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In the field of ship image recognition and classification, traditional algorithms lack

attention to the differences between the grain of ship images. The differences in the

hull structure of different categories of ships are reflected in the coarse-grain, whereas

the differences in the ship equipment and superstructures of different ships of the same

category are reflected in the fine-grain. To extract the ship features of different scales, the

multi-scale paralleling CNN oriented on ships images (SMS-PCNN) model is proposed in

this paper. This model has three characteristics. (1) Extracting image features of different

sizes by parallelizing convolutional branches with different receptive fields. (2) The number

of channels of themodel is adjusted two times to extract features and eliminate redundant

information. (3) The residual connection network is used to extend the network depth and

mitigate the gradient disappearance. In this paper, we collected open-source images on

the Internet to form an experimental dataset and conduct performance tests. The results

show that the SMS-PCNN model proposed in this paper achieves 84.79% accuracy

on the dataset, which is better than the existing four state-of-the-art approaches. By

the ablation experiments, the effectiveness of the optimization tricks used in the model

is verified.

Keywords: image classification, multi-scale, CNN, ship images, ResNet

INTRODUCTION

In themilitary field, ship image classification is used to conduct precise strikes against hostile targets
and important to carry out counter-terrorismmissions. In the civilian field, ship image classification
can assist relevant departments in maritime traffic control, search and rescue, and anti-smuggling
activities. Therefore, ship image classification has broad applications and technical requirements in
both military and civilian fields.

Currently, there are four types of maritime target images: radar images, remote sensing images,
infrared images, and visible light images. Radar (Jiang et al., 2021; Tang et al., 2021) image
recognition is all-weather and daylong, which means that it is not easily affected by light and
weather. Its mainstream approach is extracting and classifying the features of radar echo signals,
so as to achieve autonomous deep feature extraction of the data. Remote sensing (Yang et al., 2014,
2017) image recognition is extracting geometric features such as length and contour of targets in
high-resolution SAR remote sensing images, so as to enhance SAR image recognition capability.
Infrared image recognition can work in a long distance, which can penetrate thick fog and work
day and night.
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For visible images, traditional image recognition and
classification use techniques including pixel-level edge
detection, genetic algorithm, and support vector machine
(SVM) classification. Atsuto and Kazuhiro (2004) proposed a
multi-frame image processing algorithm to extract contours
as basic features of targets for vector analysis, achieving good
recognition performance. Xu et al. (2017) designed a multi-
level discrimination method based on the improved entropy
and pixel distribution with multi-scale and multidirectional
decomposition of high-frequency coefficients, which can
effectively resist background interferences and improve
recognition accuracy and efficiency. Yang and Kim (2012)
integrated SAR and automatic identification system (AIS)
datasets as one system that can display the position, size, and
classification of ships on SAR images. Enriquez de Luna et al.
(2005) proposed a silhouette-based decision support system
for ship image classification, using an evolved version of the
Curvature Scale space (CSS) to improve recognition accuracy.

In the recent years, convolutional neural networks (CNNs)
have gradually been widely applied in visible light image
classification and recognition. A series of classic CNN
models, including AlexNet, VGG, GoogLeNet, ResNet,
DenseNet, and so on, stand out in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC), which
covers various fields such as image classification and
target detection.

The AlexNet (Alex et al., 2017) model is the first multi-
layer CNN with five convolutional layers, three fully connected
layers, and a max-pooling layer. This state-of-the-art model
is a landmark of CNN model. The proposal of the VGG
(Simonyan and Zisserman, 2014) model made the 3 × 3
convolution filters mainstream and improved the accuracy
based on the AlexNet, achieving the state-of-the-art results
and accelerating further research on the use of deep visual
representations in computer vision. Since 2014, the GoogLeNet
series has begun to emerge. GoogLeNet (Christian et al.,
2014) proposed the inception convolutional neural network
that started application of 1 × 1 convolution, reducing the
amounts of computation and improving the utilization of
computational resources. Its improved model GoogLeNet-V2
(Sergey and Christian, 2015) replaces the 5 × 5 convolution
with two layers of 3 × 3 convolution, and the batch
normalization proposed in this paper is widely used in
deep neural networks. The Inception-V3 model proposed by
GoogLeNet-V3 (Christian et al., 2015) achieved the state-of-
the-art in the 2015 ILSVRC classification challenge. This model
summarized four guidelines for network model design and
three optimization tricks to effectively reduce the number of
parameters and improve computational efficiency. GoogleNet-
V4 (Szegedy et al., 2017) proposed the Inception-V4 model
to summarize and integrate. It designed the Inception-ResNet
network, which introduces residual connections into the
GoogleNet series. The ResNet (He et al., 2016) model is
designed with residual connection module, which is easier to
optimize and has lower computational complexity and higher
accuracy. The ResNeXt (Xie et al., 2017) model improved
based on the ResNet model which integrated the ideas

of VGG, ResNet, and Inception series. ResNeXt proposed
cardinality index to measure complexity, winning the runner-up
in the 2016 ILSVRC classification challenge. The DenseNet
(Huang et al., 2017) model can effectively alleviate gradient
disappearance and strengthen feature propagation, and therefore,
it can outperform ResNet in all aspects on Cifar-10, SVHN, and
Cifar-100 standard datasets. Besides, it can reduce the number
of parameters by half with the same accuracy. The Senet (Jie
et al., 2017) model focuses on the channel relationship and
introduces attention mechanism into the convolutional neural
network, which can adaptively recalibrate channel-wise feature
to improve performance.

Convolutional neural networks are also widely applied in
speech recognition (Partha et al., 2020; Pradeep and Nirmaladevi,
2021; Yang et al., 2021), medical diagnosis (Seo and Kim,
2020; Toktam et al., 2020; Mustaqeem, 2021), biometrics (Alay,
2020; Sadasivan et al., 2020; Mekruksavanich and Jitpattanakul,
2021; Mohaghegh and Payne, 2021), and other fields. The
exploration of convolutional neural networks in other fields
provides a reference for us to use CNN for ship image
recognition (Cazzato et al., 2020). Jeon and Yang (2021)
proposed a classification model integrating CNN and KNN,
which classifies from dual-polarization data with 10-m pixel
distance to improve the efficiency of ship classification. Li
et al. (2021) contribute to intelligent ship vision system by
traditionally integrating image processing with machine learning
and using target detection method based on CNN. Julianto
et al. (2020) proposed a modified method using CNN to classify
a patrol vessel dataset and achieved great results. Chen et al.
(2020) combined the improved generative adversarial network
(GAN) and convolutional neural network, proposing a small ship
detection method, which significantly improved the accuracy
and robustness of the results. Zhao et al. (2020) used the
improved AlexNet convolutional neural network for deep feature
extraction of ship images, which significantly improved the
classification performance. Xu et al. (2020) proposed a detection
method combining visual saliency and a convolutional neural
network cascade, which can effectively improve ship detection
accuracy and efficiency. Based on the pixel-level fusion of
visible and infrared bispectral images, Gao (2020) integrated the
algorithms that include image preprocessing, image smoothing,
and anti-cloud interference to achieve the detection of ship
targets in complex land and sea backgrounds. Ren et al. (2019)
proposed a CNN framework with fewer layers and parameter.
This method used the Softmax function to classify different
ship types and achieved good results. Li et al. (2019) proposed
a method to learn discriminative features through supervised
learning and good classification performance and built two small
optical ship image datasets to verify that results of this method.
Hou et al. (2019) proposed a ship detection method based
on the visual attention enhanced network to process optical
remote sensing images, which improved the recognition accuracy
and the detection performance. Endang and Agfianto (2019)
combined the CNN-ZFNet architecture and the random forest
method to extract the so-called best features defined in the
paper and improved the ship image classification accuracy. Shao
et al. (2019) proposed a saliency-aware CNN framework for
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ship detection, comprising comprehensive ship discriminative
features. Makantasis et al. (2016) proposed that a methodology
fuses a visual attention method that exploits low-level image
features appropriately selected for maritime environment. Dong
et al. (2018) proposed a hierarchical detection method that
finishes the automatic ship detection well. Sobral et al. (2015)
proposed a double-constrained robust principal component
analysis (RPCA) to improve the object foreground detection in
maritime scenes.

By now, various methods to solve the classification and
recognition problem of ship targets by convolutional neural
networks do not focus on the differences between the grain of
ship images. We found that the differences between categories
of ships are the hull structure, and the differences between ships
of the same category are the equipment and superstructures.
Therefore, for the differences in the hull structure between
different categories of ships, we should use convolution kernels
with larger receptive fields, which is conducive to extracting
features such as hull structures that occupy large pixel areas. At
the same time, for small differences between diverse ships of the
same category, we should use convolution kernels with smaller
receptive fields to extract fine features such as ship equipment
and superstructures.

Based on the above ideas, we proposed the SMS-PCNN
model to classify ship images. The model extracts the feature
of images in different sizes by parallelizing convolution
branches with different receptive fields. To enhance the
speed of converge and avoid overfitting, three optimization
tricks are introduced including enhancing specific ship dataset
applications, improving training learning rate, and avoiding
overfitting. Then, we collected 5,062 ship images of 12 categories
on the Internet for the experiments to test the algorithm
performance of the SMS-PCNN model and the effectiveness of
three optimization tricks.

An outline of the paper is as follows. Section Introduction
briefly introduces the research background, technical status quo,
faced challenges, and the innovations of this paper. Section
SMS-PCNN Model gives a detailed introduction to SMS-PCNN
model, which uses three parallel CNN branches to extract
the features from different receptive fields, and then classifies
the feature maps based on the multilayer perceptron neural
networks. Moreover, three optimization tricks of SMS-PCNN
model to optimize network performance are also introduced
in this chapter. Section Experiment tests the performance of
the proposed SMS-PCNN model using the ship image dataset.
Besides, a series of comparison experiments were also conducted
to test the performance of algorithms using other state-of-
the-art approaches as references. Besides, a series of ablation
experiments are also conducted to verify the effectiveness of
three optimization tricks used in the model. In addition, we
conduct experiments on Branch1-CNN model only using 3 × 3
convolution to demonstrate the necessity of designing a multi-
branch parallel structure. By comparing the accuracy of both
experiments, we demonstrate that designing of a multi-branch
parallel structure has better feature extraction capabilities for ship
images than other. Section Conclusion summarizes the content of
the paper.

SMS-PCNN MODEL

This chapter presents the SMS-PCNN model proposed for
the ship dataset and optimization tricks used by the model.
SMS-PCNN uses three parallel CNN branches to extract
feature maps from different receptive fields and then classifies
the feature maps based on a multilayer perceptron neural
network. This chapter is divided into two sections. The first
section introduces the network architecture of the SMS-PCNN
model in two levels. It introduces the basic single-branch
architecture design for implementing the feature map extraction
function in the SMS-PCNN model and then presents the
SMS-PCNN model architecture design for integrating three
single-branch CNNs with different receptive fields. The second
section focuses on three optimization tricks for optimizing
the network performance, including enhancing specific ship
dataset applications, improving training learning rate, and
avoiding overfitting.

Model Architecture
This section is divided into two parts. The first part introduces
the basic single-branch architecture design of SMS-PCNN. In this
part, basic single-branch in parallel CNNs is used as an example,
and the data processing procedure of RGB images after being
inputting to each branch is introduced in a systematic way. In
the second part, the overall network architecture of SMS-PCNN
is presented. This part details the process of fusing feature maps
from different single-branch CNNs and classifying the input
images based on multilayer perceptron neural networks.

Basic Single-Branch Architecture of SMS-PCNN

Model
The SMS-PCNN model consists of three parallel CNN branches
with different receptive fields. The three CNN branches have
similar structures, so the first branch in the single-branch
benchmark architecture network is taken as an example to
illustrate the data flow after the image is inputted to the network.
The first branch uses a 3× 3 convolutional kernel with a relatively
small receptive field. The schematic structure of this branch is
shown as Figure 1.

The single-branch network design is inspired by the Resnet
network (Xie et al., 2017) and consists of three parts. The first
part is the CNN Head, which includes the convolutional layer,
(group normalization (GN) layer, ReLu activation layer, and max
pooling layer sequentially. The second and third parts are the
two layers with similar structure, each containing two blocks.
Through two layers, the feature maps will be inputted to the
global average pooling layer and then be flattened into a one-
dimensional feature vector.

The convolutional layer of CNN Head uses 64 convolution
kernels of size 3× 3 with depth 3 to filter the image of size 512×
512 × 3. The stride is 2 pixels and the padding is 3 pixels. Then,
the image goes through the GN layer and ReLu activation layer.
Then, max pooling is performed on the feature maps. The size of
pooling is 3× 3, the stride is 2 pixels, and the padding is 1 pixel.

The basic architecture of the block in Layer is shown
as follows.

Frontiers in Neurorobotics | www.frontiersin.org 3 June 2022 | Volume 16 | Article 889308

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wang et al. Recognition of Ship Images

A formula can express the output of the block

y = ReLu(F(x) + x
′

) (1)

where x and y are, respectively, the input and output of the
block. F(x) is the residual mapping which the network needs

to learn, and x
′
is the output from the side road. As shown in

Figure 2, the block contains two roads, the main road and the
side road. After entering the block, x will be inputted to the
main road and the side road for data processing, respectively. In
the main road, feature map x goes through the first convolution
layer, the first batch normalization (BN) layer, the first ReLu
activation layer, the second convolution layer, and the second
BN layer and then becomes feature map F(x). To complete the
summation in Eqn (1), the dimensions of x and F(x) must be
equal. In the s side road, if the dimensions of F(x) are the same
of x, no further data processing will be performed, which is called

x
′
= x. However, if the dimensions of the feature map output

by the main road decrease, x needs to be processed by 1 × 1
convolution layer. The stride of 1 × 1 convolution kernel in
Figure 2 is 2 pixels, and the padding is 1 pixel. The number of
channels of the 1× 1 convolutional layer depends on the number
of channels outputting F(x) from the main road in the block.

F(x) from the main road and x
′
from the side road are activated

by ReLu function after the summation of the pixels at the
corresponding positions. The feature map y is the final output of
this block.

There are two cascaded blocks in each layer with the same
structure. The difference between the two blocks is that the
resolution of the output F(x) in Block1 decreases and the
number of channels changes. In Block2, the stride of the first
convolution layer is 1 pixel. Therefore, the size of feature map
and the number of channels do not change, and a 1 × 1
convolution operation is not required in Block2. Block1 uses
a convolution kernel with the stride of 2 pixels instead of
a pooling layer to reduce the resolution of the feature map.
Springenberg et al. (2014) show that max pooling layer can
be replaced by a convolution layer with a stride bigger than 1
pixel without loss of accuracy. Moreover, this can reduce the
error to some degree in vast majority of networks. Therefore,
we use stride of 2 pixels to compress the size of the feature
map to ensure that the network not only reduces the dimension
and removes redundant information, but also improves the
discriminative accuracy.

Layer2 has nearly the same design as of Layer1, except
that Layer1 has 128 convolutional channels and Layer2 has
64 convolutional channels. Moreover, when the image is
put into the single-branch benchmark network, it passes
through the CNN Head and 2 layers one by one. Then, the
network uses global average pooling to further reduce the
resolution of the image and flatten the high-dimensional feature
map into a one-dimensional feature vector, pending further
classification processing.

Based on the above single-branch architecture network of
Branch1, other two branches with similar structures can be
designed, which are Branch2 and Branch3. The main difference
is that the size of the convolutional kernel used in Branch2 is 5×

5, and the size of the convolutional kernel used in Branch3 is 7×
7. Moreover, to make the feature map of each branch consistent
in size for comparison and calculation, the padding of different
branches is slightly different. Branch2 uses 5 × 5 convolutional
kernels, and the padding of the first block in each layer is 2 pixels.
Branch3 uses 7× 7 convolutional kernels, the padding of the head
convolutional layer is 4, and the padding of the first block in each
layer is 3 pixels.

Overall Architecture of SMS-PCNN Model
Generally, ship images are natural scene images, so the input
of SMS-PCNN model is RGB images. Analyzing the ship
dataset, we found that the difference in appearance between
different categories of ships mainly lies in the hull structure
of ships, while the difference in appearance between ships of
the same category lies in the superstructures and equipment
of ships.

Therefore, for different categories of ships, we should pay
more attention to discriminating architectural differences and
use convolutional kernels with large receptive fields, which are
more conducive to extracting features such as hull structures
that occupy large pixel areas. For light differences between
ships of the same category, we should use convolutional kernels
with small receptive fields to extract features such as ship
equipment and superstructures that occupy small pixel areas.
For example, there are huge differences between the hull of
the Ariake class destroyer and landing ship, which are two
different categories of ships, so the convolution kernel with
large receptive field is more advantageous. While aircraft carriers
contain many categories of ships such as Queen Elizabeth class,
the Nimitz class, the main difference between them is the bridge
and other special equipment that occupy small pixel areas. In
this case, the convolution kernel with smaller receptive field is
more advantageous.

Combining the above two considerations, the SMS-PCNN
model uses different sizes of receptive fields to extract features of
ship images at different levels, so as to achieve a high classification
accuracy. The SMS-PCNNmodel has three parallel branches with
different sizes of convolutional kernels that is 3 × 3, 5 × 5, and
7 × 7. The receptive fields of the branches increase, so that the
features of the ship images can be extracted and classified in a
multi-scale manner. The network structure of SMS-PCNNmodel
is shown in the Figure 3.

The number of channels in the SMS-PCNN model has
been adjusted two times. In the CNN Head, the convolution
layer contains 64 channels. In Layer1, this number is expanded
to 128. The reason is that the feature map shrinks and
part of information loses during the process of extracting
features from low-dimensional to high-dimensional features.
To expand the amount of data flow between layers as
much as possible, we expand the number of channels.
However, the number of channels is reduced to 64 in
Layer2. That is because the redundant information increases
in the process of further abstraction of high-dimensional
features. So, as to further improve the accuracy and reduce
the redundant feature information, we decrease the number
of channels.
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FIGURE 1 | Network architecture of Branch1.

FIGURE 2 | Architecture of Block.

FIGURE 3 | SMS-PCNN model.

After generated from three parallel branches with different
sizes of receptive fields, feature vectors are linearly concatenated
in the SMS-PCNN model.

Fused
(

featurevector
)

1 × p
= [featurevector

(

branch1
)

1×q
,

featurevector
(

branch2
)

1×q
, feature vector(branch3)1 × q ],(2)

where p and q denote the dimensions of feature vectors. p is
192 and q is 64. Branch1 denotes the branch which uses 3
× 3 convolution, Branch2 denotes the branch which uses 5
× 5 convolution, and Branch3 denotes the branch which uses
7× 7 convolution.

These fused feature vectors are processed by multi-layer
perceptron neural networks (MLP neural networks), mapping
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feature vectors with different sizes of receptive fields into different
classifications of ship images by decreasing the dimension layer
by layer.

Suppose after flatten layer, MLP with L layer is used for feature
classification, then the layer l has ml neurons and the input
vector is

al − 1 = [al − 1
1 , al − 1

2 , . . . , al − 1
ml ]

T
(3)

al−1is called the feature vector from layer (l − 1). The matrix of
weight connected between neurons in layer (l− 1) and l is:

W l =













wl
11

wl
21

wl
12 · · · wl

1ml−1

wl
22 · · · wl

2ml−1

...

wl
ml1

...

wl
ml2

. . .

· · ·

...

wl
mlml−1













(4)

where wl
jk
denotes the weights connected between neuron k in

layer (l− 1) and neuron j in layer l .
The bias vector of neurons in layer l is

bl = [bl1, b
l
2, . . . , b

l
ml ]

T
(5)

then the feature vector al from neurons in layer l is

al = f l(W l • al − 1 + bl) (6)

where thef l( ) is the activation function used by neurons in
layer l. After the signal enters the feedforward neuron network,

it passes layer by layer and gets the output aL in the end. The
whole process in the feedforward neural network is actually
inputting the feature vectors from PCNN into the composite
functionF(.;W, b). Finally, the output of the network aL is
as follows.

aL = F
(

x;W, b
)

= f L(WL • f L−1
(

. . .W2 • f 1
(

W1 • x + b1
)

+ b2 . . .
)

+ bL) (7)

After the multilayer perceptron neural network, the SMS-PCNN
model uses softmax function to normalize the vector aL. Let the
i-th element of the vector aL be aLi , then the result obtained after
aLi being processed by softmax function is

Si = softmax(aLi ) =
exp(aLi )

∑

j exp(a
L
j )

(8)

After softmax function, aLi is mapped to the Si.Si satisfies the
properties of the probability distribution, Si ∈ (0, 1) and

∑

i Si =
1. Therefore, Si can represent the prediction probability. By
selecting the node with the largest prediction probability, we can
obtain the final classification category.

The predicted probability Si will also be inputted to loss
function. In the SMS-PCNN model, we use cross-entropy loss
function used. It is

Loss = −

K
∑

i = 1

pi log Si (9)

FIGURE 4 | Curve of learning rate adjustment.
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where K is the number of categories, and pi denotes the indicator
variable (takes the value of 0 or 1). If the predicted category of
the sample i is the same as its true category, pi takes the value of
1 and 0 otherwise. Cross-entropy loss function can measure the
prediction performance of the model.

To address the problem of too many parameters in the SMS-
PCNN model, the SMS-PCNN model uses L2 regularization to
mitigate overfitting. Regularization is a method to reduce the
complexity of the model by introducing penalty terms. The L2
regularization is to add the L2 norm of the parameters after the
loss function:

L̂oss = −

K
∑

i = 1

pi log Si + α�(w) (10)

where L̂oss is cross-entropy loss function with L2 regularization,
and w is the weight coefficient matrix, and the parameter α

controls the strength of regularization. Ω function is the L2
norm, namely, the sum of squares of the weight coefficients:

�(w) = ‖w‖22 (11)

Tricks for Model Optimization
Optimization for Specific Ship Dataset Applications
Generally, the distinguishing features of some ships are mainly
concentrated in parts that account for a small proportion of the
images, such as the bridge of aircraft carriers and the radar of
frigates. Therefore, to improve the accuracy of the model, we
need to retain as much information of images as possible and use
images with large size to contain more information as much as
possible. For images with large size, the batch size is reduced to
fit the training. However, relatively low batch size will lead to bad
performance of the batch normalization (BN) used in the SMS-
PCNN model. In this case, Wu and Kaiming (2020) proposed
group normalization (GN) to improve the dependence of BN on
batch size and proved that when the batch size is <8, the error of
using GN is smaller than BN.

The GN layer calculates the mean and variance based on the
input data and then uses these two values to normalize the input
data. Specifically, GN divides the channels of the layer into groups
and uses the mean and variance of the data within the groups.

x̂i =
1

σi
(xi − µi) (12)

x̂i is the feature map of the layer, and i = (iN , iC, iH , iw). N is
the batch axis, C is the channel axis, H and W are the spatial
height and width axis. µ and σ here can be calculated by the
following equations

µi =
1

m

∑

k∈Si

xk (13)

σi =

√

√

√

√

1

m

∑

k∈Si

(xk − µi)
2 + ǫ (14)

where ε is a small constant. Si is a feature collection with a size
of m used to calculate µ and σ . The solution of Si in GN is the
following equation.

Si = {k|kN = iN ,

⌊

kC
C
G

⌋

=

⌊

iC
C
G

⌋

} (15)

G is the number of groups. In the SMS-PCNN model, we pre-set
G = 2. C is the number of channels, and C/G is the number of

channels in each group. “

⌊

kC
C
G

⌋

=

⌊

iC
C
G

⌋

” indicates that i and k

are in the same channel group.
When we used GN in all the normalization layers of the SMS-

PCNN models, gradient explosion appeared. Therefore, we only
use GN to normalize the output of the head convolution layer of
each branch whereas BN is used in other layers, which achieved
good results.

Learning Rate Optimization
The model uses gradient descent to minimize the value of loss
function and thus converge to the optimal solution. During the
iterations performed by the gradient descent, the learning rate
controls the learning progress of the model. To optimize the
model learning rate, we use cosine annealing and Warmup (He
et al., 2016) technique. Warmup is used to train with a small
learning rate at the beginning of to make the network familiar
with the data. As the training continues, the learning rate slowly
increases and reaches the initial learning rate within a pre-set
iteration. Then, we use cosine annealing to adjust learning rate.

The equation of decreasing learning rate is as follows:

ηt = ηmin +
1

2
(ηmax − ηmin)(1 + cos (

Tcur

T
π)) (16)

where ηt is the learning rate of the t-th iteration. ηmin is the
termination learning rate. ηmax is the initial learning rate. Tcur

is the current iteration. T is the total iteration. The key of

the formula is cos (TcurT π). As iteration increases, the value of

cos (TcurT π) decreases from 1 to−1, so that the learning rate ηmax

decreases to ηmin.
The learning rate adjustment for the whole model training is

shown in the Figure 4.
The learning rate is adjusted with iterations. In the first 2,709

iterations (3 epochs), warmup is used. As iteration gradually
increases, the learning rate grows to 0.1, and then, this number
decreases to 10−4 using cosine annealing.

Optimization of Overfitting of the Ship Dataset
On the Internet, ship images are limited in amounts and in low
quality, so the ship dataset we compiled from open-source data
is limited in size, which leads to overfitting to some degrees
when we use the SMS-PCNNmodel for training. For this reason,
we use two methods, label smoothing and dropout, to mitigate
overfitting in training.

Label smoothing is a technique proposed by Sergey and
Christian (2015) in the model of inception-V2 to mitigate
overfitting. The traditional one-hot coding suffers from
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overconfidence, which leads to overfitting. To address
overconfidence, label smoothing decays the item with probability
1 in one-hot, which reduces the weight of category of the ground-
truth label in the calculation of loss function. The confidence of
the decayed items in one-hot is equally divided into other items,
so that each category has a certain amount of confidence, which
can suppress overfitting. In the SMS-PCNN model, we add the
label smoothing to cross-entropy loss function, and loss function
is changed as follows.

Loss
(

p, q
)

= −

K
∑

i = 1

pi log qi →

L̂oss
(

p
′

, q
)

= −

K
∑

i = 1

p
′

i log qi (17)

where K denotes the number of categories, and pi denotes the
indicator variable (takes the value of 0 or 1). qi is the predicted
probability value.

p
′

i = (1 − ε)pi + εu(k) (18)

where ε is a smoothing parameter, which is a pre-set
hyperparameter. u(k) is a probability distribution and uniform
distribution is used here, so u(k) = 1

K . The result of cross-entropy

loss function through label smoothing L̂oss
(

p
′
, q

)

is as follows.

L̂oss
(

p
′

, q
)

= (1 − ε Loss
(

p, q
)

+ ε Loss
(

u, q
)

(19)

In addition to label smoothing, we also use dropout to prevent
the model from overfitting. In dropout (Hou et al., 2019), the
training process randomly drops out some neurons in hidden
layers and maintains the number of neurons in input and output
layers. Then, we inputted data through the modified network
to propagate forward, and the loss which is calculated by the
network is propagated back. Suppose the multilayer perceptron
neural network has L layers, and l ∈ {1 . . . , L} denotes the
neuron in layer l. Let zl denotes the input of the neuron in layer
l, yl denotes the output of the neuron in layer l, and W l and bl

denote the weight coefficients and bias of the neuron in layer l.
Then, the feedforward neural network can be expressed by the
following equation.

z(l + 1) = W(l + 1)yl + b(l + 1) (20)

y(l + 1) = f
(

z(l+1)
)

(21)

where f denotes the activation function. When we use dropout
during the model training, the feedforward neural network
becomes of the following form.

rli ∼ Bernoulli
(

p
)

(22)

ỹ(l) = r(l) ∗ y(l) (23)

z(l+1) = W(l + 1)ỹl + b(l + 1) (24)

y(l + 1) = f
(

z(l + 1)
)

(25)

where the probability p is a pre-set hyperparameter. rl is a
random variable that obeys the Bernoulli distribution and is
designed to randomly generate a vector of 0 or 1 with probability
p. Probability p denotes the proportion of the elements of this
vector taking the value of 0. rl is to sample each layer andmultiply

y(l) which is the output of that layer element by element. y(l+1)

denotes the final result of Dropout.
During the prediction of the model, the weight parameter of

each neural unit is multiplied by the probability p,w
(l)
test = pW(l).

In the SMS-PCNN model, we used the dropout before two
fully connected layers and set the probability p to be 0.3, which
means that 30% of the neurons were dropped out randomly, and
the experiment achieved a good accuracy improvement.

EXPERIMENT

Dataset
On the Internet, ship images are limited in amounts and in low
quality. Therefore, there are no large-scale standard open-source
ship datasets. We collected open-source images from the Internet
and compiled a dataset containing 12 categories of ship targets.
Part of the ship images is shown in Figure 5.

The number of each sample of 12 categories applicable to the
image classification task is shown in Table 1.

In the ship dataset shown in Table 1, we divide the training set
and valid set according to the ratio of 7:3.

Experiment and Result
Experiment and Result of SMS-PCNN Model
We use the SMS-PCNN model optimized by three tricks to
conduct experiments. Samples of 12 categories were trained
iteratively using 175 epochs with the batch size of 4. The model
was trained iteratively using the stochastic gradient descent
(Sebastian, 2016). Cosine annealing and warmup optimization
techniques were used on the learning rate. After warmup, the
learning rate is initially set to 0.1 and finally decreased to 10−4.
The weight of label smoothing is set to 10−3. The SMS-PCNN
model uses L2 regularization and its weight is set to 10−3. MLP
uses two dropouts, both set to discarding 30% of the neurons.
The batch normalization, group normalization, and MLP in the
model all use the correlation functions that come with PyTorch.
After being preprocessed, the natural scene images with the
adjusted resolution of 512× 512 are inputted to the SMS-PCNN
model for training.

Table 2 shows the architecture of SMS-PCNNmodel for a ship
dataset with resolution of 512 × 512. Among them, the images
are processed by Branch1, Branch2, and Branch3 in parallel and
then jointly processed by average pooling. Finally, the feature
vectors from three branches are concatenated together. The
concatenated feature vectors with 192 dimensions sequentially go
through the input layer, the hidden layer with 64 neurons and the
output layer with 12 neurons of the MLP neural network. Then,
these vectors pass through the softmax function, and the results
of classification are outputted.

The “64” in Conv1 denotes the number of convolutional
kernels. The “128” in Layer1 and 64 in Layer2 both denote
the number of convolutional kernels. The “×2” of each Branch
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FIGURE 5 | Ship dataset. (A) Type 054 frigate, (B) Type 055 destroyer, (C) Sovremenny class destroyer, (D) Chinese aircraft carrier Liaoning, (E) Nimitz class aircraft

carrier, (F) Queen Elizabeth-class aircraft carrier, (G) Arleigh Burke class destroyer, (H) Landing ship, (I) Oil tanker, (J) Surveillance boat, (K) Missile boat, and (L)

Motorboat.
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TABLE 1 | Distribution of ship dataset.

Ship Category Number of images Ship category Number of images

Surveillance boat 397 Type 055 destroyer 409

Motorboat 474 Arleigh Burke class destroyer 445

Landing ship 495 Type 054 frigate 404

Missile boat 403 Chinese aircraft carrier Liaoning 378

Oil tanker 436 Nimitz-class aircraft carriers 502

Sovremenny class destroyer 420 Queen Elizabeth-class aircraft carriers 299

TABLE 2 | Architectures of SMS-PCNN model.

Layer name Output size Branch1 Branch2 Branch3

Conv1 256 × 256 3 × 3, 64, stride = 2

padding = 3

5 × 5, 64, stride = 2

padding = 3

7 × 7, 64, stride = 2

padding = 4

Pooling 129 × 129 3 × 3 max pooling, stride = 2, padding = 1

Layer1 65 × 65





3 ∗ 3, 128

3 ∗ 3, 128



 × 2, padding = 1





5 ∗ 5, 128

5 ∗ 5, 128



 × 2, padding = 2





5 ∗ 5, 128

5 ∗ 5, 128



 × 2, padding = 2

Layer2 33 × 33





3 ∗ 3, 128

3 ∗ 3, 128



 × 2, padding = 1





5 ∗ 5, 64

5 ∗ 5, 64



 × 2, padding = 2





5 ∗ 5, 64

5 ∗ 5, 64



 × 2, padding = 3

1 × 1 Average pooling

Fully connected layer1 (192, 64), dropout = 0.3

Fully connected layer2 (64, 12), dropout = 0.3

FIGURE 6 | Accuracy curve.
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FIGURE 7 | Loss curve.

in Layer1 and Layer2 denotes that the two cascaded blocks
using the same parameters. Take the parameters of fully
connected layer1 (192, 64) as an example, “192” indicates the
dimension of the input vector and “64” the dimension of the
output vector.

Generally, the indicator to evaluate the classification
effectiveness of a classifier is its accuracy. The classification
accuracy is the proportion of correctly predicted results to the

total sample.
As seen in Figure 6, the SMS-PCNN model, which combines

all tricks, converges faster in training and has nearly reached the
highest accuracy rate at the 100th epochs. With the increase of
epochs, the learning rate gradually decreases and the training
gradually tends to be stable, and the final model optimal results
reach 84.79% accuracy.

The loss function in the SMS-PCNN model uses cross
entropy loss function with label smoothing and is shown in
the Figure 7. The improved loss function converges faster and
more stably in the training set. At the end of the training,
the model training finally converges. The decrease of the loss
function on the valid set tends to be stable as the learning rate
decreases and reaches the optimal result around 150th epochs.
The confusion matrix of the SMS-PCNN model is shown in the
following figure.

From the confusion matrix of the SMS-PCNN model on the
valid set as shown in Figure 8, three points can be concluded.
(1) The darkest areas of the confusion matrix are concentrated
in the diagonal line, showing great classification performance.
(2) Among all categories, landing ships, type 055 destroyers,
and oil tankers have the highest classification accuracy. (3)
Sovremenny class destroyers and Nimitz class aircraft carriers
cannot be classified well. The reason why these two categories
have a slightly worse classification performance than others is
that there are diverse ships of these two categories with minor
differences, resulting in the lack of obvious different features
between categories.

T-sne (Laurens, 2014) clustering analysis of the SMS-PCNN
model for the valid data is plotted in the Figure 9.

From the t-sne clustering analysis graph, we can find that the
samples of each category are basically concentrated together, and
the SMS-PCNN model can classify the samples well.

Performance Comparison
This section is divided into two parts for performance
comparison. The first part is the performance comparison of
the SMS-PCNN model with classical model frameworks and the
model with single branch. The second part is the validation of the
tricks of the SMS-PCNN model.
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FIGURE 8 | Confusion matrix of the valid set of SMS-PCNN model.

(1) Comparison to state-of-the-art approaches.

We compared our SMS-PCNN model with 4 state-of-the-art
approaches: Resnet-50 (He et al., 2016), Alexnet (Alex et al.,
2017), VGG-16 (Simonyan and Zisserman, 2014), and Resnet-18
(He et al., 2016). All the methods were compared on the valid
set of our ship dataset. The accuracy comparison is presented
in Table 3. The results in Table 3 show that the proposed SMS-
PCNN model achieved the best results among all algorithms.
All the state-of-the-art comparisons on the ship dataset are fine-
tuned well. These comparisons use the same hyperparameters as
the SMS-PCNN model we proposed.

In addition, we conducted experiments on network
architecture with single branch to analyze the
classification of ships. The experiments showed that
the Branch1-CNN with small receptive field of 3 × 3
convolutional kernel achieved an accuracy of 75.53%,
which is lower than the accuracy of the SMS-PCNN
model. This demonstrates the necessity of designing a
multi-branch structure.

Comparing with the confusion matrix and t-sne clustering
analysis graph in Figures 10, 11, it can be clearly concluded that
compared with the SMS-PCNNmodel, other models do not have
well classification effect and have limitations in generalization
performance. The confusion matrix shows that other models
have low accuracy in discriminating the Queen Elizabeth-class
aircraft carrier and the Chinese aircraft carrier Liaoning. The
t-sne clustering analysis shows that the point representing
Queen Elizabeth-class aircraft carrier and the Chinese aircraft
carrier Liaoning are scattered and disorganized, showing a bad
performance on clustering. The results of confusion matrix and
t-sne clustering analysis are consistent and unified.

(2) Validation of tricks of SMS-PCNN model.

Basic SMS-PCNN means the SMS-PCNN model we used to
perform an experiment without trick1, trick2, and trick3. These
tricks are used for optimizing the network, including enhancing
specific ship dataset applications, improving training learning
rate and avoiding overfitting, respectively.
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FIGURE 9 | SMS-PCNN model t-sne clustering analysis.

TABLE 3 | Accuracy comparison with state-of-the-art approaches.

Model Accuracy (%)

Resnet-50 63.82

Alexnet 64.23

VGG-16 67.52

Resnet-18 70.09

Branch1-CNN (3 × 3 conv) 75.53

SMS-PCNN model 84.79

We designed the ablation experiments. The result is shown
in Table 4.

It demonstrates that the accuracy of Basic SMS-PCNN model
without any tricks is 77.28%, which is still higher than the other

state-of-the-art approaches and Branch1-CNN in valid dataset
mentioned above. This demonstrates the superiority of the model
design principles and the basic framework structure. Meanwhile,
the ablation experiments examined that the accuracy of the Basic
SMS-PCNNmodel with trick1 increases by 2.16–79.44%. For the
Basic SMS-PCNN (add trick1 and trick2), the accuracy increases
by 5.96–83.79%. When using trick1, trick2, and trick3, the model
accuracy increases by 7.51–84.79%. It can be seen that the use of
three tricks did improve the accuracy of SMS-PCNN model and
enhance the classification effect.

Mechanistic Analysis of the Network
To further analyze the mechanism of the SMS-PCNN model and
verify the effectiveness of parallelizing multi-scale convolutional
branch and adjusting the number of channels, we visualize the
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FIGURE 10 | Confusion matrix of state-of-the-art approaches and Branch1-CNN in valid dataset. (A) Resnet-50, (B) Alexnet, (C) VGG-16, (D) Resnet-18, (E)

Branch1-CNN (3 × 3 conv), (F) SMS-PCNN model.
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FIGURE 11 | T-sne clustering analysis of state-of-the-art approaches in valid dataset. (A) Resnet-50, (B) Alexnet, (C) VGG-16, (D) Resnet-18, (E) Branch1-CNN (3 ×

3 conv), (F) SMS-PCNN model.

Frontiers in Neurorobotics | www.frontiersin.org 15 June 2022 | Volume 16 | Article 889308

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Wang et al. Recognition of Ship Images

convolutional kernels and the feature maps of tanker image
through each convolutional module. The head convolution layer
of each Branch in the SMS-PCNN model is a convolutional
kernel with depth 3 designed for three channels of RGB. When
visualizing, we combine these convolutional kernels into single
convolutional kernel with color. The visualization of the 64
combined convolutional kernels of the head convolutional layer
of each branch of the SMS-PCNN model is shown in the
following figure.

From the visualization of the convolution kernels in
Figure 12, we can find that the head convolution layer of Branch3
with 7 × 7 size convolution kernels mainly focuses on the edge
features of images, so it can better extract features such as the hull
of ships. The head convolution layers of Branch2 and Branch1
with 5 × 5 and 3 × 3 size convolution kernels focus on the fine-
grained features of images, so it can better extract features such
as ship superstructures and equipment.

We take the tanker image as an example to visualize feature
maps that pass through each branch convolution module. In
each branch, the tanker image passes through the CNN Head,
Layer1, and Layer2, and the feature maps are shown in the
following figure.

From Figures 13A–C, we can see that after the head
convolution layer with different convolution kernels in three
branches, the feature maps of the tanker image have different
attention. The feature map from Branch3_Head with a larger

TABLE 4 | Ablation experiments of SMS-PCNN model.

Model Accuracy (%)

Basic SMS-PCNN 77.28

Basic SMS-PCNN(add trick1) 79.44

Basic SMS-PCNN(add trick1 and trick2) 83.24

SMS-PCNN(add trick1-3) 84.79

receptive field is obviously coarser than that of Branch2_Head
and Branch1_Head, which have smaller receptive fields. It shows
that the feature map from Branch3_Head is more concerned with
coarse-grained feature extraction, whereas Branch1_Head with
the smallest receptive field is clearer in detail and is obviously
more concerned with the fine-grained feature extraction.

Figures 13D–F show the feature maps of the tanker image
after processing by the layer1 of each branch. Branch1_layer1
obviously retains more details and pays more attention to
the fine-grained features of the ship. Branch1_layer2 has
fewer details than Branch1_layer1 and focuses more on
the moderate scale features such as the superstructures of
the tanker. Branch1_layer3 focuses on the contours of the
ship and the coarse-grained features of the hull structure
of ships.

Figures 13G–I shows the feature maps of the tanker image
after the layer2 of each branch. It can be clearly seen that
there are huge differences between the feature maps after all
the convolution layers of each branch. The feature map of
Branch1 is clear and focuses on fine-grained features such
as ship equipment. The feature map of Branch2 focuses
on the superstructures of the tanker. The feature map of
Branch3 pays attention to contours and the hull structure
of the tanker.

By comparing the feature maps of different convolution
of the three branches, we demonstrate the effectiveness
of using multi-scale convolutional branch parallelization for
ship images.

We also compared the feature maps of each convolutional
layer of single branch. Taking Figures 13A,D,G as an example,
after the processing of CNN Head, Layer1, and Layer2, feature
maps are gradually abstracted from specific low dimension to
high dimension, which is effective for image feature extraction.
Besides, from Figures 13D–F, we observe that there is redundant
clutter in part of the output from Layer1 of each branch.
Therefore, the reduced numbers of channels in Layer2 can

FIGURE 12 | Convolutional kernel visualization. (A) Branch1_Head(3 × 3conv), (B) Branch2_Head(5 × 5 conv), (C) Branch3_Head(7 × 7 conv).
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FIGURE 13 | Feature maps of oil tanker image after different convolution layers. (A) Branch1_Head(3 × 3 conv), (B) Branch2_Head (5 × 5 conv), (C)

Branch3_Head(7 × 7 conv), (D) Branch1_layer1 (3 × 3 conv), (E) Branch2_layer1 (5 × 5 conv), (F) Branch3_layer1(7 × 7 conv), (G) Branch1_layer2(3 × 3 conv),

(H) Branch2_layer2 (5 × 5 conv), (I) Branch3_layer2(7 × 7 conv).
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filter redundant feature maps from the previous layer. This
verified the effectiveness of changing numbers of channels in
the network.

CONCLUSION

We found that the differences between different categories
of ships are mainly focused on the hull structures, whereas
the differences between different ships of the same category
are concentrated in parts such as ship equipment and
superstructures. Therefore, we used convolutional kernels with
larger receptive fields to extract coarse-grained features such
as the hull structure of different categories of ships and
used convolutional kernels with smaller receptive fields to
extract fine-grained features of different ships of the same
category. In this paper, we proposed the SMS-PCNN model
for the recognition and classification of ship images. The SMS-
PCNN model extracted features of image in different sizes
by parallelizing convolutional branches with different receptive
fields. In addition, the results of experiments showed that the
SMS-PCNN model achieved 84.79% accuracy on a ship dataset
containing samples of 12 ship categories. We also conducted
a series of comparison experiments to test the performance of
algorithms using other state-of-the-art approaches. The results
showed that comparing with the Resnet-50, Alexnet, VGG-
16, and Resnet-18 models, the SMS-PCNN model improved
the accuracy by 14.7–20.97%. We also experimented with the
Branch1-CNN model, and the results showed that the SMS-
PCNN model with parallel structure improved the accuracy by
9.26% compared with the single-branch model, thus proving
that the multi-branch parallel structure outperformed the single-
branch for the ship image feature extraction.

The SMS-PCNN model uses three tricks to improve
the performance, including enhancing specific ship dataset

applications, improving training learning rate, and avoiding
overfitting. The experiments showed that the model achieves an
accuracy of 77.28% without using any tricks, which is 7.19%
higher than Resnet-18. This accuracy is the highest among
state-of-the-art approaches. It proved the superiority of the
model design principles and the basic framework structure.
To verify the effect of optimization tricks on the SMS-PCNN
model, we performed a series of ablation experiments. When
trick1 was added on the basic SMS-PCNN model, the accuracy
increased by 2.16%. When adding trick2 to the SMS-PCNN
model with trick1, the accuracy increased by 3.8%. Finally, when
adding trick3 to the SMS-PCNN model with trick1 and trick2,
the accuracy increased by 1.55%. The ablation experiments
validated the effectiveness of the three tricks we used for the
ship dataset.
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