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Recognition of musical beat and
style and applications in
interactive humanoid robot

Yue Chu*

Music College, Dalian University, Dalian, China

The musical beat and style recognition have high application value in

music information retrieval. However, the traditional methods mostly use

a convolutional neural network (CNN) as the backbone and have poor

performance. Accordingly, the present work chooses a recurrent neural

network (RNN) in deep learning (DL) to identify musical beats and styles. The

proposed model is applied to an interactive humanoid robot. First, DL-based

musical beat and style recognition technologies are studied. On this basis,

a note beat recognition method combining attention mechanism (AM) and

independent RNN (IndRNN) [AM-IndRNN] is proposed. The AM-IndRNN can

e�ectively avoid gradient vanishing and gradient exploding. Second, the audio

music files are divided into multiple styles using the music signal’s temporal

features. A human dancing robot using a multimodal drive is constructed.

Finally, the proposedmethod is tested. The results show that the proposed AM-

IndRNN outperformsmultiple parallel long short-termmemory (LSTM)models

and IndRNN in recognition accuracy (88.9%) and loss rate (0.0748). Therefore,

the AM-optimized LSTM model has gained a higher recognition accuracy. The

research results provide specific ideas for applying DL technology in musical

beat and style recognition.

KEYWORDS

multi-modal features, humanoid robot, recurrent neural network, recognition

technologies, musical beat and recognition of style source

Introduction

Music is an indispensable part of modern life, which can assist the expression of

emotion in different situations. Musical factors are complex. A composer considers some

basic elements in his/her music composition: rhythm, melody, harmony, and timbre.

Thus, one must gain a professional understanding of the basic musical elements to

understand musical contents or themes. Non-professionals can also empathize with

music through musical styles and beats. Of these, style is the overall grasp of music and

people’s intuitive feeling of a piece of music. Most music-playing software recommends

music through users’ historical musical style selections. Music recommendation accuracy

has become the key metric for users in choosing music recommendation applications

(APPs). The beat in music is generally understood as the combination law between

strong and weak rhythms, reflected in a stressed note in a piece of a song. Following
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the musical beat, people will swing their bodies unconsciously or

perform other activities. The recognition of style and beat is of

great significance to robot performance (Abbaspour et al., 2020;

Zhou et al., 2020). People can obtain massive amounts of audio,

image, and video information through the internet. Internet

music has a large user base, and the internet music library

is enriched with the diversification of user needs. Given the

massive amount of music information, users urgently demand

a personalized information retrieval approach. However, music

recommendation is extremely challenging. As a form of artistic

expression, music is endowed with a certain emotion. It involves

trivial elements, such as melody, rhythm, harmony, and form,

thus forming different musical styles. Usually, different music

styles emphasize different music elements. These features in

music styles can be used in music classification and retrieval

through the content information. Currently, the music style

classification is most commonly studied and has seen successful

commercialization by music dealers to organize and describe

music. On the other hand, with the increased capacity of

the Internet music library, style-based music retrieval has

become the mainstream method of music information retrieval.

Classifying music by style can meet the users’ personalized

music retrieval and facilitate users to retrieve and efficiently

manage their preference music styles timely. At the same

time, it is convenient for music dealers to manage and label

music styles and recommend music styles of interest to users.

Automatic and accurate classification and recognition of music

styles can effectively reduce labor costs. Therefore, improving

the accuracy of music style classification and recognition can

promote the intelligent development of music platforms. It

provides better services for music listeners, improves user

experience, and expands their choices, which have great research

and economic value.

As artificial intelligence (AI) research becomes mature, its

application gets closer to public life. For example, intelligent

robots are seeing various applicational scenarios, such as service

robots and unmanned aerial vehicles (UAVs). Meanwhile,

robotic technologies are oriented toward entertainment from

practical works. Research on service-oriented robots is abundant

both in and outside China, while there is relatively little research

on dancing robots. Dancing to the beat might seem natural to a

human, but getting robots to respond to beats requires tons of

work and design.

Chronologically, Robots’ applications can be segmented

into several phases, from industrial robots to service robots

and household robots. From the economic sector’s perspective,

robot applications are experienced practical->industrial-

entertainment->domestic development stage. Researchers

have also done many works in robotics, deep learning (DL),

and music interaction in robotics. Wen (2020) designed an

intelligent background music system based on DL, the internet

of things (IoT), and the support vector machine (SVM). They

used a recurrent neural network (RNN) structure to extract

image features. Nam et al. (2019) developed an automatic string

plucking system for guitar robots to generate music without

machine noise. The soft robot technology was used for a new

silent actuator: a soft elastic cone as a buffer to prevent impact

noise. As a result, an elastic cone design method based on

nonlinear finite element analysis (FEA) was proposed. The

silent characteristics of the silent actuator were confirmed

by the noise test that compares the silent actuator with the

traditional actuator. Rajesh and Nalini (2020) represented that

music was an effective medium to convey emotions. Emotional

recognition in music was the process of recognizing emotions

from music fragments. They proposed an instrument-like

emotional recognition method in view of DL technology.

The music data set was collected from strung, percussion,

woodwind, and brass instruments corresponding to four

emotions, namely, happiness, sadness, neutrality, and fear.

From the instrumental data set, the features of Mel frequency

cepstral coefficient (MFCC), normalization statistics of chroma

energy, short-term Fourier Transform (FT) of chroma, spectral

characteristic, spectral centroid, bandwidth, attenuation, and

time characteristics were extracted. Based on the extracted

features, the RNN was trained for emotional recognition. Then,

the performance of RNN and baseline machine learning (ML)

classification algorithm was compared. The results showed that

deep RNN had an excellent effect on instrument emotional

recognition. Instrument classes played an important role in

music-induced emotions. Briot and Pachet (2020) indicated that

in addition to traditional tasks, such as prediction, classification,

and translation, DL was receiving increasing interest as a music

generation method. The latest research groups, such as Google’s

Magenta and Spotify’s Creator Technology Research Lab

(CTRL), were evidenced. The motivation was to automatically

use DL architecture to learn music style from any music corpus

and then generate samples from the estimated distribution.

Then, DL-based music generation reached certain limitations,

such as feedforward in circular architecture, because they tended

to imitate the learned corpus without the incentive of creativity.

Besides, the DL architecture did not provide a direct method

to control music generation. DL architecture automatically

generated music without human-computer interaction (HCI).

However, given its generated content, it still could not help

musicians create and refine music. They focused on the

issues of control, creativity, and interaction analysis. Then the

limitations of applying DL to music generation were listed,

and possible solutions were outlooked. Martin-Gutierrez et al.

(2020) pointed out that the application of multimedia promoted

the services provided by platforms, such as Spotify, Lastfm,

or Billboard. However, the innovative methods of retrieving

specific information from a large amount of music-related

data have become a potential challenge in music information

retrieval. They studied the creation of SpotGenTrack popular

data sets. They proposed an innovative multi-mode end-to-end

DL architecture HitMusicNet to predict the popularity of music
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recording. Experiments showed that the architecture proposed

was better than the existing technology.

The innovation of this work is to propose a lightweight

multi-task cascaded convolutional neural network (MTCNN).

With the help of the proposed MTCNN, the notes are located

and extracted for normalization operation. The innovative

combination of independent recurrent neural network (RNN)

and attention mechanism (AM) is used for music style

recognition, and the data are transferred to the multi-attention

CNN and long-short term memory (LSTM) network for feature

extraction and recognition. This method does not need to label

in advance and is weak-supervised learning. The refined features

extracted by themulti-attention CNN increase the sample details

and contain the global information of the samples. The method

proposed improves the accuracy and precision of music style

recognition to a certain extent.

Design of music style recognition
model and construction of
interactive robot system

Music style recognition modeling by
IndRNN

The music style describes the overall characteristics of a

complete song. The dancing robots’ performance style must

match the music style. In recent years, researchers have applied

neural networks (NNs) to audio signal processing (ASP) (Jiang,

2020; Er et al., 2021). Over time, many variants of RNN have

been developed and applied to ASP. This work optimizes the

RNN to use for music style recognition. Then, an endpoint

detector algorithm (EDA) based on short-term energy difference

is proposed. The starting point of notes can be determined by

looking for the peak of short-term energy difference. Then, two

layers of judgment are designed to determine the endpoint and

reduce the dependence on the threshold (Chakraborty et al.,

2021; Feng et al., 2021).

The principle of the proposed EDA is shown in Figure 1.

As in Figure 1, the music style recognition process is divided

into two stages. The original signal is pre-processed in the

training stage, and then the improved RNN is trained using the

pre-processed data. In the testing stage, the audio to be tested

is first pre-processed by simple data, and then the feature file is

transformed (Mcauley et al., 2021; Wang et al., 2021).

DL is one of the main ways to lead to AI. DL is a branch

of ML that essentially fits data to summarize the available

laws. DL has successfully promoted science and technology and

profoundly impacted big data analytics (BDA). A convolutional

neural network (CNN) is one of the most important models

in DL and lends well to image processing (IP). Combined with

other technologies, CNN can be applied to many different fields.

LeNet was the first real CNN proposed in 1998. This network has

been widely used to recognize the handwritten font of Bank of

America check, which has achieved good results. RNN is another

commonly used DL structure and has a memory function. It

is suitable for solving continuous sequence problems and is

good at learning rules between samples with certain sequential

significance. Unlike CNN, RNN is generally used in production

and prediction, such as in Google Translate and some speech

recognition applications (Mirza and Siddiqi, 2020; Wu, 2021).

RNN is widely used in language models and text production,

image description, video tagging, keyword extraction, and stock

analysis. Meanwhile, RNN has a feedback structure. Its output

relates both to the current input’s weight and to the previous

network’s input. The difference between RNN and the traditional

NN is that RNN has the concept of timing, and the state

of the next moment will be affected by the current state.

Some researchers also call recurrent networks deep networks,

whose depth can be shown in input, output, and time-depth

(Hernandez-Olivan et al., 2021; Parmiggiani et al., 2021). The

RNN structure is given in Figure 2.

Equation (1) can calculate the hidden state ht in the forward

propagation of RNN:

ht = tanh
(

Uxt +Wht−1 + b
)

(1)

The network output at a specific moment can be calculated

by Equation (2)

ot = Vht + c (2)

The prediction output can be counted by Equation (3):

at = softmax
(

ot
)

= softmax
(

Vht + c
)

(3)

In Equations (1)–(3), x(t) represents the input of training

samples when the sequence index number is t. h(t) denotes the

hidden state of the model when the sequence index number

is t. h(t) is jointly decided by h(t) and x(t). o(t) signifies the

output of the model when the sequence index number is t. o(t)

is only determined by the current hidden state h(t). L(t) refers

to the model loss function when the sequence index number

is t. signifies the true output of the training sample sequence

when the sequence index number is t. Three matrices () are the

model’s linear relationship parameters, shared within RNN. The

parameter sharing mechanism reflects the “recurrent feedback”

of the RNN model.

For RNN, since there is a loss function at each position of the

sequence, the final loss L can be explained by Equation (4):

L =

Ŵ
∑

t=1

L(t) (4)
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FIGURE 1

Framework of proposed EDA.

The parameter gradient calculation reads:

∂L

∂c
=

Ŵ
∑

t=1

∂L(t)

∂c
=

Ŵ
∑

t=1

ŷ(t) − yt (5)

∂L

∂V
=

Ŵ
∑

t=1

∂L(t)

∂V
=

Ŵ
∑

t=1

(

ŷ(t) − yt
)(

h(t)
)T

(6)

RNN adds the concept of timing; thus, different input layers

can be set according to the time node. Data can be entered

in multiple ways. The number of hidden layers in the middle

is the same as the number of time nodes, and the number of

neurons per layer and independent variables are the same. The

disadvantage of RNN is that it cannot solve the problem of

long-term dependence, and there is a phenomenon of network

gradient dissipation and explosion. Against the defect of RNN,

the LSTM NN is proposed (Liu et al., 2021; Alfaro-Contreras

et al., 2022), as drawn in Figure 3.

In LSTM, the forget and input gates are expressed by

Equations (7) and (8), respectively. The short-term and long-

term cell states are counted by Equations (9) and (10). The

output gate is exhibited by Equation (11).

ft = σ

(

Wf ·
[

ht−1, xt
]

+ bf

)

(7)

it = σ
(

Wi ·
[

ht−1, xt
]

+ bi
)

(8)

C̃t = tanh
(

WC ·
[

ht−1, xt
]

+ bC
)

(9)

Ct = ft · Ct−1 + it · C̃t (10)

ot = σ
(

Wo ·
[

ht−1, xt
]

+ bo
)

(11)

LSTM and gated recurrent unit (GRU) are the first proposed

two RNN variants. However, the practical applications find that

the Sigmoid and Tanh functions in LSTM and GRU will lead

to gradient attenuation and significantly impact the input of

long-term sequences. To solve the above problems, this section

introduces an IndRNN (Tan et al., 2021; Wagener et al., 2021).

The hidden state in traditional RNN is the input of the next state

and is updated by Equation (12):

ht = σ
(

WXt + Uht−1 + b
)

(12)

In Equation (12), ht is the hidden state at time t. ht−1

represents the hidden state at the previous moment. U is the

weight of different stages.

According to relevant literature, the multiplication

operation of recurrent weight causes gradient explosion or

attenuation. The IndRNN adopts a new and independent

RNN as the basic classification model. Unlike traditional RNN,

IndRNN employs a different state update mechanism (Li and

Zheng, 2021; Xu et al., 2021). Its recurrent input is processed by

Hadamard product, as in Equation (13):

ht = σ
(

WXt + u⊙ ht−1 + b
)

(13)

In Equation (13), u is a recurrent weight. Its mathematical

form is a vector. ⊙ is a Hadamard product operation. The

principle is to multiply the corresponding elements of the two

matrices before and after the symbol.

At moment t, each neuron only accepts the input at this

moment and its own hidden state as input information at

moment t − 1. The hidden state of the nth neuron is described

by Equation (14):

hn,t = σ
(

WnXt + unhn,t−1 + bn
)

(14)

In Equation (14), Wn, un is the nth line of input weight

and recurrent weight. W and u input the spatial and temporal

features, respectively.
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FIGURE 2

RNN structure.

The basic architecture of the IndRNN is depicted in Figure 4.

Activation function (AF) chooses the rectified linear unit

(ReLU). The IndRNN processes the input weight using the

Recurrent+ ReLU structure.

The IndRNN back propagates the gradient in each layer

according to the temporal features. For the nth neuron hn,t , if

the optimization goal of T-time is J, then at t-time, the gradient

reverse propagation process is described by Equations (15)–(18):

∂Jn

∂hn,t
=

∂Jn

∂hn,T

∂hn,T

∂hn,t
(15)

∂Jn

∂hn,t
=

∂Jn

∂hn,T

∏

k=t

∂hn,k+1

∂hn,k
(16)

∂Jn

∂hn,t
=

∂Jn

∂hn,T

T−1
∏

k=t

σ ′
n,k+1un (17)

∂Jn

∂hn,t
=

∂Jn

∂hn,T
uT−t
n

T−1
∏

k=t

σ ′
n,k+1 (18)

σ ′
n,k+1

is the AF in Equation (18).

According to Equation (18), the gradient of the IndRNN

directly depends on un index, while the traditional RNN

gradient is calculated by Equation (19):

∂Jn,T

∂hn,t
=

T
∑

t=0

∂Jn,T

∂ ŷn,T
∗

∂ ŷn,T

∂hn,T

T
∏

j=t+1

∂hn,j

∂hn,j−1
(19)

The traditional RNN determines the gradient by the

Jacobian matrix. A slight change in the matrix might cause great

fluctuation in the final output. In summary, compared with

traditional RNN, IndRNN has many advantages in long-term

sequence tasks. First, IndRNN can avoid gradient disappearance

and explosion more effectively. Second, IndRNN can process

long-term sequences better. Finally, IndRNN has a better

explanation (Mussoi, 2021; Shalini et al., 2021; Xu, 2022).

Visual AM is a unique signal processing mechanism of

the human brain. Human beings can choose areas of focus

by observing global pictures (Mussoi, 2021; Zainab and Majid,

2021). Thereby, they devote more resources to the focus area

than ordinary areas to obtain more detailed features while

suppressing useless information. The essence of the AM is

illustrated in Figure 5.

The input data of the input AM module is X =
(

x1, x2, · · · , xk · · · , xn
)

, representing n environmental variable

sequences. x
k =

(

xk1, x
k
2, · · · , x

k
t , · · · x

k
T

)

denotes the kth

environment variable sequence, and the time window size is

T. The hidden state ht−1 of the previous time corresponding

to the input of the LSTM unit and cell state Ct−1-extracted

environmental parameter weights are introduced into the input

AMmodule. The calculation process is shown in Figure 6, where

ekt and αk
t are calculated by Equations (20) and (21):

ekt = Ve tanh
(

We
[

ht−1 : ct−1
])

+ Uex
k + be

)

(20)

αk
t =

exp
(

ekt

)

∑n
i=1 exp

(

eit

) (21)

In Equations (20) and (21), ekt represents the weight of the

kth environmental parameter at time t. αk
t k means the value of

ekt normalized by softmax function. Ve, We, Ue, and be are the

parameter to be trained.

Equation (22) calculates the environmental parameter’s

vector x̃t weighted by αk
t at time t:

x̃t =

(

α1
t x

1
t ,α

2
t x

2
t , · · · ,α

k
t x

k
t , · · ·α

n
t x

n
t

)

(22)
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FIGURE 3

Original structure of the LSTM network.

The temporal AM extracts the importance of environmental

variables at different times, and its calculation process is shown

in Figure 7.

The input data are the output of the encoder module. That

is the hidden state h
′

i of the weighted value x̃t at time i of the

environmental data sequence after passing through the LSTM

unit. The temporal attention weight is calculated by Equations

(23) and (24):

lit = Vd tanh
(

Wd

[

d
′

t−1 : s
′

t−1

])

+ Udh
′

i

)

(23)

β i
t =

exp
(

lit

)

∑T
j=1 exp

(

l
j
t

) (24)

In Equations (23) and (24), 1 < i 6 T,T is the size of the

time window. d
′

t−1 and S
′

t−1 are the hidden state and cell state

at (t− 1) time. Vd,Wd, and Ud are the parameter to be trained.

β i
t represents the normalized weight of the ith hidden state.

Output Ot of temporal AM module is calculated by

Equation (25):

Ot =

T
∑

i=1

β i
th

′

i (25)

The decoder predicts the beat at time T + 1 combined

with the fully connected layer. Y =
(

y1, y2, · · · , yt , · · · , yT
)

represents the number of beats at each time in the T time

window. The specific process is shown in Equations (26)

and (27).

ỹt = W
[

yt :Ot
]

+ b̃ (26)

d
′

t+1 = f
(

d
′

t , ỹt

)

(27)

In Equations (26) and (27), Ot is the output of the temporal

AM module. ỹt is a linear transformation of yt . d
′

t represents

the hidden state of the decoder at time t. d
′

t+1 denotes the

hidden state of the decoder at the time (t + 1). Function

f is an LSTM computing unit. W and b̃ are parameters to

be trained.

Design of interactive humanoid robot
system

Interactive robots are dancing robots expressing artistic

forms, such as action and language, using physical movements.

The dancing robot can recognize the music style and beat

for given music and display the right music style and beats.

Generally, music style has two targets, namely, beat recognition

and action performance. Beat recognition results can be

expressed from the actions of interactive robots. Pose estimation

is to extract dance movements to form a dance action database

from many dance videos. Finally, the interactive robot performs

specific actions according to the recognized beat. Dance

movement extraction can generate intelligent choreography

based on pose estimation technology. By comparison, pose

estimation is a basic computer vision technology, the estimation

of the human posture or the key points of the human body. The
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FIGURE 4

IndRNN.

dance action library comprises various stylish dances, divided

into ten categories. The dance library is mainly divided into

two parts, aiming at robots and non-professionals. The design

framework of dancing robots is divided into three parts. The

focus is on the design of the dance library, which is divided

into three steps. First, the image is detected from the video

frame. Second, 2D keypoint information is detected from the

image. Third, the music style recognition system converts the

2D keypoint information into 3D information. Fourth, the

3D information is transformed into joint angle information

recognizable by the robot motion model. Ultimately, the dance

action library is enriched according to the actions obtained

from different styles of dance videos. Dance pose estimation

and the dance action classification modules in the HCI system

are the key to background recognition. Accuracy and response

time can evaluate the dance movements and test the feasibility

of HCI systems based on dance education and action analysis

and recognition.

The deep LSTMnetwork architecture reported here contains

a four-layer network structure. The first layer is the input,

with 13 neuron nodes. The neurons in the middle two

hidden layers are 128 and 32, respectively. The last layer

is the output containing ten nodes corresponding to ten

music styles.
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FIGURE 5

Thought of AM. (A) Network structure, (B) Algorithm pseudocode.

The dataset and the environment
configuration of the experiment

Themusic style library used in this experiment is GTZAN. It

is the western music style library used by Tzanetakis in his paper

published in 2002, including ten music styles, namely, blues,

classical music, country music, disco, hip-hop, jazz, metal, pop

music, reggae, and rock, with 100 clips in each style, totalling

1,000 music clips. Each segment is a mono 16-bit wav file with a

length of 30 s and a sampling rate of 22.05 kHz. Of these, 50 clips

are selected from each style for training, 25 clips for verification,

and 25 clips for testing.
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FIGURE 6

Input AM module calculation process.

FIGURE 7

Temporal AM.

FIGURE 8

Relationship between the hidden layer neurons, the learning rate, and model error. (A) Indicates the relationship between the hidden layer

neurons and error. (B) Shows the relationship between the learning rate and model error.
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FIGURE 9

Model comparison results.

FIGURE 10

Comparison of multi-parallel LSTM models, IndRNN, and AM-IndRNN. (A) the first test; (B) the second test.

Analysis and discussion of
experimental results

Experimental results of model parameter

The relationship between the hidden layer neurons, the

learning rate, and model error is outlined in Figure 8.

Overall, the training error decreases when the hidden layer

neurons increase from 3 to 13. In particular, when the hidden

layer neurons increase from 10, 11, to 12, the training error

increases first and then decreases. In conclusion, the optimal

hidden layer nodes are 11. On the other hand, the learning

rate directly affects the model learning and training efficiencies.

Concretely, the prediction error fluctuates greatly given a large

learning rate, and the model converges fast. By comparison,

a low learning rate means some uncertainties and slow

convergence. Finally, the optimal learning rate is determined as

0.01 by observing errors and the number of training.
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Functional test of the algorithm

Figure 9 compares the music style and beats recognition

accuracy of single LSTM, bi-directional LSTM, IndRNN, and

AM-IndRNN.

Comparing the loss and prediction accuracy reveals that

multi-parallel models have higher prediction accuracy than

single ones. The recognition accuracy of the multi-parallel

model reaches 79.8%, higher by 43.8% than the single LSTM

model, and themodel loss is only 6.85%. Overall, the recognition

accuracy and loss of the AM-IndRNN reported here are

optimal, reaching 88.9% and 7.48%, respectively. Therefore, the

optimized LSTM has higher recognition accuracy and is more

applicable for recognizing music styles and beats.

The result of note prediction accuracy is plotted in Figure 10.

In Figure 10, the abscissa means the number of iterations,

and the ordinate denotes the note prediction accuracy.

Apparently, note prediction accuracy increases with training

iterations. Meanwhile, the accuracy of the proposed AM-

IndRNN is always higher than that of multi-parallel LSTM

models and IndRNN.

The experimental results show that compared

with the model proposed by Soufineyestani et al.

(2021), the AM-IndRNN reported here has a higher

recognition rate on the GTZAN dataset. The experimental

results of this paper are compelling. They can well

complete the classification of music styles on the

GTZAN dataset.

The advantage of the AM-IndRNN reported here is that

the recognition accuracy and loss rate are optimal, reaching

88.9% and 0.0748, respectively. Compared with the non-

optimized LSTM model, the optimized LSTM model has higher

recognition accuracy.

The disadvantage of the AM-IndRNN reported here

is that this work limits the research object to single

music tone recognition. There are different musical

instruments in different countries and nationalities. With

the deepening of research, the recognition task may no

longer be limited to specific musical instruments or single

musical instrument performance. With the continuous

expansion of instrumental music, the identification and

discrimination work can eventually develop into the

performance identification of multiple groups of musical

instruments and even the music performance identification

with vocal music elements.

Algorithm comparison

Under the same experimental conditions, the proposed AM-

IndRNN model, deep Bach model, and BiLSTM- Generative

adversarial network (GAN) model’s note prediction accuracies

are compared in Figure 11.

FIGURE 11

Comparison of the deep Bach model, BiSTM-GAN model, and

the proposed AM-IndRNN model.

According to Figure 11, when the network iteration =

600, the music note prediction accuracy of the proposed AM-

IndRNN, BiLSTM-GAN, and deep Bach model is 73, 65,

and 33%, respectively. When the network iteration = 1,400,

the accuracy of the above three models is 92, 85, and 53%,

respectively. Therefore, with the increase in network iteration,

the model’s accuracy in predicting notes gradually increases.

Meanwhile, the accuracy of the proposed AM-IndRNN to

predict notes is always higher than deep Bach and BiLSTM-

GANmodels.

Conclusion

With the popularity of internet technology and multimedia

equipment, online digital music has increased exponentially.

Thus, it becomes extremely challenging to manually manage

and classify massive numbers of online musical works. At

the same time, users’ needs for timely and accurate music

information retrieval have become imminent. This requires

the design of an accurate and effective music style and beats

recognition and classification system to manage online music

databases. The traditional music style classification methods

need a priori knowledge, with complex feature extraction and

fewer representative features. In particular, the DL classification

model can be used for automatic music style classification. This

work focuses on music style classification from audio feature

extraction, classifier training, and music style prediction. As

a result, a complete automatic music style recognition system

is implemented. To do so, the LSTM model is selected over

CNN. The sample music is divided into ten different styles.

Meanwhile, a hierarchical classification is adopted to improve

the classification accuracy further. Specifically, music is classified

into strong and weak categories by the LSTM classifier and
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then divided into multiple subcategories. This new multi-stage

classification method is used to classify different music styles.

Experiments show that hierarchical multi-step can improve

classification accuracy to a certain extent.

However, there are still some deficiencies. The music style

recognition system reported here recognizes single notes, but

multiple notes generally appear continuously in real music.

Hence, future research work will continue to study the problem

of multi-tone pitch recognition. In addition, due to the

limitation of research time, the number of samples is small,

and the experimental samples will continue to be expanded in

future research.
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