spiking continuous
attractor model of the head direction cell system, driven by
idiothetic inputs from robot odometry. Predictions from all three
methods were equally valuable in minimizing drift.
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