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The signals from electromyography (EMG) have been used for volitional control of

robotic assistive devices with the challenges of performance improvement. Currently, the

most common method of EMG signal processing for robot control is RMS (root mean

square)-based algorithm, but system performance accuracy can be affected by noise or

artifacts. This study hypothesized that the frequency bandwidths of noise and artifacts

are beyond the main EMG signal frequency bandwidth, hence the fixed-bandwidth

frequency-domain signal processing methods can filter off the noise and artifacts only by

processing the main frequency bandwidth of EMG signals for robot control. The purpose

of this study was to develop a cost-effective embedded system and short-time Fourier

transform (STFT) method for an EMG-controlled robotic hand. Healthy volunteers were

recruited in this study to identify the optimal myoelectric signal frequency bandwidth of

muscle contractions. The STFT embedded system was developed using the STM32

microcontroller unit (MCU). The performance of the STFT embedded system was

compared with RMS embedded system. The results showed that the optimal myoelectric

signal frequency band responding to muscle contractions was between 60 and 80Hz.

The STFT embedded system was more stable than the RMS embedded system in

detecting muscle contraction. Onsite calibration was required for RMS embedded

system. The average accuracy of the STFT embedded system is 91.55%. This study

presents a novel approach for developing a cost-effective and less complex embedded

myoelectric signal processing system for robot control.

Keywords: short-time fourier transform, real-time control, robotic hand, embedded system, frequency domain,

fixed bandwidth, myoelectric signal

INTRODUCTION

Developing an intuitive control system for assistive robot motions has become a hot research topic
recently. In past decades, research has shown that an intuitive control mechanism can improve the
exoskeleton performance and an individual’s experience (Lotze et al., 2003; Gui et al., 2017). The
signal from electromyography (EMG) (myoelectric signals) is a promising physiological signal to
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reflect motion intention, which comprises the sum of the
electrical signals generated by the active motor units (MUs),
and EMG signal has been widely used in rehabilitation therapy
(Kawase et al., 2017; Yao et al., 2018; Gui et al., 2019; Gordleeva
et al., 2020; Li et al., 2021). There are still challenges in
processing EMG signals for robot control, including removing
systematic noise and artifacts (McCool et al., 2014; Roland et al.,
2019), increasing signal-noise ratio (SNR) using special electrode
(Zhang et al., 2019; Chen et al., 2020; Fu et al., 2020), determining
the onset and offset of muscle contraction (Xu et al., 2012; Yin
et al., 2020), and lowering firmware and device cost. Less complex
algorithms and firmware are required to develop an optimal
signal processing and control system.

Myoelectric-based control systems have achieved high
accuracy in laboratory environments or testing offline. However,
the real-time usability does not meet the expectations of
amputees or patients (Parajuli et al., 2019). Onsite calibration
is required for the robotic system to achieve better sensitivity
and accuracy of the system performance. One of the key issues
for real-time myoelectric control is that control techniques lack
robustness for various subjects due to individual bio-variability,
particularly in the current embedded systems. The voltage
trigger threshold needs to be adjusted among different users.
With a lower triggering threshold, unwanted robot motion
can be triggered by noise or artifacts, while the user needs to
contract muscles harder to let the robot move when a high
threshold is set up. Further improvement is required to have a
user-friendly system.

A case was reported (Secciani et al., 2019) to demonstrate an
EMG-based strategy for the motion control of wearable assistive
hand exoskeleton systems. An EMG-based embedded systemwas
developed using a cost-effective microcontroller unit (MCU),
the Arduino Nano board. One EMG sensor was placed on the
flexor digitorum and another sensor was placed on the extensor
digitorum. A patient with spinal muscular atrophy (SMA) type
II used the proposed system to grasp 10 differently shaped items.
After 1 week of training, the patient was able to complete the task,
but the grasping time was longer than the healthy subjects. This
paper did not address the variability of different users and related
performance accuracy among other users. The system response
time was slow with an average grasping time longer than 10 s.

EMG RMS-based time-domain features have been used as an
approach to classify nine wrist-hand movements (Raurale et al.,
2019). The Myo Armband was used to collect eight channels
of EMG signals from the subject’s upper forearm. EMG signals
were processed by a small set of time-domain features, including
integrated-EMG, the natural logarithm of variance, and Root
Sum Square. Kernel Fisher’s discriminant feature projection
(DFP) and radial bias functional neural network (RBF-NN) were
used to classify the different movements. The whole system
was deployed using ARM Cortex-A53 MCU, and the processing
time meets the requirement of real-time usability. Although
the proposed system showed high classification accuracy within
less processing time, the system needed complex training for
different subjects. Complex algorithms are required to process
eight-channel EMG signal inputs. It is successful in laboratory
research, but no commercial products are available in the market.

EMG signal has been used to control upper arm prosthesis,
the DEKA arm using EMG-pattern-recognition (EMG-PR)
techniques (Resnik et al., 2018). Twelve upper limb amputees
were recruited for the user’s experience experiment. Qualitative
data were collected through survey questions and interviews.
The results showed that most participants preferred the controls
of traditional prosthesis rather than the EMG-PR-controlled
DEKA arms. However, most participants were positive about the
future potential of the EMG-PR-based controlling system. This
suggested that improvements are still required inmyo-electricity-
based control systems.

To date, most of the research reported in the literature
using the EMG-based control system is still being performed
in laboratory settings. There is a gap between research and
product commercialization and mass production. Cost-effective,
small, and simple products are preferred by users and clinical
applications. EMG-based signal processing system for robot
motion control is still not perfect with many challenges including
the need for the removal of artifacts and noise. RMS (root
mean square) of EMG is a commonly used feature for robot
control but can be significantly influenced by motion artifacts
and noise (Ho et al., 2011; Salvietti et al., 2016). RMS-based time-
domain signal processing includes both myoelectric signals and
noise artifact signals, hence, this can yield a large magnitude
variance of recorded signals for processing. We hypothesize
that the frequencies of artifacts and noise are not within the
frequency bandwidth of muscle contraction, hence, the EMG
signals associated with muscle contraction can be separated from
the whole signal spectrum using a fixed frequency bandwidth
methodology, thus directly denoising the signals and reducing
the variance of signal magnitude, generating stable signals for
robot motion control. This study hypothesized that the frequency
bandwidth of noise and artifacts is beyond the main EMG signal
frequency bandwidth, hence, the fixed-bandwidth frequency-
domain signal processing methods can filter off noise and
artifacts only by processing the main frequency bandwidth of
EMG signals for robot control. The purpose of this study was to
develop a cost-effective embedded system and short-time Fourier
transform (STFT) method for an EMG-controlled robotic hand.

Frequency-domain features and short-time Fourier
transforms (STFT) have been proposed and used for spectral
analysis of EMG signals (Englehart et al., 2001; Phinyomark
et al., 2018). However, the frequency-domain EMG processing
method has not been used in any commercialized products. The
frequency-domain EMG processing has been implemented only
in a laboratory setting using a large computer and advanced
software, such as MATLAB or LabView software. And most of
these previous studies used machine learning (ML) algorithms
for frequency-domain EMG signal processing (Da Silva et al.,
2008; Larivière et al., 2008; Camata et al., 2010; Costa et al., 2010;
Dantas et al., 2010) and they were conducted by performing
offline data analysis for conceptualization proof rather than
real-time signal processing for robot motion control. Artificial
intelligence and machine learning (ML) are emerging techniques
in EMG signal processing for motion pattern recognition and
robot control. However, the ML-based firmware is expensive
and significant efforts are needed for algorithm development
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(Jiang et al., 2020; Zhou et al., 2021). In recent years, deep
learning-based human-robot interaction (HRI) was developed
(Qi et al., 2021, 2022; Su et al., 2021a) and achieved a higher
recognition accuracy and faster inference speed with the help
of GPU. To our knowledge, no cost-effective MCU has been
adopted to process EMG signals for real-time robot motion
control using the fixed-bandwidth frequency-domain STFT
processing method.

The purpose of this study was to develop an EMG-based
fixed-bandwidth frequency-domain embedded system using a
cost-inexpensive, small-size microcontroller unit (MCU) for
volitional robot movement control. Experiments were conducted
to identify the optimal myoelectric signal frequency bandwidth
responding to muscle contraction. The feasibility of using cost-
effective firmware and less complex algorithms were developed
and validated among healthy volunteers. The effectiveness of
STFT-basedmyoelectric signal processing was compared with the
RMS-based myoelectric signal processing method to determine a
better myoelectric signal processing approach.

MATERIALS AND METHODS

Electrode and Locations for EMG Signal
Acquisition
This system was designed to control the robotic hand for precise
wrist flexion and extension motion and resting control. This
motion is one degree of freedom (DoF) in an adaptive manner,
and the wrist motion started and stopped at any time and at
any position according to the user’s intents. The multiple DoFs
motion control systemwas not developed in this study. The flexor
carpi ulnaris and extensor carpi radialis longus were chosen as
the EMG signal sources for the system. All procedures have been
approved by the ethics committee (Institutional Review Board)
of Wayne State University.

The electrodes for this systemwere general-purpose electrodes
(BIOPAC, System, Inc.), which had Ag/AgCl contact (11mm of
diameter) and standard snap connection. One channel of EMG
signal used three electrodes: two electrodes placed on the targeted
muscle and one placed on the olecranon as the ground electrode.

EMG Signal Processing
The raw EMG signals were rectified and integrated by
the MyoWaveTM EMG sensor module (SparkFun Electronics,
AT-04-001) before being further processed by the STM32
microcontroller unit (MCU) for STFT processing. The rectified
and integrated EMG signals (RIEMG) as a time-domain feature
can be calculated using the following equation:

RIEMG =

∫ t+T

t

∣

∣x(t)
∣

∣ dt (1)

Where x(t) is an input EMG signal and T is the length of the
time window.

Root mean square (RMS) was used for time-domain feature
extraction, which was calculated as the following equations:

RMS =

√

√

√

√

1

N

N−1
∑

i=0

x2(i) (2)

Where x is an input EMG signal, N is the number of elements of
a time window, and i is the time interval of the integral.

As for frequency-domain features, median frequency (FMED)
is the most common feature. FMED is the frequency representing
the midpoint of the power distribution in the Power Spectral
Density (PSD) and it is the frequency below and above which lies
50% of the total power in the EMG. It is calculated as follows:

∫ FMED

0
P(f )df =

1

2

∫

∞

0
P(f )df (3)

Where P(f) is the signal power spectral density function.
The mean frequency (FMEAN) of a spectrum is calculated as

the sum of the product of the spectrogram intensity (in dB) and
the frequency, divided by the total sum of spectrogram intensity.

FMEAN =

∑n
i=0 Ii · fi

∑n
i=0 Ii

(4)

Where n is the number of frequency bins in the spectrum, fi is the
spectrum frequency at bin i, and Ii is the intensity of the spectrum
at bin i.

Short-time Fourier transform (STFT), a time-frequency-
domain analysis method was used to determine the main
frequency band in responding to muscle contraction. The STFT
divided a longer time signal into shorter segments of equal length
and then computed the Fourier transform separately on each
shorter segment. The equation of STFT is shown as the following:

Gf (ǫ, u) =

∫

EMG(t)g(t − u)ejǫtdt (5)

Where g(t-u) is the window function and EMG(t) is the raw
EMG signal.

Integrated EMG Signal Processing and
Stepper Motor Controlling System
The system consisted of two MyoWareTM Muscle Sensors
(SparkFun Electronics, AT-04-001), one STM32 microcontroller,
one steppermotor driver, and one robotic hand. TheMyoWareTM

module was used to collect, amplify, and filter the signals. The
EMG signals were sent to an STM32microcontroller unit (MCU)
for STFT processing, motion pattern recognition, and motor
motion control (Figure 1). In the experiment, the robotic hand
was controlled by the motor driver and had one degree of
freedom, which can perform the open and close motions.
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FIGURE 1 | (A) Electronics connection schematics of embedded stepper motor controlling system. (B) The actual integration and realization of the system.

Algorithm Design for Embedded EMG
Signal Processing and DC Motor Motion
Control
STFT Algorithm and Firmware for Motor Control
The STM32 MCU was used to build the embedded system.
STM32 has an ARM 32-bit CortexTM-M3 CPU with 128KB flash
memory, and the MCU can operate at a 72-MHz frequency. The
sample rate of this system’s Analog to Digital Converter (ADC)

was defined by the system clock and phase-locked loops (PLL).
Nyquist–Shannon sampling theorem described that a sufficient
sampling rate should be >2B Hz (B is the band limit of a given

bandwidth, representing the maximum frequency of the signals).

Because the main power spectrum of EMG signal ranges within
the frequency band of 0–500Hz, the ADC sample rate was set
at 1,100Hz. After the data were collected from the EMG sensor,
a 256-point FFT algorithm was applied to obtain the frequency
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spectrum. STM32 and software clearly showed the magnitude

changes of different frequency bands by STFT including the
bandwidth responding to muscle contraction. Since the most
prominent bandwidth was 60–80Hz as shown in Figure 5H,
algorithms were encoded to monitor the magnitude of 60–80Hz
frequency bandwidth for motion classification. The controlling
strategy was set up according to the frequency spectrum and
voltage magnitude. The motor motion triggering threshold was
set at 50% of the maximum voltage amplitude of the frequency
band of 60–80Hz. Then, the MCU sent the controlling signal
through the GPIO pin to the microstep drivers (MB450A) to
drive the DC motor. All the controlling algorithms and MCU
initialization were written in MDK-Keil software (uVision4)
using C++ language (Figure 2).

RMS Algorithm and Firmware for Motor Control
The data from EMG sensor were processed using RMS
algorithms and STM32 firmware. The triggering threshold was
set at the 50% level of amplitude of EMG voltage processed
by RMS algorithms indicated in Equation (2). The user’s EMG
signal was recorded before the triggering threshold was set
up to determine the triggering voltage. When the voltage was
higher than the threshold, the MCU sent a controlling signal
through the GPIO pin to the microstep drivers (MB450A) to
drive the DC motor. All the controlling algorithms and MCU
initialization were written in MDK-Keil software (uVision4)
using C++ language.

Determination of Optimal Frequency
Bandwidth for Motor Control
The purpose of the EMG feature selection experiment was to
choose the most appropriate EMG feature for embedded systems.
The investigated EMG features included median frequency,
mean frequency, RMS of EMG voltage, and the frequency
bandwidth responding to contraction. Five healthy subjects
(three healthy males, two healthy females, ages 23–27) were
recruited for the surface EMG signal recording to determine the
EMG characteristics of muscle contraction during wrist motions.
Before recording, all subjects were informed in detail about the
experiment and the precautions. The EMG signals were recorded
using theNoraxonwireless EMG recording system (Noraxon Inc.
AZ, USA, sampling rate 2,000Hz) and Noraxon MR3 software
(version 3.12.70. Noraxon Inc. AZ, USA) (Figure 3).

The EMG sensor was placed on the extensor carpi radialis
longus muscle to record the EMG signal. Each subject sat on
a chair and flexed or extended the wrist with a 10-lb dumbbell
held in the subject’s hand. Subjects were required to control
the time and rhythm for each wrist motion according to the
metronome (4 s for one movement) under a 10-lb load. Each
subject performed a total of 20 consecutive wrist flexion and
extension motions. Then, the subjects rested for 15min and then
performed another 20 consecutive wrist flexion and extension
motions. The purpose was to determine if the prolonged repeated
muscle contraction led to EMG feature changes.

The recorded EMG data were processed offline using
MATLAB R2020a (Natick, Massachusetts: The MathWorks Inc)
to measure median frequency, mean frequency, RMS of EMG

voltage, and the frequency bandwidth responding to contraction.
The obtained RMS data and the frequency bandwidth responding
to contraction were then used for the motion control experiment.

Performance Validation of Embedded
EMG-Controlled Robotic System
Six subjects (five healthy males, one healthy female, ages 23–
36) participated in this study. It should be noted that there was
no overlap between participants in the experiment described in
sections 2.5 and 2.6. The purpose of recruiting new subjects was
to verify the adaptability of the system to different subjects. Two
surface EMG sensors were placed on the forearm and recorded
EMG signals were sent to theMCU system to control exoskeleton
joint motions. One electrode was placed on the flexor carpi
radialis longus muscle and another electrode was placed on the
flexor carpi ulnaris muscle.

A pre-training was conducted for each subject. After properly
placing the EMG sensors on the muscles, the subjects were
asked to freely contract the extensor carpi radialis longus
muscle and flexor carpi ulnaris muscle. The DC motor motion
triggering threshold for time-domain feature (RMS magnitude)
and frequency domain feature (magnitude of a frequency band)
was set for each subject.

After finishing the pre-training process, all the subjects were
asked to do two sets of standard motions. First, the time-
domain feature was used for motion control, and the threshold
of the time-domain feature was determined by 50% of the
RMS magnitude of the subject. Each subject performed wrist
flexion for 20 repetitions and extension for 20 repetitions,
and the subjects had a 5-min rest before starting the second
set of experiments. The second set of experiments used the
frequency-domain feature for robotic hand motion control, and
the threshold of the frequency-domain features was determined
by 50% of EMG voltage magnitude of bandwidth between 60
and 80Hz of the subject. Each subject performed wrist flexion
and extension 20 times in the same manner. The accuracy of the
robotic hand performance was recorded.

The accuracy of the system operation was recorded. When the
robotic motion matched the subject’s hand motion, the operation
was counted as a correct operation. Otherwise, it was counted as
an incorrect operation.

Statistical Analysis
Statistical analysis was performed with SPSS statistical software
version 26 (IBM, Armonk, NY, USA). The t-test was used
to determine the difference in voltage magnitude of EMG
signals recorded between two time periods (the first 20-hand
operation and the second 20-hand operation) to determine
if signal magnitude fluctuated over time in an individual.
ANOVA with post-hoc LSD was used to determine the
difference in measured EMG features between different subjects
and the individual variability. Chi-square with Pearson test
was used to determine the statistical difference level of
the performance accuracy between two different control
mechanisms. Statistical significance was defined as a P-value
smaller than 0.05.
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FIGURE 2 | Flowchart of the systematic block diagram of the embedded EMG processing system and stepper motor controlling system.

RESULTS

Characterizations of EMG Signals
Responding to Muscle Contraction
MyoWareTM module recorded the EMG signal in response to
a muscle contraction (Figure 4A). The mean RMS of baseline

EMG signal at resting was close to 0 volts of EMG signals could be
rectified into positive readings by the MyoWareTM sensors with
positive spikes in the signals (Figure 4B). Rectified EMG signals
could be integrated and turned into stable curves with fluctuation
in amplitude (Figure 4C). The amplitude of the EMG voltage
responding to a muscle contraction was high enough to set a
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FIGURE 3 | (A) shows electrodes placed on the skin surface of the extensor carpi radialis longus muscle; (B) shows the wireless EMG acquisition system and its base

unit; (C) shows that MR3 software and raw myoelectric signals respond to muscle contraction from electromyography.

DCmotor triggering threshold at the 50% level of the magnitude
(Figure 4C).

When a subject performed a wrist flexion, the EMG signal
from flexor carpi ulnaris became strong while the EMG signal
from extensor carpi radialis longus remained at a lower level.
On the other hand, when a subject performed a wrist extension,
the EMG signal from extensor carpi radialis longus became very
strong while the EMG signal from flexor carpi ulnaris returned
close to the baseline level. The distinct features were then further
processed for robotic hand motion control.

Characterization of EMG Frequency Band
Figure 5 shows the results of one single wrist flexion motion
using the Noraxon wireless EMG recording system and
Noraxon MR3 software. The muscle contraction yielded a clear
EMG response (Figure 5B) compared with the resting status
(Figure 5A). The power spectrum analysis of the EMG signal
frequency demonstrated that the responding bandwidth was
between 30 and 200Hz (Figure 5F) and the most prominent
was between 60 and 80Hz with a peak value around 70Hz
(dark red) (Figure 5H). The spectrogram of STFT is shown
in Figures 5E,F. The muscle has a mild baseline activity
at resting states (Figure 5A) with a resting frequency band
between 20 and 200Hz similar to the frequency band upon
muscle contraction (Figure 5E). At the resting status, EMG
signal amplitude showed fluctuation over time as shown
in the time-domain window (Figures 5A,C,G). In terms of
the complexity of computational algorithms among the four
features, the filtered EMG RMS magnitude signal was the
simplest but onsite calibration for manual adjustment of the
triggering threshold was frequently required to maintain it
at a 50% magnitude level. Although the STFT was the most
complicated feature, onsite calibration for the adjustment
of triggering threshold level was required much less than
the RMS-based algorithm. The magnitude of the frequency

band between 60 and 80Hz had less variability and was
relatively stable.

Individual Variability of EMG RMS and
Frequency
The magnitude of RMS fluctuated among different subjects. The
average RMS was 410.6 ± 187.9 (Mean ± SD). There was a
statistical difference in EMG RMS between different subjects
(ANOVA PostHoc LSD, p = 0.002). RMS was different between
individuals (Subject 1 vs. Subjects 2, 3, 4 and 5: p = 0.000,
0.266, 0.007, and 0.003, respectively) (Table 1). The magnitude
of RMS also fluctuated over time in individual subjects. There
was a statistical difference in RMS between two sets of EMG
data recorded at different time points in Subjects 2, 3, and 5
(t-test, p = 0.76, 0.04, 0.0002, 0.078, and 0.019 for Subjects 1
to 5, respectively) (Table 2). Different triggering thresholds were
needed for each subject. A universal voltage value could not be
used for all subjects, leading to the required onsite calibration for
each subject (Figure 6A).

There was no significant change in FMED among Subjects 1,
2, 4, and 5 (ANOVA PostHoc LSD, p = 0.968), but Subject 3 had
a significantly higher median frequency (ANOVA PostHoc LSD,
p = 0.007) (Table 1). The FMED did not fluctuate over time in
individual subjects. There was no statistical difference in FMED
between the two sets of FMED data in the five subjects (t-test, p=
0.715, 0.444, 0.519, 0.677, and 0.705 for Subjects 1-5, respectively)
(Table 2 and Figure 6B).

There was no significant changes in FMEAN among Subjects
1, 2, 4, and 5 (ANOVA PostHoc LSD, p = 0.756), but Subject
3 had a higher mean frequency than other subjects (P = 0.002)
(Table 1). The FMEAN did not fluctuate over time in individual
subjects. There was no statistical difference in the FMEAN
between the two sets of the FMEAN data recorded at different
time points in the five subjects (t-test, p = 0.824, 0.656, 0.755,
0.957, and 0.514 for Subjects 1-5, respectively) (Table 2). The
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FIGURE 4 | Three different modes of MyoWareTM Muscle Sensor EMG signal output. (A) shows the raw EMG signal during muscle contraction, (B) shows the

rectified EMG signals, and (C) shows the rectified and integrated EMG signal.
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FIGURE 5 | EMG signal features of muscle. (A) is the EMG signal filtered by a 10–500Hz band-pass filter. The x-axis represents time and the y-axis is the

corresponding signal amplitude after normalization. (B) shows raw EMG voltage amplitude during a muscle contraction. (C) shows rectified baseline EMG activity. (D)

(Continued)
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FIGURE 5 | shows rectified EMG voltage amplitude during a muscle contraction. (E) shows the frequency domain of resting muscle activity after STFT processing,

and the frequency resolution is 5Hz. (F) shows the frequency domain of muscle contraction after STFT processing. The responding bandwidth of muscle contraction

is between 30 and 200Hz, and the frequency resolution is 5Hz. (G) shows the time and frequency domains of EMG signals at resting status, and the frequency

resolution is 4Hz. (H) illustrates the time and frequency domains of EMG signals at muscle contraction, and the frequency resolution is 4Hz. The responding

bandwidth of muscle contraction was between 30 and 200Hz (F) and the most prominent was between 60 and 80Hz with a peak value around 70Hz (dark red) (H).

TABLE 1 | Comparisons of measures among subjects during muscle contraction.

Comparisons P-value

ANOVA with PostHoc

LSD

RMS Magnitude of

60–80Hz band

FMED FMEAN

Overall difference in

subject groups

0.002 0.002 0.07 0.002

Subject 1 vs. subject 2 0.000 0.000 0.862 0.552

Subject 1 vs. subject 3 0.266 0.36 0.01 0.000

Subject 1 vs. subject 4 0.007 0.12 0.007 0.93

Subject 1 vs. subject 5 0.003 0.02 0.003 0.391

TABLE 2 | Comparisons of measures between two time points during muscle

contraction.

Comparisons P-value

T-test RMS Magnitude of 60–80Hz band FMED FMEAN

Subject 1 0.76 0.69 0.715 0.824

Subject 2 0.04 0.095 0.444 0.656

Subject 3 0.0002 0.937 0.519 0.755

Subject 4 0.078 0.791 0.677 0.957

Subject 5 0.019 0.283 0.705 0.514

prominent frequency band corresponding to muscle contraction
was between 60 and 80Hz. This frequency was the same
bandwidth as FMED and FMEAN. The triggering threshold for
the frequency bandwidth was not significantly adjusted for each
subject and onsite calibration was not performed (Figure 6C).

The magnitude of the 60–80Hz band also fluctuated among
different subjects (Figure 6D). The average 60–80Hz band
voltage magnitude was 39.8 ± 17.1 (Mean ± SD). There was a
statistical difference in the magnitude of the 60 to 80Hz band
between different subjects (ANOVA PostHoc LSD, p = 0.02).
The magnitude of the 60–80Hz band was different between
individuals (Subject 1 vs. Subjects 2, 3, 4, and 5: p = 0.001, 0.36,
0.12, and 0.02, respectively) (Table 1). But different triggering
thresholds were not needed for each subject. A universal voltage
value could not be used for all subjects, leading to the required
onsite calibration for each subject (Figure 6A). The magnitude
of the 60–80Hz band did not fluctuate over time in individual
subjects evidenced by that there was not a statistical difference
in the magnitude of the 60–80Hz band between the two sets
of EMG data recorded at different time periods (t-test, p =

0.69, 0.095, 0.937, 0.791, and 0.283 for Subjects 1–5, respectively)
(Table 2). A universal voltage value was used for all subjects
without onsite calibration.

Time-domain feature RMS shows greater variability
among different subjects than the STFT-domain method
(Figures 6A,D). There was a significant difference in the
standard deviation (SD) between the magnitudes of RMS and
the 60–80Hz band (t-test, p = 0.0001). Even for the same
subject, the RMS results between the two tests were different.
The frequency-domain features were more stable between
subjects. The average mean frequency of five subjects was 71.06
± 5.43Hz. Table 3 shows the details of EMG features. The
statistical results show that the frequency domain feature was
more suitable for EMG embedded control systems because of
its stability.

Accuracy of EMG-Based Embedded
System Performance in Motion Control
Both RMS and STFT-based EMG processing embedded systems
controlled robotic hand motion adaptively. The robotic hand
moved or stopped at any time and at any position according to
the user’s intent. The average time delay of motion recognition
was <300 ± 15ms. The results demonstrated that the STFT
frequency domainmethod wasmore suitable for EMG embedded
control systems based on its performance stability. The frequency
band of the 60–80Hz was selected as the designated frequency
band for triggering the motor motions depending on the
magnitude of the voltage of this frequency band. When the
amplitude of the 60–80Hz band was higher than the threshold,
the MCU sent the moving commanding pulse signal to the
motor controller.

Figure 7A shows the results of using the time-domain
features, which monitored all of the frequency band amplitude.
For motor motion triggering, the accuracy of extension motion
recognition was 100%, and the accuracy for flexion motion
recognition was 98 ± 2%, while the accuracy for recognizing no
motion was 99 ± 1%. However, the triggering threshold needed
to be manually set up for each subject. Figure 7B shows the
results of using the frequency-domain features, which monitored
the EMG amplitude of the 60–80Hz frequency band for motor
triggering. The accuracy of flexion movement recognition was
90 ± 7% and the accuracy for recognizing extension movement
was 86 ± 9%, while the accuracy for recognizing no movement
was 96 ± 4%. The triggering threshold was pre-set and was not
adjusted for different subjects. For the sensitivity of the system
action, the average time delay of system response was <300ms
and the time delay was calculated from subject movements to the
corresponding DC motors movements.

There was no statistical difference between the two processing
methods (RMS vs. STFT processing method) (Chi-Square,
Pearson test, p = 0.977) (Figure 6). However, more efforts were
required for setting up triggering thresholds because there was
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FIGURE 6 | Statistical results of different features. (A) shows the EMG RMS of a muscle contraction. Green bars represent the first 20-repetition set of wrist motions

and orange bars represent the second set of wrist motions. The RMS of Subject 1 is significantly lower than other subjects. RMS of the second set of wrist motions

was higher than the first set in Subjects 2 and 5. (B) shows the median frequency (FMED) of a muscle contraction. There was not a significant change in FMED among

subjects. (C) shows mean frequency (FMEAN). There was not a substantial change in FMEAN among subjects. (D) shows the mean magnitude of the 60–80Hz

bandwidth. The span of voltage difference of the 60–80Hz band (57mV) was smaller than that of RMS (532mV).

more variability of RMS magnitude between subjects than the
variance of the magnitude of the 60–80Hz frequency band.

In terms of accuracy, it appeared to be that the RMS-
based embedded system had a higher accuracy than the
STFT embedded system, but there was no statistical
difference. However, the variability of myoelectric signal
magnitude was higher in RMS group that STFT group,
leading to a significant amount of time required for pre-
training when using the RMS-based embedded system.
Moreover, the threshold set up and adjustment were
required among different individuals upon using the
RMS-based embedded system. There was no need of

onsite calibration or threshold adjustment for STFT-based
embedded system.

DISCUSSION

Myoelectric signals from electromyography (EMG) have been
used for hand exoskeleton or assistive robotic device motion
control for decades, yet there are still challenges to be solved
(Da Silva et al., 2008; Ho et al., 2011; Ockenfeld et al.,
2013; Song et al., 2013; Salvietti et al., 2016). The EMG-based
signal processing methodology includes time-domain methods
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TABLE 3 | Statistical results of EMG feature selection experiment.

RMS (mV) FMEAN (Hz) FMED (Hz) Magnitude (mV)

60–80Hz Band

Mean Max Min Mean Max Min Mean Max Min Mean Max Min

Sub 1 Test 1 162.4 292.2 112.5 65.4 69.3 59.8 56.1 62.6 47.8 13.6 23.5 10.2

Test 2 156.6 249.6 119.4 68.4 77.6 65.5 58.0 64.9 52.1 12.7 16.7 9.4

Sub 2 Test 1 570.8 818.1 274.7 67.5 73.5 63.4 56.2 62.3 50.5 50.1 69.2 26.3

Test 2 588.8 894.1 476.2 70.6 80.3 63.0 57.8 67.3 51.4 69.1 97.4 36.1

Sub 3 Test 1 289.3 354.8 212.9 81.5 83.9 77.1 70.7 73.5 66.5 36.5 48.9 21.2

Test 2 293.9 393.4 218.4 81.2 87.7 77.1 70.5 75.3 66.7 36.1 43.4 24.4

Sub 4 Test 1 423.2 592.7 342.7 68.1 74.4 62.0 60.1 66.2 49.3 40.2 51.3 24.2

Test 2 487.1 606.4 359.9 66.5 71.3 61.9 58.1 66.0 48.5 41.6 51.3 29.0

Sub 5 Test 1 391.5 564.8 198.9 71.3 78.8 64.8 61.8 71.3 53.6 44.3 63.4 24.3

Test 2 642.5 930.4 302.6 70.1 78.4 60.4 59.4 59.4 48.1 54.1 70.9 24.9

FIGURE 7 | Accuracy of robotic hand control experiment among participants. (A) The results of RMS-based controlling algorithms. (B) The results of FFT – based

controlling.

by monitoring the signal’s voltage over time and frequency-
domain methods by monitoring the frequency of the whole
myoelectric signal spectrum. The time-domain RMS-based EMG
signal processing method has been used for robot control as a
popular approach for years, while frequency-domain methods
including the STFT processing method have been proposed
for many years, but no cost-effective small-size embedded
system has been developed for a real-time robot motion control
yet. Frequency-domain EMG processing for robot control
utilized the whole myoelectric signal spectrum and most of
the methods utilized machine learning (ML) methods for EMG
signal processing (Englehart et al., 2001; Manal et al., 2002;
Kuiken et al., 2009; Antuvan et al., 2016; Mastinu et al., 2018;
Phinyomark et al., 2018; Zia ur Rehman et al., 2018; Yu et al.,
2021).

Aiming at developing a cost-effective and wearable EMG
signal processing for a robot control system, this study
introduced a novel frequency-domain EMG signal processing
embedded system for robot control. Instead of using the
whole myoelectric signal spectrum, a fixed-bandwidth (60–
80Hz) frequency-domain EMG signal processing method

was used for motion intent detection in this study. The
results demonstrated that the fixed-bandwidth frequency-
domain EMG processing method produced an alternated
cost-effective approach for EMG signal processing and robot
motion control. This frequency-domain method demonstrated
a stable performance in robot control. The reason can
be that focusing on a specific bandwidth of frequency
associated with muscle contraction directly denoised the
myoelectric signals.

Our goal is to develop an EMG-controlled robotic assistive
device for industrial workers and clinical stroke survivors.
Current work focuses on the applications in healthy subjects.
Further research is required for the applications in stroke
survivors. The myoelectric signals are weak in signal strength
in stroke survivals, with a much lower signal-to-noise ratio
(SNR). Abnormal muscle activation characteristics are found
in stroke survivor associated with loss of dexterity after stroke
(Canning et al., 2000). Fixed-bandwidth frequency-domain EMG
processing method may provide an optimal method by focusing
on a specific bandwidth of frequency associated with muscle
contraction among stroke survivors.
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Time-domain RMS-based methods monitor the magnitude of
myoelectric signal voltage over time for signal processing and
robot control. This approach has been reported in the literature
with many technical challenges to be solved (Da Silva et al.,
2008; Ho et al., 2011; Ockenfeld et al., 2013; Song et al., 2013;
Salvietti et al., 2016; Phinyomark et al., 2018). As shown in
this study, the voltage magnitude of the EMG signals in the
RMS-domain fluctuated among different individuals resulting
in more variance in average voltage readings, leading to no
universal threshold that can be set up to trigger DC motor
motion. This led to a requirement of onsite calibration to set
up the triggering threshold for different users upon using the
RMS-based embedded system. Moreover, noise and artifacts
could trigger unwanted robot motion, hence reducing system
performance accuracy.

Frequency-domain features and short-time Fourier
transforms (STFT) have been used for spectral analysis of
EMG signals (Englehart et al., 2001; Phinyomark et al., 2018).
However, these previous studies mainly used machine learning
(ML) for frequency-domain features processing (Da Silva et al.,
2008; Larivière et al., 2008; Camata et al., 2010; Costa et al.,
2010; Dantas et al., 2010) and most of these studies were offline
data analysis for conceptualization rather than real-time signal
processing for instant robot motion control. The support vector
machine (SVM) and CNN are two popular ML methods used for
ML-based EMG signal processing. Only a few studies successfully
demonstrated the ML approaches to process EMG signals for
real-time robot control using both RMS and frequency variables
(Zhou et al., 2021). A powerful computer and LabView software
with a machine learning toolbox are required to implement
the ML tasks with significant efforts devoted to establishing
portal communication between EMG sensor systems and ML
processing toolbox software. The study demonstrated that ML
methodology and approaches cannot deliver a lightweight,
cost-effective, wearable embedded system yet for EMG signal
processing and control currently (Zhou et al., 2021). In addition,
many ML algorithms have been proposed for EMG signal
processing but mainly use pattern recognition (PR) for trajectory
movement control (Da Silva et al., 2008; Larivière et al., 2008;
Camata et al., 2010; Costa et al., 2010; Dantas et al., 2010; Jiang
et al., 2020; Zhou et al., 2021). According to our own experience
in processing 12-channel shoulder EMG signals using ML-based
pattern recognition for upper limb exoskeleton control (Jiang
et al., 2020; Zhou et al., 2021), a laptop and complex algorithms
(LabView with ML toolbox) were required instead of a simple
embedded hardware. A large amount of data was needed to be
collected for model training. Significant efforts were required
to connect Delsys EMG sensors, computer, NI data board,
and upper limb exoskeleton. Multiple factors, such as motion
speeds, device difference, and individual variability, affected
the accuracy (ranging from 75 to 97%) of system performance
(Jiang et al., 2020). These studies demonstrated that ML can
be used successfully for trajectory movement control based on
pattern recognition, but processing EMG signals using ML for
adaptive robot movement control needed further investigation.
Fortunately, this current study demonstrated that cost-effective
embedded system using MCU and the fixed bandwidth STFT

algorithms can be used to implement one DoF of adaptive
motion control.

Studies have shown that cost-effective EMG sensors have been
reported for EMG-controlled robotic assistive systems. Myo-
armband EMG sensor has a sample rate of 200Hz, which causes
loss of higher-frequency content (>100Hz), but still captured
muscle contraction signal between 50 and 100Hz (Phinyomark
et al., 2018). In our study, the MyoWaveTM sensor is also
an inexpensive EMG sensor. It was used in this study and
did not cause a loss in higher-frequency content. Moreover,
the magnitude of the frequency band between 60 and 80Hz
was captured during muscle contraction. This feature enabled
microcontroller units (MCU), such as STM32, to implement
the STFT algorithm focusing on monitoring the magnitude of
interested bandwidth for motion classification.

STM32 is a simple, inexpensive, small, embedded hardware
with a capacity to implement frequency-domain (FFT) signal
processing and real-time commanding signal outputs for DC
motor control. The voltage magnitudes of different frequency
bandwidths between 1 and 500Hz were clearly shown using
STM32 and its IDE software, leading to a readily preparation
of encoding algorithms. The mean frequency (71Hz) of the
EMG signal correlated to a muscle contraction. Hence, the 60–
80Hz frequency band was selected for EMG signal processing
in this study. Algorithms were encoded to monitor the
magnitude of the 60–80Hz frequency bandwidth for motion
classification. Using this fixed-bandwidth frequency-domain
voltage threshold set up to trigger the DC motor avoided
extra efforts and procedures for signal denoising. The average
time delay of the motion control system was <300ms and
the average recognition accuracy of motor control was 91.55%.
This method presents a novel approach for developing a
less complex embedded EMG processing system for robot
motion control.

In terms of a population-level standard of using 60–80Hz for
STFT processing, the frequency range of 60–80Hz appeared to
be a reasonable standard for ∼95% of the population. In this
study, the mean frequency was 71.0 ± 5.7 (1 SD) Hz. When the
frequency range was 71.0 ± 11.4 (2 SD) Hz, it was approximated
within the range of 60–80Hz. Two-standard deviations (SDs)
cover 95% of cases statistically (Pukelsheim, 1994).

A comparison of performance efficiency between time-
domain and frequency-domain methods was performed in this
study. Currently, time-domain methods are commonly used for
EMG signal processing and control (Raurale et al., 2019; Secciani
et al., 2019), but onsite calibration was also required in this study.
The studies using time-domain features (Raurale et al., 2019;
Secciani et al., 2019) required a significant amount of time to train
a person to identify the optimal setup for machine operation.
EMG amplitude fluctuation was a common issue leading to a
difficult setup for a triggering threshold for DC motor control.
In our study, although the system using time-domain features
achieved high accuracy, a significant amount of time was also
spent for different subjects to train the system for optimal setup,
which was the same as reported in the literature. Using sensor
fusion-based myoelectrical control (Su et al., 2021b; Qi and Su,
2022) is a future direction, but these methods usually require
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a high computational power which is difficult for embedded
systems to achieve.

When using the fixed bandwidth frequency-domain features,
the EMG voltage within the 60–80Hz frequency bandwidth
had less deviation during muscle contraction, resulting in less
effort for system set up and training time. The fixed bandwidth
frequency-domain algorithms produced smoother exoskeleton
motions and did not need onsite calibration. The amplitude of
a fixed frequency band had less fluctuation of EMG voltage.

The limitation of this study is that a clinical study has not
been performed among patients. We assume this system can
detect weak remnant EMG signals in stroke patients but have
not tested the embedded system in clinical settings. Clinical trials
will be performed for robotic assistive devices. In this study, only
one degree of freedom (DoF) motion control was developed, the
feasibility of the embedded system for multiple DoFs of robot
control needs to be investigated in the future.

CONCLUSION

In this study, a real-time fixed bandwidth frequency-domain
EMG-based controlling system for the exoskeleton was
developed. The system showed better sensitivity and stability in
recognizing muscle contraction than the time-domain features-
based system. The average time delay of motion recognition was
<300ms and the average accuracy of motor control was 91.55%.
This study also found that EMG amplitude of a spectrum band
between 60 and 80Hz predominantly responded to muscle
contraction. Using EMG signal amplitude of this frequency
band to set up the DC motor motion triggering threshold was

a feasible and reliable approach and spared the extra effort
required for systematic noise removal.
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