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Initialization of latent space
coordinates via random linear
projections for learning robotic
sensory-motor sequences

Vsevolod Nikulin* and Jun Tani

Cognitive Neurorobotics Research Unit, Okinawa Institute of Science and Technology, Onna, Japan

Robot kinematic data, despite being high-dimensional, is highly correlated,

especially when considering motions grouped in certain primitives. These

almost linear correlations within primitives allow us to interpret motions

as points drawn close to a union of low-dimensional a�ne subspaces in

the space of all motions. Motivated by results of embedding theory, in

particular, generalizations of the Whitney embedding theorem, we show

that random linear projection of motor sequences into low-dimensional

space loses very little information about the structure of kinematic data.

Projected points o�er good initial estimates for values of latent variables in a

generative model of robot sensory-motor behavior primitives. We conducted

a series of experiments in which we trained a Recurrent Neural Network to

generate sensory-motor sequences for a robotic manipulator with 9 degrees

of freedom. Experimental results demonstrate substantial improvement in

generalization abilities for unobserved samples during initialization of latent

variables with a random linear projection of motor data over initialization with

zero or random values. Moreover, latent space is well-structured such that

samples belonging to di�erent primitives are well separated from the onset

of the training process.

KEYWORDS

generative models, robotics, latent encoding, random projection, motion primitives,

Recurrent Neural Network

1. Introduction

Generative models allow representation of high-dimensional behavior patterns

(sequences of action-perception pairs) in much lower-dimensional latent space.

However, these representations are far from unique. It is convenient for analysis and

theoretical discussions of generalization capabilities if encoded points exhibit some

regularity. This paper focuses on the issue of efficient encoding of motion primitives in

generative models for robotic behavior. Such models are designed to select robots actions

via generating predictions of them. A search in latent space is conducted to generate

desired motion. Thus, it is advantageous to have well-structured latent space.
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PCA analysis of human movement suggests that most of the

variance is explained by only a few components (Sanger, 2000),

which confirms an idea of the pioneer of kinesiology, Nikolai

Bernstein. Bernstein (1996) proposed that human motion,

despite being high-dimensional can be described using low-

dimensional points. In other words, motion primitives can be

represented in a compact manner using a small number of

variables to encode flexible adaptations to variations of related

features, such as positions of target objects, size and shape of

objects, initial position of a manipulator, etc.

Motion primitives are an indispensable concept both

in robotic and human behavior modeling. They provide

modularity in construction of complex interactions with an

environment. Primitives are considered minimal sets of reusable

patterns to be combined to generate diverse patterns. The

importance of motion primitives for robotic behavior design is

discussed in Schaal (1999). In their work, the authors specify

two types of motion primitives: discrete and cyclic, which

correspond to fixed points and limit cycles in dynamic systems,

respectively. Each of them can be represented by a single point

in the parameter space of dynamic systems.

There aremany approaches to learning behavioral or motion

primitives. One is described in Schaal et al. (2004): direct

modeling differential equations for discrete and oscillating

patterns with variable parameters tuned by reinforcement

learning. A similar approach is taken in Ude et al. (2010)

with the emphasis on two types of primitives. However, the

training is goal-oriented in both cases. The reward function is

designed to ensure specific dynamic properties of a trajectory

and to ensure reaching a certain final state. In reality, however,

there are many constraints regarding interactions with objects

in an environment in a certain way, which are hard to

take into account when hand-designed reward functions are

used. It is theoretically possible to extract those constraints

automatically via supervised learning through imitation of

recorded trajectories, if data are plentiful. For example, in Noda

et al. (2014) an autoencoder is used to create a generative model

for multimodal primitives.

We consider a supervised learning scenario in which every

motion has finite encoding and can be regenerated using this

encoding and a shared generative model implemented as a

Recurrent Neural Network. In our previous work (Nikulin

and Tani, 2020), we demonstrated that explicit embedding

of hypersurfaces corresponding to each motion primitive in

shared latent space enhances inter-primitive generalization

capacity. However, this approach requires manual labeling of

learning data, which may be infeasible when dealing with large

datasets. In this paper, we address the issue of finding suitable

latent representations of sensory-motor data, which can be

automatically clustered for each corresponding primitive.

The first thing to notice is the high correlation between

motor and sensory (typically visual) information. Information

contained in a sequence of joint angles of a robotic manipulator

allows us to partially generate a visual sequence. For example,

the manipulator is reaching for an object and then pushing it

in some direction. A sequence of joint angles in this movement

provides information about the location of the object at any

moment in time. Therefore, by having appropriate encoding

of kinematic data we can reconstruct sensory information with

some precision. From these considerations, we assume that

kinematic data can be used to initialize values of latent variables

for each sample prior to learning weights of the RNN for a

generative model.

Clustering motion primitives is an intricate problem.

Motions corresponding to different primitives can be located

very close to each other in the space of all sequences of joint

angles, which is referred to as “trajectory space.” For example,

let us consider cases of a robotic manipulator reaching for

and grasping or reaching for and simply touching an object

in the same location in space. Both sequences are examples

of different primitives, yet located close to each other in the

space of all sequences. This shows that utilizing classic distance-

based clustering schemes can potentially yield poor results.

However, motor sequences belonging to specific primitives can

be efficiently encoded by a very small number of variables, e.g.,

position of the object in space, thus forming low-dimensional

manifolds in trajectory space. The main assumption we are

making is the following: the aforementioned manifolds lie inside

independent, low-dimensional, affine subspaces, i.e., sequences

belonging to the same primitive can be expressed as a sparse

affine combination of one another. This enables us to use the

affine subspace clustering algorithm, which shows good results

in our experiments.

However, even if we drop the assumption about linearity, we

can linearly project low-dimensional manifolds from trajectory

space into parameter space without overlapping primitives.

In Calinon et al. (2007), the authors use projection of

trajectory data into dominant principal components for further

probabilistic modeling. A corollary of the Whitney embedding

theorem, described in Sauer et al. (1991), tells us that almost

all linear projections will have the required property; thus, a

random linear projection will suffice. Moreover, we show that

random projection is also robust enough if the parameter space

has sufficient dimensions.

Here we test two hypotheses: (i) motion primitives lie

inside independent, affine subspaces in trajectory space, and (ii)

random linear projection of motion data to latent space and

consecutive learning of the generativemodel together with latent

representations keep linear manifolds at a degree sufficient for

subspace clustering, which ensures robustness and separation

of encoding for different primitives. To test the first hypothesis,

we analyse generated joint-angle sequences of a humanoid robot

obtained viamapping ofmotion-capture data. To test the second

hypothesis, we design artificial data with a sufficient number

of trajectories to test the generalization capacity of the model.

Two types of generalization are tested: intra- and inter-primitive
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generalizations. The former is the ability of themodel to generate

unseen samples that belong to the learned primitives and the

latter is the ability to accommodate new primitives that must be

learned. Notice, it is not zero-shot or one-shot learning.

2. Background

2.1. Generative models and predictive
coding

According to predictive coding theory, formulated in Rao

and Ballard (1999) and Friston et al. (2006), behavior of an

agent, e.g., a robotic manipulator, can be modeled as constant

generation of predicted sensory information ot based on some

changing internal state dt at any moment in time t. Sensory

information includes proprioception, which are joint angle

positions that can be used to determine which commands

should be sent in order for a robot to satisfy predicted future

positions of manipulators. We split information ot into two

parts: proprioception mt , which we will refer to as “motor

commands” for the sake of brevity, and the rest of the perception

st . Predicted information is compared with actual information

and the internal state is corrected based on the error. Internal

state dynamics can be modeled as a deterministic process using

RNN (Annabi et al., 2021), for instanceMTRNN (Yamashita and

Tani, 2008), LSTM (Graves, 2014), or as a stochastic process,

such as PVRNN (Ahmadi and Tani, 2019). Correction of the

entire internal state is computationally costly due to its high

dimension. Therefore, a sequence of internal states is encoded

in either a sequence of latent vectors zt or a single latent

vector z. The former is a case of PVRNN. In this study we

concentrate on the latter, since we work with simple motion

primitives that can be encoded as points of a finite-dimensional

space.

Overall dynamics of the model of interest are described in

the following equations:

d0 = g(z) (1a)

dt+1 = f (dt , z) (1b)

st = s(dt) (1c)

mt = m(dt) (1d)

Here z determines the initial state and also controls the

state transition. A variable that controls the state transition is

called Parametric Bias and is typically independent from the

initial state, as in Tani and Ito (2003). In this study, we unify

all information that describes a sensory-motor sequence in a

single vector z. A detailed description of the utilized model will

be provided in later sections.

2.2. Random linear projections

An important corollary of the Whitney Embedding

Theorem, described in Sauer et al. (1991), states the following:

Theorem 1. Let A be a compact subset ofRk, lower boxdim(A) =
d. If q > 2d, then almost every linear transformation of Rk to Rq

is one-to-one on A.

Where lower boxdim(A) is a lower box dimension of A.

In particular, if A is a smooth manifold, compactly restricted

in some finite volume, the lower box dimension will coincide

with the box-counting dimension and the regular manifold

dimension. Moreover, if A is a union of smooth manifolds, then

its box-counting dimension is equal to the maximal dimension

of a manifold in the union. In other words, if some high-

dimensional data lie close to a union of at most d-dimensional

manifolds, then n > 2d random observations are sufficient to

encode the data without ambiguity.

This is a side result of the paper. The main statement

the authors are making is about general smooth maps instead

of linear maps. The space of all smooth maps is infinitely

dimensional and there is no Lebesgue measure on such a space.

Therefore, the authors propose their own definition of the term

“almost all” in terms of prevalence. However, this definition

is not required here, and the term “almost all” is used in the

usual, measure-theoretic way. The space of all linear maps is

finite-dimensional. We refer the interested reader to the original

literature cited above.

Let p be a number of variables in a single motor command

for a robotic manipulator, e.g., joint angle values in the case of

a PID controller. We regard a sequence of T motor commands

m1 :T corresponding to a single motion as a point in R
pT .

The main assumption of this paper is that specific motions

in motion primitives are specified by a small number of

variables. For example, all motions corresponding to a robotic

manipulator touching an object can be encoded in just the

position of the touch point, given that the initial position of

the manipulator is fixed. In theory, dexterous robotic systems

have many degrees of freedom and can reach the same point in

potentially infinite number of ways. However, as we mentioned

in introduction, there are many intrinsic constraints present in a

dataset which narrow possible trajectories down to finite number

of dimensions or even a single trajectory. At worst there is a

finite number of additional dimensions to take into account

in a set of motions belonging to one primitive. This means

that all these motions are points on a smooth, low-dimensional

manifold inRpT , and all possiblemotions are described as points

on a union of such primitives. Since values for motor commands

are restricted by their natures, we can ensure that all available

points are bounded in a finite volume, so this volume together

with its boundary is compact. The above theorem guarantees

that random linear transformation of RpT to R
q, where q is
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the dimension of latent representations, is one-to-one for all

available motions given that q is sufficiently high.

2.3. Linear subspace clustering

The embedding theorem from the previous section

guarantees the existence of an encoding, but it does not provide

any assurance about the structure of the encoded information. In

this section, we explore one assumption regarding organization

of motor data, that manifolds corresponding to motion

primitives are close to linear. This enables us to apply the

Subspace Clustering algorithm described in Vidal and Favaro

(2014).

The problem of subspace clustering is stated as follows: given

a data matrix Z = [z1, z2, . . . , zn] find correct labels l(i) for each

zi under assumption zi = 8l(i)ξi + ǫi, where l(i) ∈ {1, 2, . . . ,K}
and 8l(i) are some linear projections from low-dimensional

spaces. In other words, we assume that data points zi belong to

the union of K low-dimensional subspaces with errors ǫi.

2.3.1. ǫi = 0

We start the investigation of this problem with a simplified

case in which zi belongs to subspaces with no error. There

are many approaches to solve this problem. In this paper

we concentrate on cases based on self-representation matrices.

Matrix C is called self-representation matrix when Z = ZC.

In other words, if we can represent each point zi as a linear

combination of all points, matrix C will be a matrix of linear

coefficients. Consider SVD decomposition of Z:

Z = U3VT (2)

Assuming the number of points n is greater than dimension

of latent space q and matrix Z has rank r, we can discard

all columns of U and V which are multiplied by zeros. The

resulting decomposition is sometimes called “skinny” SVD

decomposition:

Z = Û3̂V̂ (3)

Where Û is q × r matrix, 3̂ is r × r matrix and V̂ is n × r

matrix. Notice that VTV = UTU = I, but VVT 6= I. Then

matrix Q = V̂V̂T is a self-representation matrix:

ZV̂V̂T = Û3̂V̂T V̂V̂T = Û3̂V̂T = Z (4)

The Subspace Separation Theorem formulated in Kanatani

(2001) states the following:

Theorem 2. If the αth and βth points belong to different

subspaces, then Qαβ = 0.

Since Q is a self-representation matrix, Qαβ = 0 means

that αth point is not necessary in representation of βth point

as a liner combination of all points. We can interpret Q as an

adjacency matrix of a graph with nonzero entries indicating

edges. Our intuition is that a collection of points belonging to the

same linear subspace can be expressed as a linear combination of

one another. Then we can apply a well-known spectral clustering

algorithm based on SVD decomposition of a Laplacian of Q to

find desired labels.

2.3.2. ǫi 6= 0

There are many techniques to approach fluctuations from an

ideal case. For example, we can formulate the noiseless scenario

as an optimization problem with exact constraints, and then

relax them. Matrix Q = V̂V̂T is a solution to the following

problem:

min
C

rank(C) s.t. Z = ZC (5)

Indeed, rank(C) ≥ rank(ZC) and Z = ZC, thus rank(C) ≥
rank(Z). We also know that rank(V̂V̂T) = rank(Z) by

construction. Therefore, matrix Q defined above is a solution to

the problem. However, it is not unique. In Liu et al. (2013), the

authors show that this is also the solution to a convex analogue

of rank minimization problem:

min
C

‖C‖∗ s.t. Z = ZC (6)

Where ‖C‖∗ is a nuclear norm of matrix C. Since this

variation of the optimization objective is convex, the solution is

unique. This is the formulation of the optimization objective in

which, as proposed in Vidal and Favaro (2014), we can relax the

constraints:

min
C

‖C‖∗ +
1

τ
‖Z − ZC‖2F s.t. C = CT (7)

With τ being some hyperparameter. In this formulation we

are allowed to search for a matrix C that is not exactly a self-

representation matrix, but is close to it within some margin. The

authors of this formulation also prove that the minimizer to (7)

is unique and can be found in closed form. The optimal solution

Q∗ is given by the following formula:

Q∗ = V̂P(3̂)V̂T (8)

Where an operator P acts on diagonal entries of 3̂ as

P(x) =







1− 1
τx2

x > 1√
τ

0 x ≤ 1√
τ

(9)

The topic of subspace clustering is full of intricacies. The

number of proposed approaches is growing every year. With

this background, we have barely scratched the surface and have

covered only those formulas that we utilized in our work.
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2.4. A�ne subspace clustering

The assumption that subspaces are linear is too restrictive

since it demands that these subspaces pass through the origin.

On the other hand, affine subspaces are allowed to have bias.

Instead of expressing latent representations of observed samples

as linear combinations of one another, they are expressed as an

affine combination and they solve the same problem of finding a

sparse representation of a coefficient matrix. Affine combination

differs from a linear combination by an additional restriction to

linear coefficients: theymust sum to one. So, the problem (5) will

be rewritten as

min
C

rank(C) s.t. Z = ZC, 1TC = 1T (10)

In fact, as discussed in Tsakiris and Vidal (2018), we can

combine both restrictions in this optimization problem into one

by constructing the following matrix

Z̃ =
[

z1 z2 . . . zn

1 1 . . . 1

]

(11)

This is a simple switch to homogeneous coordinates of z.

Then, problem (10) will have exactly the same form as problem

(5):

min
C

rank(C) s.t. Z̃ = Z̃C (12)

Everything discussed for problem (5) also applies in this

case.

3. Problem statement

We define a single motion o as a sequence of sensor and

motor pairs o = {(st ,mt)} of some fixed length T. Given a set of

observed motions {oi} indexed by i, find low-dimensional latent

vectors {zi} together with generative decoder d such that d(zi) =
oi for all i. Moreover, it should be possible to findmotion clusters

by analyzing latent vectors {zi} in an unsupervised manner.

4. Main results

To solve the given problem, we employed MTRNN

architecture with second-order vertical connections and

parametric bias.

4.1. RNN architecture

The base model is a variation of MTRNN architecture (see

Figure 1). The state of the entire system at time t is encoded

in a group of vectors {d(j)t } parameterized by j. Each vector d
(j)
t

FIGURE 1

The first three steps of an unfolded recurrent schematic of the
RNN architecture used in this paper. There are two layers d(1)

t

and d(2)
t

in this illustration.

together with its update function is referred as the jth (dynamic)

layer. At every timestep, each vector is updated according to the

following formula:

h
(i)
t =

(

1− 1

τ

)

d
(i)
t−1

+ 1

τ

(

W(i)d
(i)
t−1 + U(i)u+ uTA(i)d

(i)
t−1 + b(i)

)
(13)

d
(i)
t = LN(h

(i)
t ) (14)

Where τ is a timescale factor for a layer. Typically layers

closer to the output have τ closer to one and are called fast layers.

Conversely, layers farther away from the output have higher τ

and are called slow layers. The idea is that the fast layers encode

more specific details about the current moment of the motion

and slow layers encode more abstract information that doesn’t

change as rapidly.

Next, u is equal to a vector from the higher layer d
(i+1)
t for

all layers, but the very last. For the last layer u is equal to p(z),

where p is some non-linear function (typically a multi-layered

perceptron). In such a way z serves the same function for the last

layer as any layer for the layer immediately below. Combining

that with the fact that higher layers change more slowly in time,

we can interpret p(z) as an infinitely slow layer. This allows us to

expand the model in the future and to introduce dynamics to z,

perhaps combining motions one after another.

W(i) and U(i) are trainable weight matrices. A(i) is trainable

third-order tensor for a multiplicative combination of values of

the current and a higher layer. It works as a function of two

vectors which is linear in both arguments. In literature this is

known as a second-order connection (Goudreau et al., 1994),
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it provides more expressive power compared to ordinary first-

order connections at the cost of increased number of trainable

parameters. b(i) is also trainable bias vector.

LN in (14) is layer normalization.

Every timestep t the output (st ,mt) is generated as a non-

linear transformation of the fastest layer d
(1)
t . To generate the

motor command mt a simple multi-layer perceptron is used.

The sensory output st is an image in our experiments. To

generate it, we used a couple of deconvolution layers with

non-linear activation function.

Dynamics of the model match the Equations (1) that are

presented in the background section.

Let θ be the vector of trainable parameters of all models.

Denote the entire output of the model during the first T

timesteps as d(θ , z). Then the loss function will be

L(θ , z1, z2, ..., zn) =
n

∑

i=1

‖d(θ , zi)− oi‖2 (15)

It is minimized with the usual batch gradient descent.

The important thing to notice is that latent encoding vectors

zi are also trainable parameters that we need to optimize,

and if initialization of RNN weights is a well-studied topic,

initialization of zi requires some investigation.

4.2. Initialization of latent vectors

There are two standard approaches to initialize latent

variables: (i) set zi randomly (e.g., according to a standard

gaussian distribution) and (ii) set zi = 0.

Random initialization is detrimental for clustering. It doesn’t

provide any guarantee of structure of latent space. First of all,

motions corresponding to different primitives may be located

very close to each other in trajectory space; hence, there is no

guarantee of distance-based clustering results in latent space.

Then, manifolds corresponding to motion primitives are close

to affine, according to our main assumption, in trajectory space.

But there is no assurance that projection of these manifolds to

latent space after learning with random initialization will remain

close to affine. Non-linear manifold clustering is a far more

complicated problem.

Zero initialization leads to another problem. Because of

the batch nature of the optimization algorithm, every gradient

step updates the entire θ , but only a fraction of {zi}. These
irregularities in latent updates lead to faster convergence of θ

compared to zi. For reconstruction of the observed data, it is

sufficient for zi to be distinct enough. Hence, it is not expected

that zi will deviate far from the initial point. If the spread of

latent vectors is close to zero, it is too unstable for clustering.

We propose a novel way to initialize. Using the results of

theorem 1, we can guarantee that a random linear projection of

the entire set of all observed motor sequences m1 :T into z will

be one-to-one:

z = Pm1 :T (16)

Where m1 :T is a sequence of motor commands flattened

into a single vector. P is a random matrix of compatible

dimension with Pij ∼ N (0, 1/q), where q is the dimension of

z. With sufficiently expressive generative model architecture it

is possible to reconstruct these motor sequences based on the

projections exactly:

∃θ :m1 :T = dm(θ , z) (17)

For a sensory modality s1 :T , it is highly correlated with

motor modality; hence, it requires minimal correction to zi to

encode it properly.

Moreover, under the assumption of motion primitives being

close to affine subspaces in trajectory space, the projected

primitives are also close to affine subspaces in latent space

if latent dimensions suffice. Detailed analysis of required

dimensions to preserve subspace clusters is given in Li and Gu

(2018). The expected scalar product between any two projected

vectors Pa and Pb is very close to the original product a ·b. More

formally, the following expressions hold:

EP[Pa · Pb] = a · b (18)

VarP[Pa · Pb] ≤
3‖a‖2‖b‖2 − (a · b)2

q
(19)

See Appendix A for derivation. From this result it looks as

if map P is almost isometric for decent values of q. This is

not true since we are projecting down, but there is a link with

restricted isometry in cases in which we have a finite number

of points. More details are provided by Johnson-Lindenstrauss

lemma (Johnson and Lindenstrauss, 1984). Unfortunately, this

lemma requires q to be much higher than we need for efficient

encoding, but isometry is not strictly required, since a portion

of topological information is also contained in the non-linear

decoder d. Equations (18) and (19) simply guarantee robustness

of a random projection. Directions close to orthogonal in

trajectory space will most likely stay close to orthogonal after the

projection, even for not so high a q compared to that required in

the Johnson-Lindenstrauss lemma.

The only assumption we must make is that correction to

latent encodings zi to accommodate sensory information do not

disrupt linearity.

5. Experimental results

We prepare two experiments to test the hypothesis stated in

Section 1. The first is to apply a subspace clustering algorithm

for joint angle sequences of robotic arms generated in a
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FIGURE 2

Clustering results for robotic trajectory data acquired by motion capture. Di�erent colors indicate di�erent labels. There are four ground truth
clusters corresponding to sample indices 1–10, 11–20, 21–30, and 31–40. In cases (A,B) all labels identified correctly in the case (C) samples
belonging to three out of four primitives are labeled correctly.

demonstration by a human via motion capture. The second is

to do the same with artificially generated data for a robotic

manipulator interacting with an object, and since this data is

much more plentiful, to train the RNN generative model with

a training/test split of the data and then to apply a subspace

clustering algorithm for learned latent encodings. Furthermore,

in the second experiment we compare quality of intra-

primitive generalization for different modes of initialization

of latent variables, as well as inter-primitive generalization.

Generalization is the ability of a trained model to encode

new samples with little or no change to its parameters. Intra-

primitive generalization is about encoding samples belonging

to known primitives. Inter-primitive generalization is the

capability to encode entirely new primitives.

5.1. Motion capture data

In this experiment we used a Torobo humanoid robot

to generate motion trajectories. The torso and head are

fixed, leaving only 12 joint angles to control positions of the

two arms. We used a motion capture device to manually

control the robot arms. The robot is interacting with a

red cylindrical object in front of it. There are four motion

patterns: (i) touch the top of the object with the left hand,

(ii) touch the object on top with the right hand, (iii)

touch the object from the left with the left hand, and (iv)

touch the object from the right with the right hand. Each

pattern is recorded 10 times with the object located in

different positions.

Recorded motions naturally vary in length. In order to align

them to a single number T of discrete timesteps, we used a

frequency domain zero padding technique. Having a sequence

m1 :T0 of joint angles with T0 < T, compute the following:

f1 :T0 = F(m1 :T0 ) (20)

f̃1 :T = [f1 :T0/2, 0, 0, . . . , 0︸ ︷︷ ︸

T−T0

, fT0/2 :T0 ] (21)

m̃1 :T = F−1(f̃1 :T) (22)

in which Discrete Fourier Transform F is applied to each joint

angle sequence in m1 :T0 individually. The resulting motion

m̃1 :T will have the same “shape” as m1 :T0 , but will have T

timesteps.

Furthermore, for each joint angle, all values in all sequences

were normalized to be in a [−1, 1] interval. This was done to

make the contribution of each joint equally important for the

trajectories clustering.

We computed the expression (8) for acquired trajectory data

with different values of τ . The choice of τ was made based on the

coefficient of determination R2 for reconstruction of trajectories

based on the estimated self-expression matrix Q∗. For 0.85 <

R2 < 0.95 the corresponding values of τ are 0.05 < τ < 0.2.

Then, using a spectral clustering algorithm on the obtained

matrix Q∗ we put labels on each sample (see Figure 2).

The result shows that the subspace clustering algorithm

is able to correctly assign labels for different motion patterns

in the case of very noisy human-made data, which confirms

our hypothesis about the close-to-linear distribution of points

belonging to the samemotion primitive in trajectory space. Note

when the value of R2 is the largest, there are wrong labels after

clustering. The reason is clusters are not tightly bounded to

corresponding affine subspaces, the exact self-expression matrix

is rather far from sparse, so optimization constraints are need to

be relaxed. This is due to noise in the data.
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FIGURE 3

The experimental setup includes a robotic manipulator, a red
block on the table and a camera capturing RGB images.

5.2. Artificial data

In the second experiment we used a CoppeliaSim simulator

(Rohmer et al., 2013) to generate a wide range of trajectories for

the Torobo Arm manipulator. The Torobo Arm manipulator

position is encoded with seven joint angle positions and

two finger positions. The experimental setup consists of the

manipulator, a table in front of it, an object with which it

interacts, and a camera to record RGB images at every timestep

(see Figure 3).

We manually scripted the movement of the tip of the

manipulator. All trajectories are acquired by the inverse

kinematics solver built into the simulator. Values of joint

angles across all motions are normalized so as to be bounded

by the interval [−1, 1]. There are seven motion primitives.

Each includes 245 motions for different positions of the block,

resulting in 1,715 samples. All motion primitives start with the

manipulator approaching the block. Then the behavior for each

primitive is the following:

• Touch the block on top and stop.

• Grasp the block with two fingers and stop.

• Push the block to the farthest side of the table.

• Pull the block to the closest side of the table.

• Repeatedly touch the block from the right.

• Make a circular motion around the block in the clockwise

direction.

• Make a circular motion around the block in the counter-

clockwise direction.

Within each primitive the difference between specific

motions is only the position of the block on the table and size of

the block. The robotic arm always starts from the same position.

So in trajectory space, points belonging to each primitive form

three-dimensional manifolds.

Every motion takes one minute of real time and is divided

into 61 timesteps. At each timestep t, beside motor information,

FIGURE 4

Convergence of the loss function over 800 training epochs for
di�erent ways to initialize matrix Z and di�erent dimensions of z.
Both model parameters θ and matrix Z are trained.

we also record an RGB image st of size 48 × 64 pixels. The

goal is to assign a latent vector z to every pair of sequences

(m1 :T , s1 :T), and to build a decoder d such that d(θ , z) =
(m1 :T , s1 :T). The decoder is an RNN model from the previous

section. We used two dynamic layers, 32 variables in the fast

layer and 12 in the slow layer. We test three ways to initialize

latent variables z packed into a single matrix Z, described in the

previous section: (i) zero initialization, (ii) random initialization,

and (iii) random linear projection of the motor trajectory data.

5.2.1. Intra-primitive generalization

To evaluate the model we split the entire dataset into two

parts: one is used to train both z for each sample and model

parameters θ , and the other is to train z with parameters θ

fixed. We refer to these parts as the “training dataset” and

the “evaluation dataset.” Only 20% of the entire dataset is

randomly assigned to the training part, and the rest is for

evaluation. Samples of all primitives are present in both training

and evaluation datasets, so we indeed test intra-primitive

generalization.

The results of training the model parameters θ together

with latent variables z for the training part of the samples

for different dimensions of latent space depicted in Figure 4.

Random initialization performs very badly for low-dimensional

latent space. Zero initialization, on the other hand, differs very

slightly from random the linear projection case.

The results of training only the latent variables z for the

evaluation part of the dataset with model parameters with fixed

θ are depicted in Figure 5. Notice that the case with random
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FIGURE 5

Convergence of the loss function over 600 training epochs for
di�erent ways to initialize matrix Z and di�erent dimensions of z.
Only matrix Z is trained, model parameters θ are fixed.

TABLE 1 Success rates of trained models for sensitive primitives.

Primitive Zij = 0 Zij = (mi1 :T)j

Pull the block 0.86 0.92

Push the block 0.9 0.94

Grasp the block 0.8 1.0

initialization did not converge at all. This means that the model

trained this way has no generalization capacity and is incapable

of representing trajectories it did not see during training. On the

other hand, initialization with random linear projection yields

low loss values on evaluation stage even before adjustments

of latent variables via training, which means that the initial

distribution of projected points did not change much during

the first part of training. It was good from the start, and even

addition of visual information to the loss function didn’t affect

the result very much.

This may resemble the resulting performance of trained

models for zero latent initialization and random projection

latent initialization, which are very similar, but some primitives

from the experimental setup require more precision than others.

In particular, pushing and pulling the block as well as grasping

it can fail easily if the gripper fingers miss just a bit. The

success rate of these tasks determined by qualitative assessment

of recorded video is presented in Table 1.

Resulting generated joint angles and image sequences are

very close to ground truth for all methods. Refer to Appendix B

to see the comparison of generated motor and sensory data with

ground truth.

Initial positions of the block on the table. There are five

different possible sizes of the block at each position denoted by

overlapping squares.

By examining resulting latent vectors corresponding

to samples from one primitive, we can see that the

random linear projection initialization method yields a

more “structured” result (see Figure 6). A 3D visualization

of the three principal components of latent vectors

corresponding to samples of three primitives is available

at the following link: https://doi.org/10.6084/m9.figshare.

19235034.v2.

5.2.2. A�ne subspace clustering of latent space

Next, to compare affine subspace clustering results, we

won’t even consider the case of random initialization, since it

does not correctly encode the evaluation part of the dataset.

We use algorithms discussed in the background section for

matrix Z to predict cluster labels for the data obtained by

two steps of training and evaluation. A comparison of the

two methods to initialize Z is depicted in Figure 7. Both

cases are for dim(z) = 40. They yield similar results,

meaning that even without presenting motion information

for initial values of latent variables, they self-organize in a

union of close to affine manifolds. This shows that initial

values of latent variables obtained by proposed random linear

projection already have some properties of fully trained

latent representation.

5.2.3. Inter-primitive generalization

To test inter-primitive generalization ability we perform

seven independent tests for each primitive with different

splits of the whole dataset into two parts: the first part

contains samples of six primitives for initial training of the

model and the second part contains samples of the remaining

primitive. We also add a small portion (10%) of samples

from the first part to the second part to avoid forgetting.

Incremental learning is a difficult topic and we won’t discuss

its intricacies here, since it is preferable to use the simple

solution described above. Both model parameters θ and latent

encodings are trained in both parts, but the two parts are

trained consecutively.

Since this problem is considerably more complex

than intra-primitive generalization, we compare only two

successful latent variable initialization methods from the

previous experiment: zero initialization and proposed

random linear projection. Results of training the second

part are depicted in Figure 8. The proposed method

shows slightly improved results in terms of convergence

speed, final value of the loss function, and robustness of

the learning.
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FIGURE 6

Initial positions of the block are depicted in (A). Each position corresponds to five samples di�ering in block size. The first two principal
components of the learned latent vectors for samples belonging to one specific primitive are depicted in (B) for the zero initialization method
and in (C) for the random linear projections initialization method.

5.2.4. A�ne subspace clustering for extended
dataset

We extended the artificial dataset with trajectories

corresponding to different initial positions of the arm to

increase variety of motions within primitives. See example

of new initial positions at Figure 9. In total there are

three new degrees of freedom corresponding to different

values of initial joint angles. There are 675 motions for

each primitive.

Result of subspace clustering for these trajectories

is depicted in Figure 10. Notice that second and third

“primitives” are clustered together. They correspond to

circular motion around the block in clockwise and counter-

clockwise directions. And indeed it is hard to tell whether

it is one primitive or two different primitives. Nevertheless,

the dataset clearly follows the assumptions about structure

of trajectories and proposed algorithm will benefit in

this case.

6. Summary and discussion

In this paper we investigated the structure of robotic motion

primitives in trajectory space and ways of efficiently encoding

that structure. The distinctive feature of each primitive is

that the set of all motions belonging to this primitive lies

on a low-dimensional manifold embedded in trajectory space,

which was confirmed by experiments in which we were able to

reconstruct artificially generated robotic motions from random

linear projections of its motor trajectory data using an RNN

model. Moreover, these manifolds are close to affine subspaces,

which enables us to use a subspace clustering algorithm to

label collections of motion in an unsupervised manner. This

claim comports with clustering results of data obtained with

a motion-capture device. Another assumption is correlation of

visual information with motor commands. In our experiments,

we showed that only slight correction to initial values of latent

variables obtained by random linear projection is required to
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FIGURE 7

Clustering results for latent encodings for di�erent initial values
of Z. All 1715 samples are presented in order of consecutive
245-element batches, in which every batch is a collection of
motions belonging to the same primitive. The coe�cient τ is set
in such a way, that in both cases, the coe�cient of
determination R

2 = 0.9999. This means resulting manifolds are
very close to a�ne.

FIGURE 8

Mean and standard deviation of the convergence of the loss
function in the second part of inter-primitive generalization
experiment. The dimension of latent vectors is 20.

minimize the combined loss function for motor and visual data.

Lastly, to show that random linear projections do not disturb

affine subspace clusters of trajectory space, it is still possible

to do subspace clustering of projected data for sufficiently

large dimensions of latent space. Clustering results for latent

encodings show sufficient precision to support this claim.

Initialization of the latent variable by random linear projections

improves intra- and inter-primitive generalization capabilities,

compared to conventional initialization methods.

One crucial limitation of the proposed approach is the

assumption about fixed number of timesteps per motion within

each primitive. A possible solution is described in the first

experiment with motion capture data, sequences within which

FIGURE 9

Examples of di�erent initial positions of Torobo Arm in extended
dataset.

FIGURE 10

Clustering results for entire trajectories in extended dataset. All
4,725 samples are presented in order of consecutive
675-element batches, in which every batch is a collection of
motions belonging to the same primitive.

naturally vary in length. All sequences are interpolated with

additional points to have the same number of timesteps. It erases

information about speed of motions, but it still can be recovered

during the training process.

Well-structured latent spaces benefit generative models for

searching appropriate encodings via regression. For example,

provided perception and initial joint angles position at the first

timestep, it is possible to perform regression over latent space

to find suitable representation and generate the rest of the

sequence, similar to Ito and Tani (2004). Subspace clustering can

potentially allow selection of specific primitive to be generated

by restricting the search to specific affine subspace.

To model more complex behaviors composed of many

consecutive primitives, instead of using a single latent vector z of

fixed dimension a sequence of such vectors is usually used. In the

future, we are planning to extend the latent variable initialization

algorithm by random linear projections to a sequence of latent

vectors. This can be done via one-dimensional convolution

through time of a random linear projection with a long motor

sequence. There are some already mentioned challenges, such as

primitives that might have a different number of timesteps and

an indistinct borderline between primitives.

Another point is that visual perception information is

not used to initialize encodings. The problem here is that

only a small portion of each perceived image is relevant to

motion. The rest is background noise that will clutter random

projection. Some attention mechanism will potentially alleviate

the problem. Vision information is highly correlated with motor

commands, but part of it is independent, such as colors of objects

with which the robot is interacting.
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