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Computational models of visual attention in artificial intelligence and robotics

have been inspired by the concept of a saliency map. These models account

for the mutual information between the (current) visual information and

its estimated causes. However, they fail to consider the circular causality

between perception and action. In other words, they do not consider where

to sample next, given current beliefs. Here, we reclaim salience as an active

inference process that relies on two basic principles: uncertainty minimization

and rhythmic scheduling. For this, we make a distinction between attention

and salience. Briefly, we associate attention with precision control, i.e., the

confidence with which beliefs can be updated given sampled sensory data,

and salience with uncertainty minimization that underwrites the selection

of future sensory data. Using this, we propose a new account of attention

based on rhythmic precision-modulation and discuss its potential in robotics,

providing numerical experiments that showcase its advantages for state and

noise estimation, system identification and action selection for informative

path planning.

KEYWORDS

attention, saliency, free-energy principle, active inference, precision, brain-inspired

robotics, cognitive robotics

1. Introduction

Attention is a fundamental cognitive ability that determines which events from

the environment, and the body, are preferentially processed (Itti and Koch, 2001). For

example, the motor system directs the visual sensory stream by orienting the fovea

centralis (i.e., the retinal region of highest visual acuity) toward points of interest

within the visual scene. Thus, the confidence with which the causes of sampled visual

information are inferred is constrained by the physical structure of the eye—and eye

movements are necessary to minimize uncertainty about visual percepts (Ahnelt,

1998). In neuroscience, this can be attributed to two distinct, but highly interdependent

attentional processes: (i) attentional gain mechanisms reliant on estimating the sensory

precision of current data (Feldman and Friston, 2010; Yang et al., 2016a), and
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(ii) attentional salience that involves actively engaging with

the sensorium to sample appropriate future data (Lengyel

et al., 2016; Parr and Friston, 2019). Here we refer to

perceptual-related salience, i.e., processing of low-level visual

information (Santangelo, 2015). Put simply, we formalize

the fundamental difference between attention—as optimizing

perceptual processing—and salience as optimizing the sampling

of what is processed. This highlights the dynamic, circular

nature with which biological agents acquire, and process,

sensory information.

Understanding the computational mechanisms that

undergird these two attentional phenomena is pertinent

for deploying apt models of (visual) perception in artificial

agents (Klink et al., 2014; Mousavi et al., 2016; Atrey et al., 2019)

and robots (Frintrop and Jensfelt, 2008; Begum and Karray,

2010; Ferreira and Dias, 2014; Lanillos et al., 2015a). Previous

computational models of visual attention, used in artificial

intelligence and robotics, have been inspired (and limited) by

the feature integration theory proposed by Treisman and Gelade

(1980) and the concept of a saliency map (Tsotsos et al., 1995;

Itti and Koch, 2001; Borji and Itti, 2012). Briefly, a saliency

map is a static two-dimensional ‘image’ that encodes stimulus

relevance, e.g., the importance of particular region. These maps

are then used to isolate relevant information for control (e.g., to

direct foveation of the maximum valued region). Accordingly,

computational models reliant on this formulation do not

consider the circular-dependence between action selection and

cue relevance—and simply use these static saliency maps to

guide action.

In this article, we adopt a first principles account to

disambiguate the computational mechanisms that underpin

attention and salience (Parr and Friston, 2019) and provide

a new account of attention. Specifically, our formulation can

be effectively implemented for robotic systems and facilitates

both state-estimation and action selection. For this, we associate

attention with precision control, i.e., the confidence with

which beliefs can be updated given (current) sampled sensory

data. Salience is associated with uncertainty minimization that

influences the selection of future sensory data. This formulation

speaks to a computational distinction between action selection

(i.e., where to look next) and visual sampling (i.e., what

information is being processed). Importantly, recent evidence

demonstrates the rhythmic nature of these processes via a theta-

cycle coupling that fluctuates between high and low precision—

as unpacked in Section 2. From a robotics perspective, resolving

uncertainty about states of affair speaks to a form of Bayesian

optimality, in which decisions are made to maximize expected

information gain (Lindley, 1956; Friston et al., 2021; Sajid

et al., 2021a). The duality between attention and salience

is important for resolving uncertainty and enabling active

perception. Significantly, it addresses an important challenge

for defining autonomous robotics systems that can balance

optimally between data assimilation (i.e., confidently perceiving

current observations) and exploratory behavior to maximize

information gain (Bajcsy et al., 2018).

In what follows, we review the neuroscience of attention

and salience (Section 2) to develop a novel (computational)

account of attention based on precision-modulation that

underwrites perception and action (Section 3). Next, we

face-validate our formulation within a robotics context

using numerical experiments (Section 4). The robotics

implementation instantiates a free energy principle (FEP)

approach to information processing (Friston, 2010). This

allows us to modulate the (appropriate) precision parameters

to solve relevant robotics challenges in perception and control;

namely, state-estimation (Section 4.2.2), system identification

(Section 4.2.3), planning (Section 4.3), and active perception

(Section 4.3.3). We conclude with a discussion of the requisite

steps for instantiating a full-fledged computational model

of precision-modulated attention—and its implications in a

robotics setting.

2. Attention and salience in
neuroscience

Our interactions with the world are guided by efficient

gathering and processing of sensory information. The quality of

these acquired sensory data is reflected in attentional resources

that select sensations which influence our beliefs about the

(current and future) states of affairs (Lengyel et al., 2016; Yang

et al., 2016b). This selection is often related to gain control,

i.e., an increase of neural spikes when an object is attended to.

However, gain control only accounts for half the story because

we can only attend to those objects that are within our visual

field. Accordingly, if a salient object is outside the center of

our visual field, we orient the fovea to points of interest. This

involves two separate, but often conflated, processes: attention

and salience—where the former relates to processing current

visual data, and the latter to ensuring the agent samples salient

data in the future (Parr and Friston, 2019). That these two

processes are strongly coupled is exemplified by the pre-motor

theory of attention (Rizzolatti et al., 1987), which highlights

the close relationship between overt saccadic sampling of the

visual field and the covert deployment of attention in the absence

of eye movements. Specifically, it posits that covert attention1

is realized via processes that are generated by particular eye

movements but inhibits the action itself. In this sense, it does

not distinguish between covert and overt2 types of attention.

From a first principles (Bayesian) account, it is necessary

to separate between attention and salience because they

speak to different optimization processes. Explicitly, attention

1 Covert attention is where saccadic eye movements do not occur.

2 Overt attention deals with how an agent tracks the object with eye

movements.
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as a precision-dependent (neural) gain control mechanism

that facilitates optimization of the current sampled sensory

data (Desimone, 1996; Feldman and Friston, 2010). Conversely,

salience is associated with selection of future data that reduces

uncertainty (Friston et al., 2015; Mirza et al., 2016; Parr

and Friston, 2019). Put simply, it is possible to optimize

attention in the absence of eye movements and active vision,

whereas salience is necessary to optimize the deployment of eye

movements. In what follows, we formalize this distinction with

a particular focus on visual attention (Kanwisher andWojciulik,

2000), and discuss recent findings that speak to a rhythmic

coupling that underwrites periodic deployment of gain control

and saccades, viamodulation of distinct precision parameters.

2.1. Attention as neural gain control

Neural gain control can be regarded as an amplifier of

neural communication during attention tasks (Reynolds et al.,

2000; Eldar et al., 2013). Computationally, this is analogous

to modulating a precision term, or the inverse temperature

parameter (Feldman and Friston, 2010; Parr and Friston,

2017a). For this reason, we refer to precision and gain control

interchangeably. An increase in gain amplifies the postsynaptic

responses of neurons to their pre-synaptic input. Thus, gain

control rests on synaptic modulation that can emphasize—or

preferentially select—a particular type of sensory data. From a

Bayesian perspective (Rao, 2005; Spratling, 2008; Parr et al.,

2018), this speaks to the confidence with which beliefs can

be updated given sampled sensory data (i.e., optimal state

estimation)—under a generative model (Whiteley and Sahani,

2008; Parr et al., 2018). For example, affording high precision

to certain sensory inputs would lead to confident Bayesian

belief updating. However, low precision reduces the influence

of sensory input by attenuating the precision of the likelihood,

relative to a prior belief, and current observations would do

little to resolve ensuing uncertainty. Thus, sampled visual data

(from different areas) can be predicted with varying levels

of precision, where attention accentuates sensory precision.

The deployment of precision or attention is influenced by

competition between stimuli (i.e., which sensory data to sample)

and prior beliefs. Interestingly, casting attention as precision or,

equivalently, synaptic gain offers a coherency between biased

competition (Desimone, 1996), predictive coding (Spratling,

2008) and generic active inference schemes (Feldman and

Friston, 2010; Brown et al., 2013; Kanai et al., 2015; Parr et al.,

2018).

Naturally, gain control is accompanied by neuronal

variability, i.e., sharpened neural responses for the same task

over time. Consistent with gain control, these fluctuations in

neural responses across trials can be explained by precision

engineered message passing (Clark, 2013) via (i) normalization

models (Reynolds and Heeger, 2009; Ruff and Cohen, 2016),

(ii) temperature parameter manipulation (Feldman and Friston,

2010; Parr and Friston, 2017a; Parr et al., 2018, 2019; Mirza et al.,

2019), or (iii) introduction of (conjugate hyper-)priors that are

either pre-specified (Sajid et al., 2020, 2021b) or optimized using

uninformed priors (Friston et al., 2003; Anil Meera and Wisse,

2021). Recently, these approaches have been used to simulate

attention by accentuating predictions about a given visual

stimulus (Reynolds and Heeger, 2009; Feldman and Friston,

2010; Ruff and Cohen, 2016). For example, normalization

models propose that every neuronal response is normalized

within its neuronal ensemble (i.e., the surrounding neuronal

responses) (Heeger, 1992; Louie and Glimcher, 2019). Thus,

to amplify the neuronal response of particular neuron, the

neuronal pool has to be inhibited such that particular neuron

has a sharper evoked response (Schmitz and Duncan, 2018).

Importantly, these (superficially distinct) formulations simulate

similar functions using different procedures to accentuate

responses over a particular neuronal pool for a given neuron or a

group of neurons. This introduces shifts in precision to produce

attentional gain and the precision of neuronal encoding.

2.2. Salience as uncertainty minimization

In the neurosciences, (visual) salience refers to the

‘significance’ of particular objects in the environment. Salience

often implicates the superior colliculus, a region that encodes

eye movements (White et al., 2017). This makes intuitive

sense, as the superior colliculus plays a role in generation

of eye movements—being an integral part of the brainstem

oculomotor network (Raybourn and Keller, 1977)—and salient

objects provide information that is best resolved in the center

of the visual field, thus motivating eye movements to that

location. For this reason, our understanding of salience is a

quintessentially action-driving phenomenon (Parr and Friston,

2019). Mathematically, salience has been defined as Bayesian

surprise (Itti and Koch, 2001; Itti and Baldi, 2009), intrinsic

motivation (Oudeyer and Kaplan, 2009), and subsequently,

epistemic value under active inference (Mirza et al., 2016; Parr

et al., 2018). Active inference—a Bayesian account of perception

and action (Friston et al., 2017a; Da Costa et al., 2020)—

stipulates that action selection is determined by uncertainty

minimization. Formally, uncertainty minimization speaks to

minimization of an expected free energy functional over future

trajectories (Da Costa et al., 2020; Sajid et al., 2021a). This

action selection objective can be decomposed into epistemic and

extrinsic value, where the former pertains to exploratory drives

that encourage resolution of uncertainty by sampling salient

observations, e.g., only checking one’s watch when one does not

know the time. However, after checking the watch there is little

epistemic value in looking at it again. Generally, the tendency to

seek out new locations—once uncertainty has been resolved at
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the current fixation point—is called inhibition of return (Klein,

2000).

From an active inference perspective, this phenomenon

is prevalent because a recent action has already resolved the

uncertainty about the time and checking again would offer

nothing more in terms of information gain (Parr and Friston,

2019). Accordingly, salience involves seeking sensory data that

have a predictable, uncertainty reducing, effect on current beliefs

about states of affairs in the world (Mirza et al., 2016; Parr

et al., 2018). Thus salience contends with beliefs about data that

must be acquired and the precision of beliefs about policies

(i.e., action trajectories) that dictate it. Formally, this emerges

from the imperative to maximize the amount of information

gained regarding beliefs, from observing the environment.

Happily, prior studies have made the connection between eye

movements, salience, and precision manipulation (Friston et al.,

2011; Brown et al., 2013; Crevecoeur and Kording, 2017). This

connection emerges from planning strategies that allow the

agent to minimize uncertainty by garnering the right kind

of data.

Next, we consider recent findings on how the coupling of

these two mechanisms, attention and salience, may be realized

in the brain.

2.3. Rhythmic coupling of attention and
salience

To illustrate the coupling between attention and salience,

we turn to a recent rhythmic theory of attention. The

theory proposes that coupling of saccades, during sampling of

visual information, happens at neuronal and behavioral theta

oscillations; a frequency of 3–8 Hz (Fiebelkorn and Kastner,

2019, 2021). This frequency simultaneously allows for: (i) a

systematic integration of visual samples with action, and (ii) a

temporal schedule to disengage and search the environment for

more relevant information.

Given that gain control is related to increased sensory

precision, we can accordingly relate saccadic eye movements to

the decreased precision. This introduces saccadic suppression, a

phenomenon that decreases visual gain during eye movements

(Crevecoeur and Kording, 2017). This phenomenon was

described by Helmholtz who observed that externally initiated

eye movements (e.g., when oneself gently presses a side of an

eye) eludes the saccadic suppression that accompanies normal

eye movements—and we see the world shift, because optic flow

is not attenuated (Helmholtz, 1925). An interesting consequence

of this is that, as eye movements happen periodically (Rucci

et al., 2018; Benedetto et al., 2020), there must be a

periodic switch between high and low sensory precision, with

high precision (or enhanced gain) during fixations and low

precision (or suppressed gain) during saccades. Interestingly,

it has been shown that rather than having action resetting

the neural periodicity, it is better understood as something

that aligns within an already existing rhythm (Hogendoorn,

2016; Tomassini et al., 2017). Additionally, the rhythmicity

of higher and lower fidelity of sensory sampling has been

shown to fluctuate rhythmically around 3 Hz (Benedetto and

Morrone, 2017), suggesting that action emerges rhythmically

when visual precision is low (Hogendoorn, 2016), triggering

salience.

Building upon this, we hypothesize that theta rhythms

generated in the fronto-parietal network (Fiebelkorn et al.,

2018; Helfrich et al., 2018; Fiebelkorn and Kastner, 2020)

couples saccades with saccadic suppression causing the switches

between visual sampling and saccadic shifting. This introduces

a diachronic aspect to the belief updating process (Friston et al.,

2020; Parr and Pezzulo, 2021; Sajid et al., 2022); i.e., sequential

fluctuations between attending to current data (perception) and

seeking new data (action). This supports empirical findings

that both eye movements (Sommer and Wurtz, 2006) and

filtering irrelevant information (Phillips et al., 2016; Nakajima

et al., 2019; Fiebelkorn and Kastner, 2020) are initiated in

this cortical network. Interestingly, both eye movements and

visual filtering then propagate to sub-cortical regions, i.e.,

the superior colliculus—for saliency map composition (White

et al., 2017)—and the thalamus—for gain control (Kanai et al.,

2015; Fiebelkorn et al., 2019), respectively. Furthermore, this

is consistent with recent findings that the periodicity of neural

responses are important for understanding the relation of motor

responses and sensory information—i.e., perception-action

coupling (Benedetto et al., 2020). Importantly, theta rhythms

also speak to the speed (i.e., the temporal schedule) with which

visual information is sampled from the environment (Busch

and VanRullen, 2010; Dugué et al., 2015, 2016; Helfrich et al.,

2018). Meaning visual information is not sampled continuously,

as our visual experiences would suggest, but rather it is made of

successive discrete samples (VanRullen, 2016; Parr et al., 2021).

The prefrontal theta rhythm has been associated with

working memory (WM), a process that holds compressed

information about the previously observed stimuli, in the

sense that measured power in this frequency range using

electroencephalography increases during tasks that place

demands on WM (Axmacher et al., 2010; Hsieh and Ranganath,

2014; Köster et al., 2018; Brzezicka et al., 2019; Peters et al.,

2020; Balestrieri et al., 2021; Pomper and Ansorge, 2021).

The implication is that the neural processes that underwrite

WM may depend upon temporal cycles with periods similar

to that of perceptual sampling. Importantly, this cognitive

process is influenced by how salient a particular stimulus was

(Fine and Minnery, 2009; Santangelo and Macaluso, 2013;

Santangelo et al., 2015). Moreover, WM has been implicated

with attentional mechanisms (Knudsen, 2007; Gazzaley and

Nobre, 2012; Oberauer, 2019; Peters et al., 2020; Panichello

and Buschman, 2021). This is aligned with our account
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where we illustrate a rhythmic coupling between salience

and attention.

In summary, the computations that underwrite attention

and active vision are coupled and exhibit circular causality.

Briefly, selective attention and sensory attenuation optimize

the processing of sensory samples and which particular visual

percepts are inferred. In turn, this determines appropriateness

of future eye movements (or actions) and shapes which

prior stimuli are encoded into the agent’s working memory.

Interestingly, the close functional (and computational) link

between the two mechanisms endorses the pre-motor theory

of attention.

3. Proposed precision-modulated
account of attention and salience

Here, we introduce our precision-modulated account of

perception and action. A graphical illustration is provided

in Figure 1. For this, we turn to attention and salient action

selection which have their roots in biological processes relevant

for acquiring task-relevant information. Under an active

inference account, this attention influences (posterior)

state estimation and can be associated with increased

precision of belief updating and gain control—described

in Section 2.1. Furthermore, this is distinct from salience despite

interdependent neuronal composition and computations.

Further alignment between the two constructs can be

revealed by considering the temporal scheduling between

movement (i.e., action) and perception for uncertainty

resolution (Parr and Friston, 2019). We postulate that this

perception-action coupling is best understood as a periodic

fluctuation between minimizing uncertainty and precision

control. Subsequently, action is deployed to reduce uncertainty.

Such an alignment specifies what stimulus is selected and under

what level of precision it is processed. Parr and Friston (2019)

hypothesize that action alignment with precision is due to the

eye structure that provides precise information in the fovea and

requires the agent to foveate the most informative stimulus.

We extend this by considering the periodic deployment of

gain control with saccades (Hogendoorn, 2016; Benedetto and

Morrone, 2017; Tomassini et al., 2017; Fiebelkorn and Kastner,

2019; Nakayama and Motoyoshi, 2019).

Accordingly, our formulation defines attention as precision

control and salience as uncertainty minimization supported

by discrete sampling of visual information at a theta rhythm.

This synchronizes perception and action together in an

oscillatory fashion (Hogendoorn, 2016). Importantly, a Bayesian

formulation of this can be realized as precision manipulation

over particular model parameters. We reserve further details for

Section 4.

Summary Based upon our review, we propose a precision-

modulated account of attention and salience, emphasizing

the diachronic realization of action and perception. In the

following sections, we investigate a realization of this model for

a robotic system.

4. Precision-based attention for
Robotics

The previous section introduced a conceptual account to

explain the computational mechanisms that undergird attention

based on neuroscience findings. We focused on reclaiming

saliency as an active process that relies on neural gain control,

uncertainty minimization and structured scheduling. Here, we

describe how we can mathematically realize some of these

mechanisms in the context of well-known challenges in robotics.

Enabling robots with this type of attention may be crucial to

filter the sensory signals and internal variables that are relevant

to estimate the robot/world state and complete any task. More

importantly, the active component of salience (i.e., behavior)

is essential to interact with the world—as argued in active

perception approaches (Bajcsy et al., 2018).

We revisit the standard view of attention in robotics by

introducing sensory precision (inverse variance) as the driving

mechanism for modulating both perception and action (Friston

et al., 2011; Clark, 2013). Although saliency was originally

described to underwrite behavior, most models used in robotics,

strongly biased by computer vision approaches, focus on

computing the most relevant region of an image (Borji and Itti,

2012)—mainly computing human fixation maps—relegating

action to a secondary process. Illustratively, state-of-the-art

deep learning saliency models—as shown in the MIT saliency

benchmark (Bylinskii et al., 2019)—do not have the action

as an output. Conversely, the active perception approach

properly defines the action as an essential process of active

sensing to gather the relevant information. Our proposed

model, based on precision modulated action and perception

coupling (i) place attention as essential for state-estimation

and system identification and (ii) and reclaims saliency as a

driver for information-seeking behavior, as proposed in early

works (Tsotsos et al., 1995), but goes beyond human fixation

maps for both improving the model of the environment

(exploration) and solving the task (exploitation).

In what follows, we highlight the key role of precision

by reviewing relevant brain-inspired attention models

deployed in robotics (Section 4.1). We propose precision-

modulated attentional mechanisms for robots in three

contexts—perception (Section 4.2), action (Section 4.3) and

active perception (Section 4.3.3). The precision-modulated

perception is formalized for a robotics setting; via (i) state

estimation (i.e., estimating the hidden states of a dynamic

system from sensory signals—Section 4.2.2), and (ii) system

identification (i.e., estimating the parameters of the dynamic

system from sensory signals—Section 4.2.3). Next, we show
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FIGURE 1

A graphical illustration of the precision-modulated account of perception and action. Salience and attention are computed based upon beliefs

(assumed to be) encoded in parts of the fronto-parietal network and realized in distinct brain regions: superior colliculus (SC) for perception as

inference and thalamus for planning as inference, respectively. To deploy attentional processes e�ciently, these two mechanisms have to be

aligned, which is done rhythmically, hypothetically in theta frequency. This coupling enables the saccadic suppression phenomenon through

fluctuations in precision (on an arbitrary scale). When precision is low (i.e., the trough of the theta rhythm), the saccade emerges. Note that there

might be distinct processes inhibiting the action (e.g., covert attention), and (despite a decline in precision) saccades might not emerge in every

theta cycle. On the other hand, high precision facilitates confident inferences about the causes of visual data. Under this account, thalamus is

used for initiating gain control (or visual sampling in general) by providing stronger sensory input, while superior colliculus dictates next

saccades, that lead to most informative fixation positions.

TABLE 1 Robotics applications and their precision realizations.

Task Application Precision

manipulation

Sections

Perception State and input

estimation

Noise precision

modeling 5̃

4.2.2

System Identification Posterior parameter

precision learning 5θ

4.2.3

Exploration-exploitation

in learning

Prior parameter

precision modeling Pθ

4.2.4

Noise estimation Noise precision learning

5̃

4.2.5

Action Informative Path

Planning (IPP)

Precision optimization

(of map)

4.3.2

Active

perception

IPP with

action-perception cycle

Precision modulation 4.3.3

that precision-modulated action can be realized through

precision optimization (planning future actions—Section 4.3.2)

and discuss practical considerations for coupling with

precision-modulated perception (precision based active

perception—Section 4.3.3). Table 1 summarizes our proposed

precision manipulations to solve relevant problems in robot

TABLE 2 Precision parameters that are manipulated in Section 4.2.

Term Symbol Definition

Sensory precision 5z Inverse covariance of sensory noise

z (Equation 1).

Prior parameter precision Pθ The robot’s confidence on its prior

parameters ηθ .

Noise precision 5̃ The inverse covariance of all noises

(Equation 5).

Posterior parameter precision 5θ The robot’s confidence on its

parameter estimates.

perception and action. Table 2 provides the definitions of

precision within our mechanism.

4.1. Previous brain-inspired attention
models in robotics

Brain-inspired attention has been mainly addressed in

robotics from a “passive” visual saliency perspective, e.g., which

pixels of the image are the most relevant. This saliency map

is then generally used to foveate the most salient region.
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This approach was strongly influenced by early computational

models of visual attention (Tsotsos et al., 1995; Itti and Koch,

2001). The first models deployed in robots were bottom-up,

where the sensory input was transformed into an array of values

that represents the importance (or salience) of each cue. Thus,

the robot was able to identify which region of the scene has

to look at, independently of the task performed—see Borji and

Itti (2012) for a review on visual saliency. These models have

also been useful for acquiring meaningful visual features in

applications, such as object recognition (Orabona et al., 2005;

Frintrop, 2006), localization, mapping and navigation (Frintrop

and Jensfelt, 2008; Roberts et al., 2012; Kim and Eustice, 2013).

Saliency computation was usually employed as a helper for the

selection of the relevant characteristics of the environment to be

encoded. Thus, reducing the information needed to process.

More refined methods of visual attention employed top-

down modulation, where the context, task or goal bias the

relevance of the visual input. These methods were used, for

instance, to identify humans using motion patterns (Butko

et al., 2008; Morén et al., 2008). A few works also focused on

object/target search applications, where top-down and bottom-

up saliency attention were used to find objects or people in a

search and rescue scenario (Rasouli et al., 2020).

Attention has also been considered in human-robot

interaction and social robotics applications (Ferreira and

Dias, 2014), mainly for scene or task understanding (Kragic

et al., 2005; Ude et al., 2005; Lanillos et al., 2016), and

gaze estimation (Shon et al., 2005) and generation (Lanillos

et al., 2015a). For instance, computing where the human is

looking at and where the robot should look at or which

object should be grasped. Furthermore, multi-sensory and

3D saliency computation has also been investigated (Lanillos

et al., 2015b). Finally, more complex attention behaviors,

particularly designed for social robotics and based on human

non-verbal communication, such as joint attention, have also

been addressed. Here the robot and the human share the

attention of one object through meaningful saccades, i.e.,

head/eye movements (Nagai et al., 2003; Kaplan and Hafner,

2006; Lanillos et al., 2015a).

Although attention mechanisms have been widely

investigated in robotics, specially to model visual

cognition (Kragic et al., 2005; Begum and Karray, 2010),

the majority of the works have treated attention as an extra

feature that can help the visual processing, instead of a crucial

component needed for the proper functioning of the cognitive

abilities of the robot (Lanillos and Cheng, 2018a). Furthermore,

these methods had the tendency to leave the action generation

out of the attention process. One of the reasons for not including

saliency computation, in robotic systems, is that the majority

of the models only output “human-fixation map” predictions,

given a static image. Saliency computation introduces extra

computational complexity, which can be finessed by visual

segmentation algorithms (e.g., line detectors in autonomous

navigation). However, it does not resolve uncertainty nor

select actions that maximize information gain in the future. In

essence, the incomplete view of attention models that output

human-fixation maps has arguably obscured the huge potential

of neuroscience-inspired attentional mechanisms for robotics.

Our proposed model of attention, based on precision

modulation, abandons the current robotics narrow view of

attention and saliency by explicitly modeling attention within

state estimation, learning and control. Thus, placing attentional

processes at the core of the robot computation and not

as an extra add-on. In the following sections, we describe

the realization of our precision-based attention formulation

in robotics using common practical applications as the

backbone motif.

4.2. Precision-modulated perception

We formalize precision-modulated perception from a first

principles Bayesian perspective—explicitly the free energy

principle approach proposed by Friston et al. (2011). Practically,

this entails optimizing precision parameters over (particular)

model parameters.

Through numerical examples show how our model is able to

perform accurate state estimation (Bos et al., 2021) and stable

parameter learning (Meera and Wisse, 2021a,b). To illustrate

the approach, we first introduce a dynamic system modeled

as a linear state space system in robotics (Section 4.2.1)—we

used this formulation in all our numerical experiments. We

briefly review the formal terminologies for a robotics context

to appropriately situate our precision-based mechanism for

perception. Explicitly, we introduce: precision modeling (by

adapting a known form of the precision matrix), precision

learning (by learning the full precision matrix), and precision

optimization (use precision as an objective function during

learning). As a reminder, precision modeling is associated with

(instantaneous) gain control and precision learning (at slower

time scales) is associated with optimizing that control.

4.2.1. Precision for state space models

A linear dynamic system can be modeled using the following

state space equations (boldface notation denotes components of

the real system and non-boldface notation its estimates):

ẋ = Ax+ Bu+ w, y = Cx+ z. (1)

where A, B and C are constant matrices defining the system

parameters, x ∈ R
n is the system state (usually an unobserved

variable), u ∈ R
r is the input or control actions, y ∈ R

m

is the output or the sensory measurements, w ∈ R
n is the

process noise with precision 5w (or inverse variance 6w−1),

and z ∈ R
m is the measurement noise with precision 5z.
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For instance, we can describe a mass-spring damper system

(depicted in Figure 2B) using state space equations. A mass

(m = 1.4kg) is attached to a spring with elasticity constant

(k = 0.8N/m), and a damper with a damping coefficient (b =

0.4Ns/m). When a force (u(t) = e−0.25(t−12)2 ) is applied on

the mass, it displaces x from its equilibrium point. The linear

dynamics of this system is given by:

[

ẋ

ẍ

]

=

[

0 1

− k
m − b

m

] [

x

ẋ

]

+

[

0
1
m

]

u, y =
[

1 0
]
[

x

ẋ

]

. (2)

Note that Equation (2) is equivalent to Equation (1) with

parameters A=

[

0 1

− k
m − b

m

]

, B =
[

0, 1
m

]T
and C=

[

1 0
]

, and

state x =
[

x, ẋ
]T

.

Now we introduce attention as precision modulation

assuming that the robotic goal is to minimize the prediction

error (Friston et al., 2011; Lanillos and Cheng, 2018b; Meera

and Wisse, 2020), i.e., to refine its model of the environment

and perform accurate state estimation, given the information

available. In other words, the robot has to estimate x and

u from input prior ηu with a prior precision of Pu, given

the measurements y, parameters A, B, C and noise precision

5w and 5z. Formally, the prediction error ǫ̃ of the sensory

measurements ǫ̃y, control input reference ǫ̃u and state ǫ̃x are:

ǫ̃ =






ǫ̃y

ǫ̃u

ǫ̃x




 =






ỹ− C̃x̃

ũ− η̃u

Dxx̃− Ãx̃− B̃ũ






















sensory prediction error

control input prediction

error

state prediction error

(3)

F̄ =−
1

2

∑

t

[

ǫ̃yT5̃z ǫ̃y + ǫ̃uTPũǫ̃u + ǫ̃xT5̃wǫ̃x
︸ ︷︷ ︸

precision weighed prediction error

]

−
1

2

[

ǫθTPθ ǫθ + ǫλTPλǫλ

︸ ︷︷ ︸

prior precision weighed prediction error of θ and λ

]

+
1

2
nt ln |6

X |

︸ ︷︷ ︸

state and input entropy

+
1

2
nt

[

ln |5̃z| + ln |Pṽ| + ln |5̃w|
]

︸ ︷︷ ︸

noise entropy

+
1

2
ln |6θPθ |

︸ ︷︷ ︸

parameter entropy

+
1

2
ln |6λPλ|

︸ ︷︷ ︸

hyperparameter entropy

(6)

Note that ǫ̃y = ỹ − C̃x̃ is the difference between the observed

measurement and the predicted sensory input given the state3.

Here Dx performs the (block) derivative operation, which is

3 The tilde over the variable refers to the generalized coordinates,

i.e., the variable includes all temporal derivatives. Thus, ǫ̃ is the

combined prediction error of outputs, inputs and states. For example,

the generalized output ỹ is given by ỹ = [y, y′ , y′′ ...]T , where the prime

operator denotes the derivatives. We use generalized coordinates (Friston

et al., 2010) for achieving accurate state and input estimation during the

presence of (colored) noise by modeling the time dependent quantities

(x, v, y,w, z) in generalized coordinates. This involves keeping track of

the evolution of the trajectory of the probability distributions of states,

instead of just their point estimates. Here the colored noise w and z are

equivalent to shifting up all the components in generalized

coordinates by one block.

We can estimate the state and input using the Dynamic

Expectation Maximization (DEM) algorithm (Friston et al.,

2008; Meera and Wisse, 2020) that optimizes a free energy

variational bound F to be tractable4. This is:

X =

[

x̃

ũ

]

= argmax
X

F = argmax
X

−
1

2
ǫ̃T5̃ǫ̃ (4)

Crucially, 5̃ is the generalized noise precision that modulates

the contribution of each prediction error to the estimation of the

state and the computation of the action. Thus, 5̃ is equivalent

to attentional gain. For instance, we can model the precision

matrix to attend to the most informative signal derivatives in ỹ.

Concisely, the precision 5̃ has the following form:

5̃ =






S⊗ 5z 0 0

0 S⊗ Pu 0

0 0 S⊗ 5w




 , (5)

where S is the smoothness matrix. In Section 4.2.2, we show that

modeling the precision matrix 5̃ using the S matrix improves

the estimation quality.

The full free energy functional (time integral of free energy

F̄ =
∫

Fdt at optimal precision) that the robot optimizes to

perform state-estimation and system identification is described

in Equation (6)—for readability we omitted the details of the

derivation of this cost function, and we refer to Anil Meera and

Wisse (2021) for further details.

Here ǫθ = θ − ηθ , ǫλ = λ − ηλ are the prediction errors

of parameters and hyper-parameters5. F̄ consist of two main

components: i) precision weighed prediction errors and ii)

modeled as a white noise convoluted with a Gaussian kernel. The use

of generalized coordinates has recently shown to outperform classical

approaches under colored noise on real quadrotor flight (Bos et al., 2021).

4 Note that this expression of the variational free energy is using

the Laplace and mean-field approximations commonly used in the FEP

literature.

5 System identification involves the estimation of system parameters

(denoted by θ , e.g., vectorised A), given y,u, by starting from a parameter

prior of ηθ with prior precision Pθ , and a prior on noise hyper-parameter

ηλ with a prior precision of Pλ. Note that we parametrise noise precision

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2022.896229
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Anil Meera et al. 10.3389/fnbot.2022.896229

precision-based entropy. The dominant role of precision—in

the free energy objective—is reflected in how modulating these

precision parameters can have a profound influence perception

and behavior. The theoretical guarantees for stable estimation

(Meera and Wisse, 2021b), and its application on real robots

(Lanillos et al., 2021) make this formulation very appealing to

robotic systems.

Note that we can manipulate three kinds of precision within

the state space formulation: (i) prior precision (Pũ, Pθ , Pλ), (ii)

conditional precision on estimates (5X ,5θ ,5λ) and (iii) noise

precision (5z ,5w). Therefore, to learn the correct parameter

values θ , we (i) learn the parameter precision 5θ , (ii) model the

prior parameter precision Pθ , and (iii) learn the noise precision

5w and 5z (parameterised using λ).

4.2.2. State and input estimation

State estimation is the process of estimating the unobserved

states of a real system from (noisy) measurements. Here, we

show how we can achieve accurate estimation through precision

modulation in a linear time invariant system under the influence

of colored noise (Meera and Wisse, 2020). State estimation in

the presence of colored noise is inherently challenging, owing

to the non-white nature of the noise, which is often ignored in

conventional approaches, such as the Kalman Filter (Welch and

Bishop, 2002).

Figure 2 summarizes a numerical example that shows how

one can use precision modulation to focus on the less noisy

derivatives (lower derivatives) of measurements, relative to

imprecise higher derivatives. Thus, enabling the robot to use

the most informative data for state and input estimation, while

discarding imprecise input. Figure 2B depicts the mass-spring

damper system used. The numerical results show that the quality

of the estimation increases as the embedding ordering increases

but the lack of information in the higher order derivatives of

the sensory input do not affect the final performance due to the

precision modulation. The higher order derivatives (Figure 2A)

are less precise than the lower derivatives, thereby reflecting the

loss of information in higher derivatives. The state and input

estimation was performed using the optimization framework

described in the previous section. The quality of estimation

is shown in Figure 2C, where the input estimation using six

derivatives (blue curve) is closer to the real input (yellow

curve) than when compared to the estimation using only one

derivative (red curve). The quality of the estimation reports

the sum of squared error (SSE) in the estimation of states and

inputs with respect to the embedding order (number of signal

derivatives considered).

To obtain accurate state estimation by optimizing the

precision parameters, we recall that the precision weights the

(5w and 5z ) using λ ∈ R
2×1 =

[
λz

λw

]

as an exponential relation (e.g.,

5w(λw) = exp(λw)In×n).

prediction errors. From Equation (3), the structural form of 5̃

is mainly dictated by the smoothness matrix S, which establishes

the interdependence between the components of the variable

expressed in generalized coordinates (e.g., the dependence

between y, y′ and y′′ in ỹ). For instance, the S matrix for a

Gaussian kernel is as follows Meera and Wisse (2022):

S =















35
16 0 35

8 s2 0 7
4 s

4 0 1
6 s

6

0 35
4 s2 0 7s4 0 s6 0

35
8 s2 0 77

4 s4 0 19
2 s6 0 s8

0 7s4 0 8s6 0 4
3 s

8 0
7
4 s

4 0 19
2 s6 0 17

3 s8 0 2
3 s

10

0 s6 0 4
3 s

8 0 4
15 s

10 0
1
6 s

6 0 s8 0 2
3 s

10 0 4
45 s

12















, (7)

where s is the kernel width of the Gaussian filter that is assumed

to be responsible for serial correlations in measurement or state

noise. Here, the order of generalized coordinates (number of

derivatives under consideration) is taken as six (S ∈ R
7×7).

For practical robotics applications, the measurement frequency

is high, resulting in 0 < s < 1. It can be observed that the

diagonal elements of S decreases because s < 1, resulting in a

higher attention (or weighting) on the prediction errors from the

lower derivatives when compared to the higher derivatives. The

higher the noise color (i.e., s increases), the higher the weight

given to the higher state derivatives (last diagonal elements of S

increases). This reflects the fact that smooth fluctuations have

more information content in their higher derivatives. Having

established the potential importance of precision weighting in

state estimation, we now turn to the estimation (i.e., learning) of

precision in any given context.

4.2.3. System identification

This section shows how to optimize system identification

by means of precision learning (Anil Meera and Wisse, 2021;

Meera and Wisse, 2021b). Specifically, we show how to fuse

prior knowledge about the dynamic model with the data to

recover unknown parameters of the system through an attention

mechanism. This involves the learning of the (1) parameters

and (2) noise precisions. Our model “turns” the attention to

the least precise parameters and uses the data to update those

parameters to increase their precision. Hence, allowing faster

parameter learning.

For the sake of clarity, we use again the mass-spring-damper

system as the driving example (Section 4.2.1). We formalize

system identification as evaluating the unknown parameters k,

m and b, given the input u, the output y, and the general form of

the linear system in Equation (2).

Figure 3 depicts the process of learning unknown

parameters (dotted boxes denote the processes inside the

robot brain). The robot measures its position x(t) using its

sensors (e.g., vision or range sensor). We assume that the robot

has observed the behavior of a mass-spring-damper system
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FIGURE 2

An illustration of an attention mechanism for state and input estimation of a system (shown in B). The quality of the estimation improves (C) as

the embedding order (number of derivatives) of generalized coordinates are increased (A). However, the imprecise information in the higher

order derivatives of the sensory input y does not a�ect the final performance of the observer because of attentional selection, which selectively

weighs the importance a�orded to each derivative, in the free energy optimization scheme.

FIGURE 3

The schematic of the robot’s attention mechanism for learning the least precise parameters of a given generative model of a

mass-spring-damper system (shown in D). (A) Learning the conditional precision on parameters and the noise precision. (B) The free energy

optimization helping to identify the unknown system parameters. (C) The parameter learning.

before or a model is provided by the expert designer. However,

some of the parameters are unknown. The robot can reuse the

prior learned model of the system to relearn the new system.

This can be realized by setting a high prior precision on the

known parameters and a low prior precision on the unknown

parameters. By means of precision learning, the robot uses the
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sensory signals to learn the parameter precision 5θ , thereby

improving the confidence in the parameter estimates θ . This

directs the robot’s attention toward the refinement of the

parameters with least precision as they are the most uncertain.

The requisite parameter learning proceeds by the gradient

ascent of the free energy functional given in Equation (6). The

parameter precision learning proceeds by tracking the negative

curvature of F̄ as 5θ = − ∂2F̄
∂θ2

(Anil Meera and Wisse, 2021).

The learning process—by means of variational free energy

optimization (maximization)—is shown in Figure 3B. The

learning involves two parallel processes: precision learning

(Figure 3A), and parameter learning (Figure 3C). Precision

learning comprises of parameter precision learning (top

graph)—i.e., identifying the precision of an approximate

posterior density for the parameters being estimated—and noise

precision learning (bottom graph). The high prior precision

on the known system parameters (0 and 1), and low prior

precision on the unknown system parameters (− k
m ,− b

m and
1
m , highlighted in blue) directs attention toward learning

the unknown parameters and their precision. Note that in

Figure 3A, the precision on the three unknown parameters start

from a low prior precision of Pθ = 1 and increase with each

iteration, whereas the precision of known parameters (0 and

1) remains a constant (3.3 × 106). The noise precisions are

learned simultaneously, which starts from a low prior precision

of Pλw = Pλz = 1 and finally converges to the true noise

precision (dotted black line). Both precisions are used to learn

the three parameters of the system (Figure 3B), which starts from

randomly selected values within the range [−2,2] and finally

converges to the true parameter values of the system (θ3 =

− k
m = −0.5714, θ4 = − b

m = −0.2857 and θ6 = 1
m = 0.7143),

denoted by black dotted lines. From an attentional perspective,

the lower plot in Figure 3A is particularly significant here. This

is because the robot discovers the data are more informative

than initially assumed, thereby leading to an increase in its

estimate of the precision of the data-generating process. This

means that the robot is not only using the data to optimize its

beliefs about states and parameters (system identification), it is

also using these data to optimize the way in which it assimilates

these data.

In summary, precision-based attention, in the form of

precision learning, helps the robot to accurately learn unknown

parameters by fusing prior knowledge with new incoming

data (sensory measurements), and attending to the least

precise parameters.

4.2.4. Precision-modulated exploration and
exploitation in system identification

Exploration and exploitation in the parameter space can be

advantageous to robots during system identification. Precision-

based attention—here the prior precision—allows a graceful

balance between the two, mediated by the prior precision6. A

very high prior precision encourages exploitation and biases

the robot toward believing its priors, while a low prior

precision encourages exploration and makes the robot sensitive

to new information.

We use again the mass-spring-damper system example

but with a different prior parameter precision Pθ . The

prior parameters are initialized at random and learned using

optimization. Figure 4B shows the increase in parameter

estimation error (SSE) as the prior parameter precision Pθ

increases until it finally saturates. The bottom left region (circled

in red) indicates the region where the prior precision is low,

encouraging exploration with high attention on the sensory

signals for learning the model. This region over-exposes the

robot to its sensory signals by neglecting the prior parameters.

The top right region (circled in red) indicates the biased robot

where the prior precision is high, encouraging the robot to

exploit its prior beliefs by retaining high attention on prior

parameters. This regime biases the robot into being confident

about its priors and disregarding new information from the

sensory signals. Between those extreme regimes (blue curve)

the prior precision balances the exploration-exploitation trade-

off. Figure 4A describes how increased attention to sensory

signals helped the robot to recover from poor initial estimates

of parameter values and converge toward the correct values

(dotted black line). Conversely, in Figure 4C, high attention on

prior parameters did not help the robot to learn the correct

parameter values.

These results establish that prior precision modeling allows

balanced exploration and exploitation of parameter space during

system identification. Although the results show that an over-

exposed robot provides better parameter learning, we show—in

the next section—that this is not always be the case.

4.2.5. Noise estimation

In real-world applications, sensory measurements are often

highly noisy and unpredictable. Furthermore, the robot does

not have access to the noise levels. Thus, it needs to learn the

noise precision (5z) for accurate estimation and robust control.

Precision-based attention enables this learning. In what follows,

we show how one can estimate5z using noise precision learning

and that biasing the robot to prior beliefs can be advantageous in

highly noisy environments.

Consider again the mass-spring-damper system in

Figure 5B, where heavy rainfall/snow corrupts visual sensory

signals. We evaluate the parameter estimation error under

different noise conditions, using different levels of noise

6 Note that here we are using exploration and exploration not in

terms of behavior but for parameter learning. Explorationmeans adapting

the parameter to a di�erent (unexplored) value and exploitation means

keeping that value.
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FIGURE 4

(A) Lower P∧θ gives a high exploration strategy across the parameter space. (B) Precision-based attention allows exploration and exploitation

balanced model learning mediated by the prior precisions on the parameters P∧θ . (C) The higher the P∧θ , the higher the attention on prior

parameters η∧θ and the lower the attention on the sensory signals while learning.

FIGURE 5

Simulations demonstrating how a biased robot could be advantageous, especially while learning in a highly noisy environment (shown in B). (A i)

As the sensor noise increases, the quality of parameter estimation deteriorates to a point where an explorative robot generates higher parameter

estimation errors than when compared to the biased robot that relies on its prior parameters. (A ii) However, the sensor noise estimation is

accurate even for high noise environments, demonstrating the success of the attention mechanism using the noise precision.
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variances (inverse precision). For an over-exposed robot (only

attending to sensory measurements), left plot of Figure 5A, the

estimation error increases as the noise strength increases, to a

point where the error surpasses the error from a prior-biased

robot. This shows that a robot, confident in its prior model,

assigns low attention to sensory signals and outperforms an

over-exposed robot that assigns high attention to sensory

signals, in a highly noisy environment. The right plot of

Figure 5A shows the quality of noise precision learning for an

over-exposed robot. It can be seen that all the data points in

red lie close to the blue line, indicating that the estimated noise

precision is close to the real noise precision. Therefore, the

robot is capable of recovering the correct sensory noise levels

even when the environment is extremely noisy, where accurate

parameter estimation is difficult.

These numerical results show that attention mechanism—

by means of noise precision learning—allows the estimation of

the noise levels in the environment and thereby protects against

over-fitting or overconfident parameter estimation.

Summary. We have shown how precision-based attention–

through precision modeling and learning– yields to accurate

robot state estimation, parameter identification and sensory

noise estimation. In the next section, we discuss how action is

generated in this framework.

4.3. Precision-modulated action

Selecting the optimal sequence of actions to fulfill a task is

essential for robotics (LaValle, 2006). One of themost prominent

challenges is to ensure robust behavior given the uncertainty

emerging from a highly complex and dynamic real world, where

the robots have to operate on. A proper attention system should

provide action plans that resolve uncertainty and maximize

information gain. For instance, it mayminimize the information

entropy, thereby encouraging repeated sensory measurements

(observations) on high uncertainty sensory information.

Salience, which in neuroscience is sometimes identified as

Bayesian surprise (i.e., divergence between prior and posterior),

describes which information is relevant to process. We go one

step further by defining the saliency map as the epistemic

value of a particular action (Friston et al., 2015). Thus, the

(expected) divergence now becomes the mutual information

under a particular action or plan. This makes the saliency map

more sophisticated because it is an explicit measure of the

reduction in uncertainty or mutual information associated with

a particular action (i.e., active sampling), and more pragmatic

because it tells you where to sample data next, given current

Bayesian beliefs.

We first describe a precision representation usually

used in information gathering problems and then how to

directly generate action plans through precision optimization.

Afterwards, we discuss the realization of the full-fledged model

presented in the neuroscience section for active perception. We

use the informative path planning (IPP) problem, described in

Figure 6, as an illustrative example to drive intuitions.

4.3.1. Precision maps as saliency

One of the popular approaches in information gathering

problems is to model the information map as a distribution

[e.g., using Gaussian processes (Hitz et al., 2017)]. This is widely

used in applications, such as a target search, coverage and

navigation. The robot keeps track of an occupancy map and

the associated uncertainty map (covariance matrix or inverse

precision). While the occupancy map records the presence

of the target on the map, the uncertainty map records the

quality of those observations. The goal of the robot is to learn

the distribution using some learning algorithm (Marchant and

Ramos, 2014). A popular strategy is to plan the robot path such

that it minimizes the uncertainty of the map in future (Popović

et al., 2017). In Section 4.3.2, we will show how we can use the

map precision to perform active perception, i.e., optimize the

robot path for maximal information gain. Optimizing the map

precision drives the robot toward an exploratory behavior.

4.3.2. Precision optimization for action
planning

To introduce precision-based saliency we use an exemplary

application of search and rescue. The goal is to find all humans

using an unmanned air vehicle (UAV) (Lanillos, 2013; Lanillos

et al., 2014; Meera et al., 2019; Rasouli et al., 2020). We use

precision for two purposes: (i) precision optimization for action

planning (plan flight path) and (ii) precision learning for map

refinement. In contrast to previous models of action selection

within active inference in robotics (Lanillos et al., 2021; Oliver

et al., 2021) here precision explicitly drives the agent behavior.

Figure 7 describes the scenario in simulation. The seven human

targets on the ground are correctly identified by the UAV.

We can formalize the solution as the UAV actions (next flight

path) that minimize the future uncertainties of the human

occupancy map. In our precision-based attention scheme, this

objective is equivalent to maximizing the posterior precision of

the map. Figure 8 shows the reduction in map uncertainty after

subsequent assimilation of the measurements (camera images

from the UAV, processed by a human detector). The map (and

precision) is learned using a recursive Kalman Filter by fusing

the human detector outcome onto the map (and precision). The

algorithm drives the UAV toward the least explored regions in

the environment, defined by the precision map.

Furthermore, Figure 9 shows an example of uncertainty

resolution under false positives. In this case, human targets are

moved to the bottom half of the map. The first measurement

provides a wrong human detection with high uncertainty.

However, after repeated measurements at the same location in
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FIGURE 6

IPP problem for localizing human victims in an urban search and rescue scenario (Meera et al., 2019). (A) Action: a UAV, in a realistic simulation

environment, plans a finite look-ahead path to minimize the uncertainty of its human occupancy map (e.g., modeled as a Gaussian process) of

the world. The planned path is then executed, during which the UAV flies and captures images at a constant measurement frequency. (B)

Perception: after the data acquisition is complete, a human detection algorithm is executed to detect all the humans on the images. These

detections are then fused into the UAV’s human location map. The cycle is repeated until the uncertainty of the map is completely resolved (this

usually implies enough area coverage and repeated measurements on uncertain locations). The ground truth of the human occupancy map and

the UAV belief is shown in (B,C) respectively. The final map approaches the ground truth and all the seven humans on the ground are

correctly detected.

FIGURE 7

Finding humans with unmanned air vehicles (UAVs): an informative path planning (IPP) approach (Anil Meera, 2018). The simulation environment

on the left consists of a tall building at the center, surrounded by seven humans lying on the floor. The goal of the UAV is to compute the action

sequence that allows maximum information gathering, i.e., the humans location uncertainty is minimized. On the right is the final occupancy

map colored with the probability of finding a human at that location. It can be observed that all humans on the simulation environment were

correctly detected by the robot.

the map the algorithm was capable of resolving this ambiguity,

to finally learn the correct ground truth map. Hence, the

sought behavior is to take actions that encourage repeated

measurements at uncertain locations for reducing uncertainty.

Although the IPP example illustrates how to generate

control actions through precision optimization, the task, by

construction, is constrained to explicitly reduce uncertainty.

This is similar to the description of visual search described

in Friston et al. (2012), where the location was chosen maximize

information gain. Information gain (i.e., the Bayesian surprise

expected following an action) is a key part of the expected

free energy functional that underwrite action selection in active
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FIGURE 8

Variance map of the probability distribution of people location (Figure 7)—inverse precision of human occupancy map. The plot sequence

shows the reduction of map uncertainty (inverse precision) after measurements (Anil Meera, 2018).

FIGURE 9

The human occupancy map (probability to find humans at every location of the environment) at four time instances during the UAV flight

showing ambiguity resolution. The ambiguity arising from imprecise sensor measurements (false positive) is resolved through repeated

measurements at the same location. The plot sequence shows how the assimilation of the measurements updates the probability of the people

being in each location of the map (Meera et al., 2019).

inference. In brief, expected free energy can be decomposed into

two parts the first corresponds to the information gain above

(a.k.a., epistemic value or affordance). The second corresponds

to the expected log evidence or marginal likelihood of sensory

samples (a.k.a., pragmatic value). When this likelihood is

read as a prior preference, it contextualizes the imperative to

reduce uncertainty by including a goal-directed, imperative.

For example, in the search paradigm above, we could have

formulated the problem in terms of reducing uncertainty about

whether each location was occupied by a human or not. We

could have then equipped the agent with prior preferences for

observing humans.

In principle, this would have produced searching behavior

until uncertainty had been resolved about the scene; after

which, the robot would seek out humans; simply because,

these are its preferred outcomes. In thinking about how this

kind of neuroscience inspired or biomimetic approach could

be implemented in robotics, one has to consider carefully, the

precision afforded sensory inputs (i.e., the likelihood of sensory

data, given its latent causes)—and how this changes during

robotic flight and periods of data gathering. This brings us back

to the precision modulation and the temporal scheduling of

searching and securing data. In the final section, we conclude

with a brief discussion of how this might be implemented in

future applications.

4.3.3. Precision-based active perception

In this section, we discuss the realization of a biomimetic

brain-inspired model in relation to existing solutions in
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FIGURE 10

Precision-modulated attention model adapted to the action-perception loop in robotics. Each cycle consists of two steps: (1) action (planning

and execution of a finite-time look ahead of the robot path for data collection) and (2) perception (learning using the collected data). This

scheduling, using a finite time look-ahead plan, is quite common in real applications and of particular importance when processing is

computationally expensive, e.g., slow rate of classification, non-scalable data fusion algorithms, Exponential planners, etc. However, the benefits

of incorporating “optimal” scheduled loop driven by precision should be further studied.

robotics in the context of path-planning. Figure 10 compares

our proposed precision-modulated attention model—from

Figure 1—with the action-perception loop widely used in

robotics. By analogy with eye saccades to the next visual sample,

the UAV flies (action) over the environment to assimilate

sensory data for an informed scene construction (perception).

Once the flight time of the UAV is exhausted (similar to saccade

window of the eye), the action is complete, after which the map

is updated, and the next flight path is planned.

In standard applications of active inference, the information

gain is supplemented with expected log preferences to provide

a complete expected free energy functional (Sajid et al.,

2021a). This accommodates the two kinds of uncertainty

that actions and choices typically reduce. The first kind of

uncertainty is inherent in unknowns in the environment.

This is the information gain we have focused on above.

The second kind of uncertainty corresponds to expected

surprise, where surprise rests upon a priori expected or

preferred outcomes. As noted above, equipping robots with

both epistemic and pragmatic aspects to their action selection

or planning could produce realistic and useful behavior

that automatically resolves the exploration-exploitation

dilemma. This follows because the expected free energy

contains the optical mixture of epistemic (information-

seeking) and pragmatic (i.e., preference seeking) components.

Usually, after a period of exploration, the preference seeking

components predominate because uncertainty has been

resolved. Although expected free energy provides a fairly

universal objective function for sentient behavior, it does

not specify how to deploy behavior and sensory processing

optimally. This brings us to the precision modulation model,

inspired by neuroscientific considerations of attention

and salience.

Hence, there are key differences between biological and

robotic implementations of the search behavior. First, the use of

oscillatory precision tomodulate visual sampling andmovement

cycles, as opposed to arbitrary discrete action and perception

steps currently used in robotics. Second, precision modulation

influences both state estimation and action following the

same uncertainty reduction principle. Importantly, our salience

formulation speaks to selecting future data that reduces this

uncertainty. For instance, we have shown—in the information

gathering IPP example described in the previous subsection—

that by optimizing precision we also optimize behavior.

Hence, there are key differences between biological and

robotic implementations of the search behavior. First, the use of

oscillatory precision tomodulate visual sampling andmovement

cycles, as opposed to arbitrary discrete action and perception

steps currently used in robotics. Second, precision modulation

influences both state estimation and action following the

same uncertainty reduction principle. Importantly, our salience

formulation speaks to selecting future data that reduces this

uncertainty. For instance, we have shown—in the information

gathering IPP example described in the previous subsection—

that by optimizing precision we also optimize behavior.

We argue the potential need and the advantages of

realizing precision based temporal scheduling, as described

the our brain-inspired model, for two practically relevant

test cases: (i) learning dynamic models and (ii) information

seeking applications.

In Section 4.2.4, we have shown how the exploration-

exploitation trade-off can be mediated by the prior parameter
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precision during learning. However, the accuracy-precision

curve (Figure 4B) is often practically unavailable due to

unknown true parameters values, challenging the modeling of

prior precision. An alternative would be to use a precision

based temporal scheduling mechanism to alternate between

exploration and exploitation by means of a varying Pθ (similar

to Figure 10) during learning, such that system identification

is neither biased nor over exposed to sensory measurements.

In Figure 5A, we showed how noise levels influence estimation

accuracy, and how biasing the robot by modeling Pθ can be

beneficial for highly noisy environments. A precision based

temporal scheduling mechanism by means of a varying Pθ could

provide a balanced solution between a biased robot (that exploits

its model) and an exploratory one.

Furthermore, temporal scheduling, in the same way that

eye saccades are generated, can be adapted for information

gathering applications, such as target search, simultaneous

localization and mapping, environment monitoring, etc. For

instance, introducing precision-modulation scheduling for

solving the IPP, and scheduling perception (map learning) and

action (UAV flight). Precision modulation will switch between

action and perception: when the precision is high, perception

occurs (c.f., visual sampling), and when the precision is low,

action occurs (c.f., eye movements). This switch, which is often

implemented in the robotics literature using a budget for flight

time, will be now dictated by precision dynamics.

In short, we have sketched the basis for a future realization

of precision-based active perception, where the robot computes

the actions to minimize the expected uncertainty. While most

attentional mechanisms in robotics are limited to providing

a “saliency” map highlighting the most relevant features, our

attention mechanism proposes a general scheduling mechanism

with action in the loopwith perception, both driven by precision.

5. Concluding remarks

We have considered attention and salience as two distinct

processes that rest upon oscillatory precision control processes.

Accordingly, they require particular temporal considerations:

attention to reliably estimate latent states from current sensory

data and salience for uncertainty reduction regarding future

data samples. This formulation addresses visual search from a

first principles (Bayesian) account of how these mechanisms

might manifest—and the circular causality that undergirds them

via a rhythmic theta-coupling. Crucially, we have revisited the

definition of salience from the visual neurosciences; where it is

read as Bayesian surprise (i.e., the Kullback Leibler divergence

between prior and posterior beliefs). We took this one step

further and defined salience as the expected Bayesian surprise

(i.e., epistemic value) of a particular action (e.g., sampling

this set of data) (Friston et al., 2017b; Sajid et al., 2021a).

Formulating salience as the expected divergence renders it

the mutual information under a particular action (or action

trajectory) (Friston et al., 2021),—and highlights its role in

encoding working memory (Parr and Friston, 2017b). For

brevity, our narrative was centered around visual attention and

its realization via eye movements. However, this model does

not strictly need to be limited to visual information processing,

because it addresses sensorimotor and auditory processing in

general. This means it explains how action and perception can

be coupled in other sensory modalities. For instance, Tomassini

et al. (2017) showed that visual information is coupled with

finger movements at a theta rhythm.

The point of contact with the robotics use of salience

emerges because the co-variation between a particular

parameterisation and the inputs is a measure of the mutual

information between the data and its estimated causes. In

this sense, both definitions of salience reflect the mutual

information—or information about a particular representation

of a (latent) cause—afforded by an observation or consequence.

However, our formulation is more sophisticated. Briefly,

because it is an explicit measure of the reduction in uncertainty

(i.e., mutual information) associated with a particular action

(i.e., active sampling) and specifies where to sample data next,

given current Bayesian beliefs. These processes (attention and

salience) are a consequence of precision of beliefs over distinct

model parameters. Explicitly, attention contends with precision

over the causes of (current) outcomes and salience contends

with beliefs about the data that has to be acquired and precision

over beliefs about actions that dictate it. Since both processes

can be linked via precision manipulation, the crucial thing is

the precision that differentiates whether the agent acquires new

information (under high precision) or resolves uncertainty by

moving (low precision).

The focus of this work has been to illustrate the importance

of optimizing precision at various places in generative models

used for data assimilation, system identification and active

sensing. A key point—implicit in these demonstrations - rests

upon the mean field approximation used in all applications.

Crucially, this means that getting the precision right matters,

because updating posterior estimates of states, parameters and

precisions all depend upon each other. This may be particularly

prescient for making the most sense of samples that maximizes

information gain. In other words, although attention and

salience are separable optimization processes, they depend upon

each other during active sensing. This was the focus of our final

numerical studies of action planning.

To face-validate our formulation, we evaluated precision-

modulated attentional processes in the robotic domain.

We presented numerical examples to show how precision

manipulation underwrites accurate state and noise estimation

(e.g., selecting relevant information), as well as allowing

system identification (e.g., learning unknown parameters of the

dynamics). We also showed how one can use precision-based

optimization to solve interesting problems; like the informative
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path planning in search and rescue scenarios. Thus, in contrast

to previous uses of attention in robotics, we placed attention

and saliency as integral processes for efficient gathering and

processing of sensory information. Accordingly, ‘attention’ is

not only about filtering the current flow of information from

the sensors but performing those actions that minimize expected

uncertainty. Still, the full potential of our proposal has yet to

be realized, as the precision-based attention should be able to

account for prior preferences beyond the IPP problem (e.g.,

localizing people using UAVs). Finally, we briefly considered

the realization of temporal scheduling for information gathering

tasks, opening up interesting lines of research to provide robots

with biologically plausible attention.
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