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Tracking and manipulating deformable linear objects (DLOs) has great potential in

the industrial world. However, estimating the object’s state is crucial and challenging,

especially when dealing with heavy occlusion situations and physical properties of

different objects. To address these problems, we introduce a novel tracking algorithm

to observe and estimate the states of DLO. The proposed tracking algorithm is based

on the Coherent Point Drift (CPD), which registers the observed point cloud, and the

finite element method (FEM) model encodes physical properties. The Gaussian mixture

model with CPD regularization generates constraints to deform a given FEM model into

desired shapes. The FEMmodel encodes the local structure, the global topology, and the

material property to better approximate the deformation process in the real world without

using simulation software. A series of simulations and real data tracking experiments have

been conducted on deformable objects, such as rope and iron wire, to demonstrate the

robustness and accuracy of our method in the presence of occlusion.

Keywords: real-time, deformable linear object (DLO), tracking, Gaussian mixture model (GMM), finite element

method (FEM), Coherent Point Drift (CPD)

1. INTRODUCTION

Deformable linear objects (DLOs) have a wide range of applications in our daily lives: routing
electrical cables in manufacturing machines, ropes for packing, and medical threads in surgery. So
far, most of these tasks still rely on human labor. Tracking and modeling linear objects are essential
for automatically carrying these tasks through robots. The purpose of DLO tracking is to estimate
the state of the object to ensure stability while the robot arm is interacting with it. However, this
is still a challenging task because the deformable object has infinite degrees of freedom and the
presence of occlusion during the interaction, as shown in Figure 1. In the real-world application, a
DLO is frequently occluded by robot arms, hands, or even self-occluded, during manipulation. The
missing point cloud of the object will cause tracking algorithms incorrectly or even fail to register
the object between time steps. This paper focuses on building a novel state estimator that could
track DLOs in real-time with occlusion.

Previous works capable of tracking DLOs can be divided into two classes. 1) Tracking the objects
based on their mathematical description without physical properties. The popular methods, active
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contour model (Kass et al., 1988), and Coherent Point Drift
(CPD) (Myronenko and Song, 2010) point set registration,
belong to this category. 2) Using models having physical
properties, such as linked nodes with physical constraints, FEM
model, or simulation software, to track the objects. For example,
CPD+Physics (Tang et al., 2017), SPR (Tang and Tomizuka,
2019), and the method proposed by Schulman et al. (2013) use
the Gaussian mixture model (Santosh et al., 2013) to track linked
nodes (Figure 1C) that represent the object and post-processes
the output with a physics simulator to ensure that the predictions
are physically plausible.

However, refining the Gaussian mixture model (GMM)
tracking results with a physics simulator is time-consuming.
To address this problem, Chi and Berenson (2019) proposed
CDCPD and CDCPD2 (Wang et al., 2020) to track the
deformable object without the physics simulation and reduce
computation time. Even though these algorithms are capable
of real-time tracking, there are limitations. With the simulation
software, a model for the simulation has to be built beforehand
or without the simulation software, the methods have drifting
problems under heavy occlusions and cannot distinguish
material differences.

To avoid the above problems, we found a balance point
that can achieve high accuracy motion prediction under heavy
occlusion and not sacrifice computing speed without simulation
software. Moreover, our method is able to tell the physical
difference between different materials, such as ropes and iron
wires. The proposed new tracking algorithm, which belongs
to the second class method, uses a relatively complex physical
model to describe the object structure and uses CPD points
set registration to track the movement of points. Our tracking
algorithm regards each DLO as connected nodes, which are
treated as multiple Gaussian centroids extracted from the point
cloud in the expectation-maximization procedure (Myronenko
and Song, 2010). The actual means and co-variances of the
nodes are computed by GMM. These positions of nodes will be
forwarded to a linear FEM model (Kaminski and Fritzkowski,
2013) to predict the deformation results based on observations.

A summary of our contributions is as follows:

1. We proposed a new model that enables seamless information
exchange between GMM and FEM estimations.

2. The model-based tracking and probabilistic registration fused
together guarantees the high-speed real-time tracking of DLO.

3. We formulate a tracking framework that is capable of handling
heavy occlusion state estimation with the physical properties
incorporated into the FEM-based model.

This paper is organized in the following structure: Section
2 describes a review of algorithms related to our works. In
Section 3, we formulate the mathematical equations for GMM-
based point set registration, acquiring and updating point cloud
data. Section 4 describes the method to model a DLO and the
structure to fuse the GMM and the model estimation result. In
Section 5, we demonstrate a series of experiments, then compare
them with other methods, such as CPD, CPD+Physics, and
CPCPD2. In the final section, we conclude our work and propose
future works.

2. RELATED WORK

Tracking a DLO is a two-step task. Design a model or a
mathematical topology to approximate the object’s structure and
register it with the observed data.

The iterative closest point (ICP) (Besl and McKay, 1992)
regards the tracking task as a two-point set registration
problem, solving a least-squares optimization to find the best
correspondences. By modifying the loss functions for least-
squares optimization, such as the optimal step nonrigid ICP
(Amberg et al., 2007) and the global non-rigid alignment (Brown
and Rusinkiewicz, 2007), the ICP can be applied to non-rigid
object tracking. However, deformable object tracking is not often
a one-to-one registration problem. The observer, such as the
camera and LiDAR, often receives a much larger number of
points than the simplified object’s topology representation. To
deal with the multiple-to-one registration problem, Chui and
Rangarajan (2000) proposed to calculate the correspondence
through the GMM, where the nodes (Figure 1C) of simplified
object topology are treated as Gaussian centroids.

Compared with the above algorithms, regarding the
deformable object as linked nodes, the FEM has much higher
accuracy. Since the linear deformable object is a continuous
system, using the discrete models to approximate a linear
deformable object is the most common method. Through FEM,
the model can be described as a chain structure system. The
approach mentioned in Kaminski and Fritzkowski (2013) divides
a rope into sections of a spring-damping element.

Plenty of methods have been proposed to analyze the FEM
elements. Through Lagrange equations, the accurate deformation
can be computed (Witkin and Welch, 1990). Instead of directly
using Lagrange equations, a “multi-link system” with customized
constraint is proposed by Yamakawa et al. for dynamic knotting
of a rope (Yamakawa et al., 2007, 2010). Wakamatsu and Hirai
also proposed different mathematical descriptions based on
differential geometry and used the energy method to model the
deformation (Wakamatsu and Hirai, 2004).

However, these approaches must be given the physical model

and are not effective enough for real-time tracking. This paper

derives and modifies the FEM model for GMM registration to
achieve robust real-time tracking.

3. GMM-BASED POINT SET
REGISTRATION

To track the deformation of a linear structure, we use the

GMM to generate the states from the observer. Since the GMM
is a point registration method, the linear deformable object
will be discretized into a set of N nodes (see Figure 1C).

At each time step t, given the position of the nodes: Xt =
[

xt1 xt2 . . . xtN
]T

∈ R
N×D and the observed point cloud:

Y t
p =

[

yt1 yt2 . . . ytM
]T

∈ R
M×D, the corresponding probability

distribution will be computed. Here, D denotes the space
dimension and M ≫ N. To use the GMM registration, every
node in Xt is regarded as the center of a Gaussian distribution.
We assume that all the distributions have the same isotropic
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FIGURE 1 | Illustration of the occlusion caused by manipulation. (A) shows the depth image from an RGB-D camera. Image (B) is the 3D point cloud generated from

the depth image (A). The missing points are occluded by the hand. (C) is the Gaussian mixture model (GMM) tracking result from a point cloud. To accurately estimate

the positions of the occluded part, we designed a 3D model, which is shown in (D), to regulate the GMM results.

covariance σ I, and the probability of point cloud belonging to
each Gaussian distribution is the same: 1

N .
Following the formulation in Myronenko and Song (2010)

and Ge et al. (2014), the probability distribution of point cloud
ytm can be written as follows:

p
(

ytm
)

=

N
∑

n=1

1

N
N
(

ytm; x
t
n, σ

2I
)

=

N
∑

n=1

1

N

1
(

2πσ 2
)D/2

exp

(

−

∥

∥ytm − xtn
∥

∥

2

2σ 2

)

(1)

To ensure registration robustness against the outliers, a uniform
distribution p(n) is introduced to describe the existence of noise

points. The weight w ∈ (0, 1) denotes the percentage of the
outliers in a point cloud. Then, the distribution changed into the
following form:

p
(

ytm
)

=

N+1
∑

n=1

p(n)p
(

ytm | n
)

(2)

p(n) =

{

(1− w) 1N , n = 1, . . . ,N

w, n = N + 1
(3)

p
(

ytm | n
)

=

{

N
(

ytm; x
t
n, σ

2I
)

, n = 1, . . . ,N
1
M , n = N + 1

(4)
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Given this new form of the probability distribution, the target
is to maximize the log-likelihood of the joint probability density
function:

p (Y) =

M
∏

m=1

p
(

ytm
)

(5)

We can solve this problem by following the expectation–
maximization algorithm described in Myronenko and Song
(2010) and Tang and Tomizuka (2019). The EM algorithm has
two steps: the expectation step and the maximization step.

Expectation Step

According to Bayes’ rule and ytn, σ from the previous
maximization step, the posterior probabilities can be computed
as follow:

p
(

n | ytm

)

=

exp

(

−

∥

∥ytm−xtn
∥

∥

2

2σ 2

)

∑

exp

(

−

∥

∥ytm−xtn
∥

∥

2

2σ 2

)

+

(

2πσ 2
)D/2

wN

(1−w)M

(6)

Maximization Step

In the maximization step, we need to construct a cost function
to update the posterior distribution from the expectation step.
Following the idea of Myronenko and Song (2010), we can design
the cost function Q as follows:

Q(p, σ 2) =−

M
∑

m=1

N
∑

n=1

p
(

n | ytm
)

∥

∥ytm − xtn
∥

∥

2

2σ 2

−
NpD

2
log

(

σ 2
)

(7)

where Np =
∑M

m=1

∑N
n=1 p

(

n | ytm
)

.
The above GMM cost function assumes that all distributions

are independent, and the point cloud is fully observed without
any occlusion. However, in practice, neighbor points tend to
move coherently. To deal with this problem, Myronenko and
Song (2010) introduced the CPD term that encodes the structure
information of the deformable object by restricting the neighbor
points’ motion. CPD is in the following form:

Xt = Xt−1 + Gt−1Wt (8)

where G is a symmetric positive Gaussian kernel matrix with

element Gi,j = exp
− 1

2β2
‖yi−yj‖

2

and the weight matrix W ∈

R
N×D, which is used to regularize the motion coherence in

Maximization Step. We then obtain a new cost function:

Q(W, σ 2) =−

M
∑

m=1

N
∑

n=1

p
(

n | ytm

)

∗

∥

∥ytm − (xtn + G(n, .)W)
∥

∥

2

2σ 2

−
NpD

2
log

(

σ 2
)

+
α

2
Tr(WTGW)

(9)

where α is the trade-off weight of the CPD term.

Based on the process described in Ge et al. (2014), we can
compute the optimal W and σ 2 by ∂Q

∂W and ∂Q
∂σ 2 , respectively.

Thus, obtaining the value ofW value is a linear problem:

(

d(P1)G+ σ 2αI
)

W = PY − d(P1)X, (10)

where P ∈ R
N×M is the compact matrix form of p(n | ytm). 1 is a

column vector of ones and σ 2 is computed by following equation:

σ 2 =
1

NpD

(

Tr
(

YTd
(

PT1
)

Y
))

− 2 Tr
(

WTGPY
)

+ Tr
(

WTGTd(P1)GW
)

(11)

Now, we can iterate the expectation step and the maximization
until the maximum iterations or designed threshold.

The regularization parameter α andGaussian kernel’s variance
β reflect the amount of smoothness regularization. With large α

and β , the local motion of these Gaussian centroids tend to move
coherently and smoothly. More details can be found in Yuille and
Grzywacz (1989).

4. MODEL-BASED GMM

Until this step, we synchronized the uniform distribution and
CPD regularization into GMM. The algorithm registers the
point set from a given point cloud and preserves local motion
coherence while tracking even with outliers. However, the CPD
is not capable of tracking deformable objects in the presence
of occlusions. Even adding more regularization terms, such as
locally linear embedding (LLE) (Chi and Berenson, 2019) or
structure preserved registration (SPR) (Tang and Tomizuka,
2019), could only partially solve the point drifting problem when
the object is occluded. To accurately predict the DLO motion,
we introduce a mass-spring-damper model to predict the object’s
motion. The fusion of the GMM-based point cloud tracking and
the mass-spring-damper modeling will provide robust results
even when the DLO is under heavy occlusion.

4.1. Modeling
In this section, we discuss the approach to effectively model
a DLO. Plenty of representations has been used to describe
the DLO, such as using tetrahedron, hexahedron, or beam
elements. However, to achieve enough accuracy for tracking,
these descriptions require a large number of elements, which
will greatly reduce computation efficiency, especially for
real-time applications.

The main idea of our modeling method is to transform the
GMM registration point set into a chain-like structure model.
The physical properties of the deformable object are represented
by mass-spring-damping elements. Every element of the chain
structure is a rectangle in the 2D case or a pentahedron in the
3D case, which has 5N − 4 and 12N − 9 edges, respectively
(Figure 2). Every edge represents a single mass-spring-damping
system. The center points of cross-sections are kept as the point
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FIGURE 2 | The left figure is the demonstration of a deformable linear objects (DLOs) model with five elements. In the 3D case, these elements are pentahedrons, as

is shown in the right figure. The size of the pentahedrons depends on the r and the distance between two neighbor registration points.

set for GMM registration. Therefore, this model contains the
information that is required for both GMM registration and
model-based deformation analysis.

Take the 3D case as an example, we assume that the
deformable object is discretized and represented by N − 1
pentahedrons stacked together. Every pentahedron has 6 vertices,
and two neighbor pentahedrons share 3 vertices. Then, the
position of the vertices is represented by a matrix Xt

model
=

[

xt1 . . . xt3N
]T

∈ R
3N×D , where xtn ∈ R

D is the position of
the nth vertex at time step t. If the DLO is straight, all the
pentahedrons will become triangular prisms (Figure 2).

Moreover, this model also helps the initialization process
for a DLO target. For other GMM tracking, the number of
Gaussian centroids has to be manually initialized. The relation
between centroids and the model in simulation software also
requires extra definitions. With our model, we directly use Zhang
and Suen (1984)’s method for extracting the skeleton of a not
occluded DLO. The chosen points from the skeleton will be
directly used as the Gaussian centroids and the cross-section
center of the model (Figure 2 right). Since the skeletonization is
not the main contribution of this paper, we will not go through
the detail of this work.

4.2. Euler–Lagrange Equations
To predict the whole structure motion, the forces applied
on each vertex are required to be computed. The method
to compute forces on each vertex comes from Hamilton’s
principle (Hamilton, 1834). The principle states that the vertex
tends to move along the trajectory that takes “least action,”
which means the motion prefers to consume as little energy
as possible.

To evaluate the energy of the vertices, we choose the classical
Lagrangian function:

L = T − V , (12)

where T and V are the kinetic and potential energies of the
system, respectively.

To simplify computation, we use the following form to
represent all positions of vertices in the 3D case. We open the
matrix Xt

model
into a vector form:

qt =
[

xt1 yt1 zt1 . . . xtn ytn ztn
]T

∈ R
9N , (13)

where the x, y, and z represent the three dimensions.
Given the Lagrangian function, the energy change for t1 to t2

can be denoted by:

min
q(t)

S(q(t)) = min
q(t)

∫ t2

t1

L(q(t), q̇(t), t)dt (14)

where q(t) represents the position in continuous-time space.
Based on Hamilton’s principle, after taking the derivative of

S(qt) with respect to each vertex’s position and speed, we acquire
the Euler–Lagrange equations:

∂V

∂q
+

d

dt

∂T

∂q̇
= 0 (15)

For our mass-spring-damper system, the T, kinetic energy is
interpreted as the sum of the magnitude squared of the velocity.
The kinetic energy of every single vertex can be written as:

T
(

q̇
)

=
1

2
mq̇Tq̇ (16)

Frontiers in Neurorobotics | www.frontiersin.org 5 May 2022 | Volume 16 | Article 886068

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wang and Yamakawa Real-Time Occlusion-Robust DLO Tracking

FIGURE 3 | This is a Gaussian force field example of D=2 with a simplified physical model and two nodes occluded. The red circles represent the nodes of the

physical model. The motion of the physical model is constrained by the force field described by the mesh.

According to Hooke’s law, the mass-spring system potential
energy is defined as:

Vj =
1

2
k
(

lj − rj
)2
, (17)

where Vj represents the j-th edge of the model, k ≥ 0 is the
mechanical stiffness of the spring, lj ≥ 0 is the edge length, and
rj ≥ 0 is the rest length. In our model, there exist 12N − 9 edges.
The total potential energy is the summation of all these edge’s
energy:

V =

12N−9
∑

j=1

Vj(lj, rj) (18)

4.3. Backward Euler Time-Integration
However, the Euler–Lagrange equation discussed above is in
continuous time-space and the generalized forces ∂V

∂q is a non-

linear function. To solve these problems, we use the backward
Euler time-integration method to discretize and linearize the
motion result. Given the diagonal mass-matrixM ∈ R

3N×3N and
apply the backward Euler time-integration (David and Witkin,
1998; Liu et al., 2012), the update rule is in the following form:

Mq̇t+1 = Mq̇t − dt
∂V(qt)

∂q
(19)

qt+1 = qt + dtq̇t+1 (20)

where qt represents the position in discrete-time space.
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FIGURE 4 | The framework of the state estimator for DLO.

The dt is the update time step. Here, we assume that dt
is sufficiently small so that we can apply Taylor expansion on
Equation (19) to linearize the generalized forces term:

Mq̇t+1 = Mq̇t − dt
∂V(qt)

∂q
− dt2

∂2V(qt)

∂q2
q̇t+1 (21)

qt+1 = qt + dtq̇t+1, (22)

where
∂2V(qt)

∂q2
is called stiffness matrix. More details can be found

in Liu et al. (2012).
From Equations (21) and (22), we see that, after applying

Taylor expansion, the linearly-implicit time integration has been
transformed into a linear problem. Now, we can update and
predict the vertices’ forces, positions, and speed of the mass-
spring model.

Notice that the above model builds upon the mass-spring
model, which does not lose energy as time goes by. Without the
damper, the model will keep vibrating and hard to settle down.
To solve this problem we added a damper parameter c ≥ 0 to
(Equation 19) to absorb the vibration energy:

Mq̇t+1 = Mq̇t − dt
∂V(qt)

∂q
− dt2

∂2V(qt)

∂q2
q̇t+1 − cq̇t (23)

4.4. Energy Cost Function for Different
Material
Different materials proprieties will cause a different magnitude of
deformation even with the same force. For example, compared
with iron wires, the ropes are much easier to bend into new
shapes. We need a cost function to evaluate how much energy
is required to distort a DLO and the object will not restore to its
original shape.

The mass-spring-damper model mentioned above enables us
to evaluate the deformation with the energy method (Ross et al.,
1999). We use the idea of strain energy from materials science.
The strain energy is defined as the recoverable energy stored in
an elastic material. If the strain energy exceeds the material’s yield
point, the material property will change from elastic behavior to
plastic behavior (Vlack, 1982). For a single mass-spring-damper
system, the magnitude of the strain energy in our method is
described in Equation (17). Here, we use different thresholds to
represent the “yield point” of different materials. The updating of
rest lengths (ri in Equation 17) is equivalent to the change from
plastic behavior to elastic behavior.

However, we need to modify the definition of “yield point” for
our application. We define the energy of the “yield point” (Eyield)
as the summation of Ny ∈ R neighboring pentahedrons’ energy,
which we named the strain energy unit. In this paper, theNy is set
to 3. We do not evaluate the energy of every single mass-spring-
damper element because the GMM result often causes sudden
position change of the vertex, which makes the strain energy
unstable and inaccurate. The energy concentrated in a mass-
spring-damper element will dissipate to the neighbor elements
after updating the model for a few steps. Measuring the total
energy, including the neighbor mass-spring-damper system, is
much more reasonable and robust. The strain energy unit is
written as follows:

Ei =

12Ny−9
∑

j=1

Vj(lj, rj) (24)

max
Ei

{

E1 . . . Ei . . . EN−Ny+1
}

≥ Eyield (25)
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FIGURE 5 | The upper figures are the results of tracking after 15 s. The blue part represents the occlusion. The red curve is the ground truth. Yellow dots are the

registration results of the three algorithms. The bottom image is the mean distance error within the 15 s.
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FIGURE 6 | The results of covering the U-shape rope for 10 seconds. (A) is registration result without cover. The yellow dots are registration results. (B–E) is the

tracking results of CPD, CPD+Physics, CDCPD2, and our algorithm, respectively. (F) is the 3D model for our algorithm. Our algorithm is not sensitive to the occlusion

time and can provide a stable result as time past.

If any of the strain energy units is greater than Eyield, the points
of the model will be updated into new positions with all the
rest lengths changed (Equation 25). If else, after the deformation
happened, the model restores to its original shape. For soft
materials, such as ropes, the permanent deformation requires
much less energy than iron. The Eyield will be very small, which
is equivalent to easy to distort.

Since the strain energy unit’s value only depends on the edge

length, Eyield can be interpreted as the maximum deformation

that is allowed for elastic behavior. The maximum strain for

elastic behavior can be acquired from the stress-strain curve
of different materials. According to the stress-strain curves
from Chen and Young (2006) and Shahinian et al. (2016), the
maximum strain for steel and nylon is both around 5%. The iron
wires and ropes used for later experiments are made of these two
materials. Knowing the material property, we can compute the
value of Eyield while tracking a DLO target.

4.5. GMM and Mass-Spring-Damper Model
Fusion
With the aforementioned registration framework and mass-
spring-damper model, we can compute the point cloud
registration result and model-based motion prediction
separately. The next step is to fuse these two algorithms.

We introduce a Gaussian force field to solve the fusion
problem, which is generated from the GMM registration results.
The force field is also a multi-Gaussian distribution and
serves as a force constrains to control the mass-spring-damper
model deformation. Then, the backward Euler time-integration
(Equation 23) is applied to predict the model’s deformation with
a given force field. As is shown in Figure 3, we use the 2D
dimension case as an example. The model has been simplified to
the connected nodes. We directly adopt the Gaussian centroid
pCPD and σ 2 to generate the Gaussian force field. The force field
can be described as follows:
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FIGURE 7 | The results of rotating the iron wire by 45 degrees with the bottom part covered. Compared with CPD+Physics and CDCPD2, our algorithm can provide

better estimation results. (A) No cover, (B) CPD, (C) CPD+LLE, and (D) Ours.

pforcefield = A

(

1
(

2πσ 2
)D/2

−

N
∑

n=1

1

N
N
(

xtn, σ
2I
)

)

, (26)

where the A is the amplitude of the force constrain.
As Equation (26) described, if the nodes are at the exact center

of the GMM results, the Gaussian force field will not apply any
force onto these nodes. When the positions of the nodes are
away from the GMM results, the force field will try to pull the
nodes toward the center. In Figure 3, the GMM fails to register
the two Gaussian distributions because of the occlusion. But the
mass-spring-damper model continually served as constraint to
hold the nodes at the positions updated by backward Euler time
integration. Thus, the local structure and global topology will be
preserved by the mass-spring-damper model.

As Figure 4 shows, the state estimator’s overall framework
for DLO tracking is a closed-loop structure. There are two
loops in this structure. The GMM registration keeps absorbing
the point cloud data to estimate the visible part of a DLO.
The model-based prediction updates the object’s states based
on the Gaussian force field generated from the previous
time step. The iterations that the model-based prediction
needs depend on the time consumption of the GMM
registration. The incorporation of GMM based registration
and mass-spring-damper model ensures the robustness against
outliers as well as holding the object’s physical properties.
Moreover, compared with the algorithms that require

external simulation software, this algorithm is capable of
high-speed tracking.

5. EXPERIMENTS AND RESULTS

We implemented our algorithm in c++ with CMake and
compared our results with CPD, CPD+Physics, and CDCPD2.
The experiments were focusing on demonstrating the robustness
against occlusion and material difference.

To validate the proposed algorithm, the following tests
have been performed, including state tracking accuracy under
occlusions and a comparison between ropes and iron wires. The
Intel R© RealSense D415 depth camera was utilized to capture
the 3D point cloud data. All the following experiments are tested
under the 3D environment with D = 3. The images were 640–
480 RGB with depth information obtained at 30 Hz. All the
tests were performed on an Intel i7-6700HQ@ 2.6GHz processor
16 GB RAM computer. We set the smoothness regularization
parameter α = 0.5 and Gaussian kernel’s variance parameter
β = 1.0. The damping coefficient c was set to 0.5 to absorb the
vibration energy. In general application, we wish dt to be as small
as possible. The minimal value depends on the speed of the CPU
and the number of Gaussian centroids. In our experiments, dt is
set to 5 ms. The stiffness parameter k is calculated from Young’s
modulus of nylon rope and steel. To simplify the computation,
we assumed that the cross-sectional area does not change. Here,
the k for the rope is set to 60 N/mm and 1,000 N/mm for the
iron wire.
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FIGURE 8 | L-shaped registration results of rope and iron wire with occlusions. (A) Tracking L-shape rope with CPD+Physics. (B) Tracking L-shape iron wire with

CPD+Physics. (C) Tracking L-shape rope with CDCPD2. (D) Tracking L-shape iron wire with CDCPD2. (E) Tracking L-shape rope with our algorithm. (F) Tracking

L-shape iron wire with our algorithm. (G) L-shape rope 3-D model. (H) L-shape iron wire 3-D model.

5.1. Experiments With Simulation Data
Since it is very hard to acquire ground truth data from a
real DLO, we used the simulation data to analyze the state
estimation accuracy and compared it with CPD, CPD+Physics,
and CDCPD2 algorithms.

As Figure 5 shows, we performed a simulation of pulling a
J-shape red rope toward the blue obstacles within 15 s. Within
the first 3 s, all the algorithms’ mean distance error is around
3 mm. After 3 s, the rope is moved behind the obstacle, and the
CPD’s error increases greatly as time goes by. As the tracking
result demonstrated in Figure 5, the CPD+Physics recognized
the occlusion as a solid object. Thus, the register points are
“pushed” by the occlusion object toward the visible region.
Compared with CPD+Physics, the CDCPD2 was capable of
recognizing the blue part as occlusion and correctly estimated
the motion of the rope. But, the LLE approximation in CDCPD2
causes points drifting problems in the area of the occluded

part, and the error keeps increasing as time passes. We can see
that, without the occlusion, all four algorithms can track the
DLO with very small errors. Once the occlusion is involved,
the mass-spring-damper model in our algorithm preserves well
the structure of the object to keep the tracking stable throughout
the whole simulation.

5.2. Experiments With Real Data
We also tested the rope under the heavy occlusion situation and
compared it with the CPD, CPD+Physics, and CDCPD2 (see
Figure 6A). As is shown in Figure 6B, there are fewer registered
yellow points in the occluded area than in the other algorithms.
This is because some of the yellow points drifted onto the
detected part of the red rope after the bottom part is covered.
The drifting problem also occurred in both CPD+Physics and
CDCPD2 experiments (see Figures 6C,D), even though it is not
obvious within the first few seconds. But after 10 s, the structure
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of the occluded part cannot be well preserved. Instead, our
algorithm result has very little drifting problem due to the 3-D
model holding the U-shape well throughout the whole testing
time (see Figures 6E,F).

Figure 7 shows the results of the rotation test of the iron wire
undercover. As Figures 7B,C demonstrate, the CPD+Physics and
CDCPD2 algorithms could only track the uncovered parts well.
But, the registration points under cover start drifting, which is
similar to the result shown in Figure 5. As for our algorithm, the
estimation result is much better.

A comparison experiment has been conducted to demonstrate
the robustness of our algorithm against the material difference
with occlusion. Here, we used two different materials for
demonstration, rope and iron wire, respectively. The selected
rope and the iron wire are both 300 mm long with the same
α, β , and k parameter. The strain energy units’ limits (Eyield
in Equation 25) for updating the model’s shape are set to 0.4
Joule for the rope and 3 Joule for the iron wire (approximate 5%
maximum deformation).

In the tests (Figure 8), we bend the rope and iron wire in
to L-shape. The rope and iron wire’s longer side was moved
into a new location with the shorter side covered. In the tests,
the rope’s shorter side tends to stay still while the iron wire
moves as a whole. As Figures 8A,B show, the points under
the covered part from CPD+Physics tracking results stay at the
edge of the occlusion. The algorithm failed to track motion
behind the occlusion, especially for the iron wire. The CDCPD2
also failed to track both the rope and iron wire with the
covered points demonstrating the same drifting problem as
previous experiments. As for our algorithm (Figures 8E,F), the
tracking process is robust, stable, and reasonably predicts the
tracking result.

The quantitative evaluation of the robustness against
occlusion with different materials is demonstrated in Table 1.
Since the ground-truth positions for a randomly placed DLO are
hard to acquire, we compare each of these algorithms’ occluded
L-shape registration results with their non-occlusion results.
The mean distance error of the CPD rope registration result is
the worst, especially for iron wire tracking. The CPD+Physics
improved the tracking result by synchronizing Bullet Physics
Engine into the estimator. The drifting problem causes the
CDCPD2’s error to be relatively larger for both rope and iron
wire as time goes by. Our algorithm is not sensitive to the
occlusion and is able to distinguish the material difference. The
table shows that the error of the iron wire is greater than the rope.
The reason is that the rope we used in this test is thicker than the
iron wire, which could provide more point cloud for registration.

In the real data experiment, we notice that, in some cases,
the 3D model takes time to settle down even when we set Eyield
to a very large value for materials like iron. This is because we
use the mass-spring-damper model, which is an elastic model,
to represent the DLO. Due to this elastic property, the model
requires time to spread energy from the observed part to the
occluded part of a DLO, then absorbed by the damper. This only
happens under large movement with occlusion. But, in general,
we consider accuracy is enough for the task such as routing
cables with robot arms. For more experimental results, please

TABLE 1 | Mean distance error.

CPD CPD+Physics CDCPD2 Ours

Rope 4.51 ± 1.72

mm

4.13 ± 2.17 mm 3.78 ± 1.73 mm 3.23 ± 0.93 mm

Iron wire 10.13 ± 1.65

mm

6.32 ± 2.16 mm 4.92 ± 1.46 mm 3.68 ± 1.21 mm

Comparison of L-shape registration with occlusion.

TABLE 2 | Algorithm computation time.

Algorithm Time

CPD 11ms

CPD+Physics 25 ms

CDCPD2 27 ms

Our algorithm 15 ms

TABLE 3 | Time consumptions of the state estimator.

Point cloud data processing 2 ms

GMM registration 11 ms

Model-based prediction (3 iterations) 2 ms

Total 15 ms

see the accompanying video. (see http://www.hfr.iis.u-tokyo.ac.
jp/research/DLO_Tracking/index-e.html).

5.3. Computation Time
During the computation time test, we set the registration
number of points to 200 points. As is shown in Table 2, we
compared our algorithm with three other registration methods,
our computation time is almost the same as the CPD algorithm.

The major time consumption in our algorithm is for the
GMM-based registration. The model-based prediction takes only
0.8 ms for a single iteration, which consumes very little time. As
Table 3 shows, we updated the model 3 times after every GMM
registration was completed, which is equivalent to predicting the
states 15 ms later. Our algorithm demonstrates the high-speed
real-time performance in the DLO tracking.

However, same as the other GMM-based registration
methods, the computation time is greatly influenced by the
number of points in a point cloud. If we increase the size
of the point cloud, the time consumption will also increase
proportionally. Thus, our algorithm is not suitable for a complex
deformable object that requires a large number of elements
to represent.

6. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a DLO tracking algorithm that
reaches 67 Hz real-time tracking. The model we designed
not only contains information from GMM registration and
model-based prediction but also encodes the local structure and
global topology of the object. With the mass-spring-damper
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model and GMM fused together, this algorithm is powerful
at handling occlusion situations. Moreover, the limits of the
strain energy units can be modified to approximate actual
physical constraints on different objects so as to improve
tracking robustness.

We have conducted a series of experiments to prove that our
algorithm is robust to occlusions. With the provided model for
a DLO, the backward Euler time-integration can estimate all
the positions and velocity of the nodes based on the physical
proprieties even if only part of the nodes are detected. However,
the time steps that are needed for the force to sufficiently transmit
from the observed part to the occluded part depend on the
number of nodes that are occluded. This limitation is because the
backward Euler time-integration could only update the positions
and velocity step by step. Due to this reason, this algorithm
performs better in the case that the center part of a DLO is
occluded than any of the ends is occluded.

In future work, we will generalize this algorithm to 2-d or even
3-d object cases. Advanced point cloud selection algorithms will
be implemented to reduce the number of outliers and point cloud
size. Also, wemay explore amore systematic way to find the value

Eyield for all kinds of materials. More manipulation tasks with
robots will be tested to validate the effectiveness.
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