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Despite the importance of usability in human-machine interaction (HMI), most commonly

used devices are not usable by all potential users. In particular, users with low or null

technological experience, or with special needs, require carefully designed systems

and easy-to-use interfaces supporting recognition over recall. To this purpose, Natural

User Interfaces (NUIs) represent an effective strategy as the user’s learning is facilitated

by features of the interface that mimic the human “natural” sensorimotor embodied

interactions with the environment. This paper compares the usability of a new NUI (based

on an eye-tracker and hand gesture recognition) with a traditional interface (keyboard)

for the distal control of a simulated drone flying in a virtual environment. The whole

interface relies on “dAIsy”, a new software allowing the flexible use of different input

devices and the control of different robotic platforms. The 59 users involved in the

study were required to complete two tasks with each interface, while their performance

was recorded: (a) exploration: detecting trees embedded in an urban environment; (b)

accuracy: guiding the drone as accurately and fast as possible along a predefined

track. Then they were administered questionnaires regarding the user’s background, the

perceived embodiment of the device, and the perceived quality of the virtual experience

while either using the NUI or the traditional interface. The results appear controversial and

call for further investigation: (a) contrary to our hypothesis, the specific NUI used led to

lower performance than the traditional interface; (b) however, the NUI was evaluated as

more natural and embodied. The final part of the paper discusses the possible causes

underlying these results that suggest possible future improvements of the NUI.

Keywords: human-drone interface, human-machine interface, flexible software dAIsy, human performance,

exploration and accuracy tasks, embodiment and virtual experience questionnaires

INTRODUCTION

The best technology is the one that cannot be seen because it is so simple to use that it becomes
“invisible” (Norman, 1998). The design and implementation of Natural User Interfaces, or NUIs, is
nurtured by technologies intended to replace more traditional GUIs (Graphical User Interfaces),
which in turn previously replaced CLI (Command Line Interfaces). One of the pioneering
researchers and visionary inventors in this field was Steve Mann, who in the 1990s conceived and
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developed examples of natural interaction with computers, or
“digital agents”, referring to these as “natural user interfaces”.
In Mann’s view, these are implemented by wearable computing
(Mann, 1998). However, in the HCI community the expression
has passed to indicate what Turk (2001) defines as “perceptual
interfaces”, whose aim is “to make human-computer interaction
more like how people interact with each other and with the world.”
As the word itself suggests, NUIs are closer to people’s common
ways to communicate and interact with the environment
inasmuch they entail actions that come naturally to human users.
The user does not act via artificial communication devices such as
the keyboard ormouse but rather communicates directly through
body expressions, such as voice, gestures, gaze, and behavior
(Rautaray and Agrawal, 2015). It is important to underline that
the term “natural” is used to describe a property of the technology
that is external to the product itself: thus, the “natural” element
of a NUI does not refer to the interface itself, but to the way users
interact and perceive it (Norman, 1988). Of course, the interface
technology is intended to support such interaction styles. The
main objective of the introduction of NUIs is to facilitate
communication between humans and machines and improve
technology usability (Rauterberg, 1999). Being based on the users’
native capabilities, NUIs require little or no prior knowledge
and learning to be used. By design, they imply that recognition
is privileged with respect to recall for triggering actions and
detecting their effects. Regarding the complex and sometimes
controversial relationships between recognition and recall, the
interested readers may refer to the experiments in Hanawalt
and Tarr (1961) and to the usability-related considerations in
Hoyer and Brown (1990). The design of NUIs gives the user the
feeling of immediate and continuous success, while interaction
is felt as easy and intuitive because it is based on reality [RBI—
Reality-Based (Wigdor and Wixon, 2011)]. In addition, NUIs
tend to become invisible, and this takes us to the paradigm
of Embodied User Interfaces. In this respect, the seminal work
in Fishkin et al. (1998) presents and defines this paradigm
together with a set of design principles to guide design. The
technology at that time somehow limited the feasibility of the
most advanced embodied solutions. This has changed with the
spread of increasingly sophisticated and affordable devices in the
customer market. Nowadays, these allow amazingly immersive
virtual reality interfaces (Serra et al., 2020). Embodiment can be
considered as one of the desirable features of a NUI.

The research and design of suitable interfaces for these
tools, which are usable and affordable by everyone, could
have substantial effects on the quality of life of people in
different contexts of everyday life (Turunen et al., 2009). Being
intrinsically multimodal, NUIs also have great potential in
the field of assistive technology for their enhanced usability
and potential to overcome physical boundaries. An example
of a completely voice-driven dictation prototype can be found
in De Marsico and Mattei (2021) where the sight-impaired
user dictates as it would do with a human secretary, without
any need to acquire visual awareness of the position in
the text. Apart from “serious” applications, multimodality
and natural interaction also play a relevant role in the
amusement field.

The opportunities for interaction between humans and drones
are increasing and NUIs have strong potential for drone control.
Several studies in the literature report the use of natural interfaces
to pilot drones. Among the different ways of interaction, we
find gestures. A summary of recent research is reported in the
next section.

A key characteristic of the device tested here “embodiment
level”. To clarify what this is, it is worth briefly referring to
the current cognitive science and neuroscience literature on
this topic. With the term “embodiment”, we refer to the sense
of one’s body, a topic which has been the object of many
investigations in recent years (Longo et al., 2008). Studies
have highlighted how the experience of possessing a body is
crucial for our sense of conscious self (Seth and Tsakiris, 2018).
These show that we ascribe relevance to changing perceptual
experiences thanks to their relationship with our subjective
bodily experience. We ascribe perceptions and sensations to
ourselves in virtue of the capability to distinguish our body
from the body of others (Aglioti and Candidi, 2011). In
representing our body, we integrate inputs of different nature
(visual, tactile, and proprioceptive) to maintain multisensory
coherence. Importantly, our sense of body is not static but can
change. Various experimental studies using illusion paradigms
with multisensory manipulations have investigated to what
extent the body sense is malleable and demonstrated that it
could be stretched and extended (Maravita and Iriki, 2004;
Borghi and Cimatti, 2010; Borghi et al., 2013; Scorolli et al.,
2016). An example is represented by effects such as the so-
called facial enhancement effect. Participants observe someone
else’s face being touched, while receiving tactile stimulation on
their own face; this increases the feeling of similarity with the
other, blurring the self-other distinction (Tajadura-Jiménez et al.,
2012; Fini et al., 2013). Crucially for the present work, influential
studies have also shown that the sense of body ownership goes
beyond the actual possession of body parts. Much evidence has
been collected with the rubber hand illusion (RHI) (Botvinick
and Cohen, 1998), in which participants embody a fake hand,
provided that it is located where their own hand should be,
and it is touched synchronously with their hand. The illusion’s
strength decreases with a wooden hand or when the hand is
presented in a biomechanically implausible posture. Instead, the
illusion is maintained when the hand has a different skin color
and is enlarged, thus showing that the perceptual similarity to
the participant’s hand is not essential (for a review, see Ratcliffe
and Newport, 2017). The discovery that external objects can be
embodied and considered as extensions of our own body has
had a variety of applications. In our study, testing to what extent
the device increments the sense of embodiment for the user is
crucial since a higher embodiment might lead to perceiving the
interface’s use as more natural and smooth.

This work investigates if and how NUIs could improve
users’ performance and give a greater sense of easy embodied
use with respect to more standard interfaces allowing to
remotely control a drone. The particular NUIs we use for this
purpose are based on a system formed by an eye-tracking
device and a gesture recognition system (Natural interface, also
indicated in the following as “N”). This NUI is compared
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to a traditional keyboard interface (Traditional interface, also
indicated with “T”). These two interfaces are compared as
employed to control a simulated flying drone to perform
two tasks: an exploration task (counting trees hidden in an
urban environment) and an accuracy task (following a track
as accurately and fast as possible) in virtual reality scenarios.
The two interfaces were compared using a within-participants
experimental design, where all participants took part in every
condition and answered the related administered questionnaires.
These questionnaires consider the user’s background and assess
the perceived embodiment and the perceived quality of the virtual
experience in both conditions. In particular, the experiments
aimed at testing three hypotheses: (1) Performance: the use of
the natural interface to control the drone gives the user better
control over the device and so leads to a better performance
with respect to the traditional interface; (2) Embodiment: the
use of the natural interface to control the drone gives the user
a higher sense of embodiment with respect to the traditional
interface; (3) Correlation: performance and level of embodiment
are positively correlated.

The rest of the paper is organized as follows. The Section
Related Work on Traditional and Natural Interaction-Based
Drone Control and Its Evaluation summarizes both different
classes of approaches to remote drone control and the most
popular evaluation tools. The Section Methods presents a new
software platform, called dAIsy, that can be used to implement
different interfaces by allowing an easy plug of different input,
such as the eye-tracker, the hand-gesture, and the keyboard used
here, and the control of different robot devices, such as the drone
used here. The SectionMethods also introduces the experimental
protocol used to test the interfaces. The Section Results presents
the results. A Section Discussion follows that discusses and
interprets the results. The Section Conclusion summarizes the
results and discusses possible future work based on the results.

RELATED WORK ON TRADITIONAL AND
NATURAL INTERACTION-BASED DRONE
CONTROL AND ITS EVALUATION

In the last years, UAV technology has moved from specialized
applications, e.g., military and advanced video surveillance,
to everyday normal uses such as amusement. Even though
unmanned aerial vehicles (UAVs) do not carry pilots on board,
they still require operators planning and controlling critical
functions. These operators need also to interpret the sensor
information provided by these platforms. This applies to all
classes of systems, from true small planes (the smaller portable
systems nowadays can reach miniaturized dimensions of 5 cm
or less; Tu et al., 2021), as well as to UAV swarms (Campion
et al., 2018). As a consequence of the increasing popularity,
especially in amusement applications, drone control interfaces
have evolved. These initially required highly specialization,
needing operators’ long and accurate training, for example
for real-time reconnaissance and control in critical actions
during military operations. Instead, now we have more friendly
interfaces exploiting natural interactions and enhanced by

improved self-stabilization drone mechanisms. Many recent
works deal with drone communication protocols (Hassija et al.,
2021), with drone detection in military and security-related
contexts (Chiper et al., 2022), or with specific drone applications,
either military or civil (e.g., Roldán-Gómez et al., 2021), or for
entertainment (Kim et al., 2018).

This paper focuses on UAV remote control interface. Drone
driving is a special case of vehicle teleoperation (Fong and
Thorpe, 2001). It is possible to identify four classes of drone
driving equipment: (a) keyboard and mouse; (b) gamepad,
joystick or physical knobs; (c) virtual joystick or haptic/touch-
based; (d) natural interaction-supporting devices. The first
category is typically combined with an element of the second
one and is used in ground control stations for both military
and civil applications (Haque et al., 2017). The second category,
some elements of which have been also compared (Rupp et al.,
2013), is very frequently used in entertainment (Kim et al.,
2018). A customer-level instance of the third category involving
a virtual joystick is provided by Parrot with the AR.FreeFlight 2
application interface (Parrot, 2012); a second instance regards a
prototype of multitouch drone control (Kang et al., 2018). The
fourth and last category of interfaces is the one considered in this
paper (Mirri et al., 2019) and so discussed more extensively.

The control methods of the fourth category rely on perceptual
and motor enabling technologies expanding the taxonomy
proposed by Karam and Schraefel (2005) for gestural interaction
(including video, audio and remote sensing) by relying on human
natural output channels such as gestures, speech, and gaze to
issue commands via video and audio channels. Gesture-based
commands represent the most popular approach. In a study
by Cauchard et al. (2015), users were asked to define their
preferred gestures to control the drone. The results showed
that 90% of the participants stated that they felt in control,
and 95% felt that it was natural to interact with the drone. An
example of drone driving based on hand gestures, captured by
a smartphone communicating with the drone, is presented in
De Marsico and Spagnoli (2019). Further studies investigated
the control of drones by eye-tracking in a real environment
(Alapetite et al., 2012; Yuan et al., 2019), possibly complemented
by keyboard shortcuts (Zhou et al., 2022). Others have instead
used multimodal controls, including voice, gesture, and full-body
control. An example of body-driven control is represented by
an upper body soft exoskeleton for immersive drone control
(Rognon et al., 2018). The most advanced frontier is to use a
brain-computer interface (BCI; Nourmohammadi et al., 2018).
Most of these studies have shown that the use of NUIs for drone
control is feasible and involves a greater sense of communication
between the drone and the human (Fernandez et al., 2016). But,
of course, the most sophisticated control equipment, at least at
present, is devoted to critical applications, for example military
ones, and is far from being widely available on the market.
According to this, the present proposal exploits a multimodal
approach with gaze and gesture tracking which presently could
be widely employed in customer-level devices.

Regarding system evaluation, it is necessary to distinguish
pure task execution accuracy from user’s satisfaction. Regarding
the pure driving performance, popular measures involve
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measures of the distance between the drone center and waypoints
set along the ideal trajectory to follow (Cherpillod et al., 2019).
Performance per participant is for example computed as the root
mean square (RMS) of this distance averaged over the waypoints
of a task. User-centered design issues are discussed by Mouloua
et al. (2003). At a more general level, it is interesting to consider
a recent work on the evaluation of an embodied control interface
(Bekta et al., 2021). This work identifies three categories of key
concepts underlying the evaluation, and each category calls for
suitable evaluation tools. The first category is Control, which
includes statements referring to the effects of the control interface
on the controlled system. Related keywords are “usability”,
“control”, “mapping”, “reaction”, and “responsiveness”. In the
cited experiments, participants, feedback on Control is scored
with the results of the System Usability Scale (SUS) questionnaire
(Brooke, 1996). The second category is Task, which regards
the effects of the control interface on the experimental task.
The authors identify as keywords “difficulty”, “attention”,
“concentration”, “stress”, and “training”; they evaluate the
outcome in terms of performance measures including the
time required by the task, the task execution accuracy, and
the NASA Task Load Index (TLX) questionnaire (Hart and
Staveland, 1988). The last category is User, which is related to
the effect of the control interface on user experience. This last
category is the one closer to a measure of embodiment. The
related keywords are “comfort”, “intuitiveness”, “naturalness”,
“experience”, “nausea”, “sickness”, “enjoyment”, “presence”, and
“involvement”. The authors measure this category using the
Presence Questionnaire (PQ; Witmer and Singer, 1998), the
Simulator Sickness Questionnaire (Kennedy et al., 1993), and
body sway measurements. The latter two are better suited for
fully immersive applications, like simulators, not considered
here. The detailed consideration of the cited study highlights
some basic points related to the evaluation of prototypes
entailing embodied control, either using fully immersive setups
or natural interaction: (a) it is necessary to consider different
complementary aspects that relate to both the specific task
performance and the user comfort; (b) the different nature of the
performance/usability measures suggest using the composition
of specifically designed evaluation tools in a kind of plug & play
strategy; (c) traditional questionnaires employed in usability and
user experience evaluations can be combined to assess different
aspects in complex applications. The evaluation of the presented
proposal stems from these considerations.

METHODS

dAIsy
The software platform created to implement both the NUI
and the traditional interface is called “dAIsy—Device Alternative
Interaction System’’. dAIsy is based on a multithreaded software
written in Python that allows several commands based on
different input devices to be executed simultaneously on the same
controlled device. dAIsy consists of several modules that interact
with each other, in particular:

• Controller: the module coordinating all the other components
described below.

FIGURE 1 | A Block diagram illustrating the functioning and main components

of the dAIsy software.

• Device: this module represents the controlled device (the
drone here or another robot) that performs actions in
the environment.

• View: this module shows on a monitor the video streamed by
the controlled device, recorded through its onboard camera
(e.g., the camera on the drone, as here, or of another
controlled robot).

• Listener: a module representing an interface device (here
the eye tracker, hand-gesture recognition, keyboard) which
“listens” for the user’s inputs; one ormore listeners can be used.

• Mapper: the module that maps the user input to the
corresponding actions to be performed by the device
(the mapping changes according to the chosen listeners
and devices).

• Detector: a module that detects and locates the objects of
interest in the scene based on computer vision techniques; this
module has not been used in the experiments illustrated here.

One of the key features of dAIsy is flexibility. In particular, the
connection of new input and controlled devices is based on
the modification of a configuration file. Figure 1 presents the
interactions among the system’s components. Each listener is
able to trigger commands to the device through the Controller
module. As described in the next section, each Listener checks
which command to execute based on the event triggered, by using
the Mapper module. The Controller periodically takes new video
frames from the device (this is the reason for the arrow from the
Device to the Controller in the figure) and updates the View. The
Detector module is used each time a new frame is taken from the
drone by the Controller.

All modules can be easily modified and replaced. Three
listeners were used in the study: Keyboard Listener, Gaze Listener,
and Hand Listener. In particular, condition N used all three
Listeners, whereas condition T only the Keyboard Listener. In the
following paragraphs, the Device and Listeners implementations
are described more in depth.

Mapper
The Mapper module is used to logically separate the commands,
specific to the Device, from the events, specific to the Listeners.
Each event is mapped to a command id, which is interpreted on
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the Device side. For example, the event KEY_T (pressing the key
T on the keyboard) has the command id 0, interpreted by the
drone as “take off”. The event VOICE_TAKE_OFF (associated
with the Voice Listener) has the same command id 0, so that
both the Listeners can be used to take off the drone. In this
way the Listeners have only to manage their events without
thinking about the effects and, if needed, the dAIsy user can
choose to associate the VOICE_TAKE_OFF event with a different
command by simply changing the command id.

Drone Device
Nowadays, several companies are developing and selling drones
making available an SDK (Software Development Kit) for
commercial and research purposes. For our purposes, the most
suitable library turned out to be the Olympe SDK (Olympe,
2022, https://developer.parrot.com/docs/olympe), developed by
Parrot. The Olympe library, written in Python, easily allows
establishing a connection with the drone, getting telemetric
information and sending the piloting commands. The Device
abstraction made available by dAIsy allows mapping the inputs
obtained by the interfaces to coherent values that can be sent as
drone command parameters. Moreover, the abstraction allows
getting each frame from the device and sending it to the
monitor. Our experiments used a simulated version of the real
Parrot drone, which was connected to the computer through
an IP address. The same kind of communication is defined
for the real drone and dAIsy directly supports it: this switch
requires only to change the configuration parameter “device”
from “drone.SimulatedDrone” to “drone.PhysicalDrone”. The
commands are sent to the drone by using the function
piloting_pcmd, provided by the Olympe library, at a rate of
20Hz. The function arguments are roll, pitch, yaw angles and gaz
(throttle), expressed as a signed percentage, thus assuming values
in [−100, 100].

Keyboard Listener
The implemented Keyboard Listener is based on the pynput
library. The library allows detecting an event when a key
is pressed or released. Some keys were associated with the
commands to be issued to the drone, in particular (Figure 2):

• “t”: take-off;

FIGURE 2 | Keyboard keys used to control the drone: in yellow T and L for

take-off and landing; in purple the arrows to direct the drone’s gaze; in green

the WASD keys for movement.

• “l”: landing;
• “arrow up”, “arrow down”: to regulate the actuated pan and tilt

of the camera;
• “arrow left”, “arrow down”: to turn the drone anticlockwise

and clockwise;
• “w”, “a”, “s”, “d”: to move the drone respectively forward,

leftward, backward, and rightward.

Gaze Listener
The Gaze Listener interfaces the system with the user’s gaze by
using a Pupil Core eye-tracker (Pupil Core, 2022, https://pupil-
labs.com/products/core/). This is formed by wearable lensless
goggles equipped with 1 front camera and 2 eye-oriented cameras
(Figure 3). During the experiment, the image captured by the
onboard drone camera is shown on a screen located in front of
the user: in this way, the user can see, through the drone’s camera,
the scene explored by the drone itself. The Listener uses the Pupil
Core open-source eye-tracking library. The library uses state-of-
the-art Computer Vision algorithms for real-time pupil detection
and tracking based on the 2 eye-oriented cameras, while the pupil
positions are mapped to the space (gaze mapping) by involving
the front camera and by using a transfer function (Kassner et al.,
2014). Moreover, each detection message sent by the pupil to our
system contains a “confidence” value ranging in [0, 1], indicating
the confidence about the quality of the detection. We choose to
filter messages with confidence of at least 0.8. The Pupil Core
software performs the detection of the position of the user’s gaze,
and its mapping to a specific point within the image captured by
the Pupil Core front camera and corresponding to the scene that
the user is looking at on the screen. On this basis, the Listener
automatically issues pan-tilt commands to the drone’s camera
and anticlockwise/clockwise rotation commands to the drone so
that the point gazed by the user on the screen image (e.g., an
object) moves to the center of the image observed by the user
on the screen. This mimics what naturally happens to the retinal
image when a human gazes at a certain object.

Before its use, the Pupil Core eye cameras are adjusted so as to
be adapted to the face configuration of the user. After this is done,
an outer green circle and a red dot projected on the center of the
pupil image as reported on a monitoring screen indicate that the
eye is correctly framed by the system (Figure 3).

Once the cameras are correctly adjusted, they need to be
calibrated through a procedure requiring about a minute of
fixation of the user on some landmark dots projected on a white
background in the screen. During the calibration, the user orients
the face toward the screen so that the Pupil Core camera can
see the whole image projected on the screen itself. This allows
the Pupil Core to record the correspondence between the scene
observed by the user (screen image) and the pupils’ position
corresponding to a certain gaze. After these operations, the use
of the Pupil Core to control the drone’s rotation and camera pan-
tilt is simple as it requires the user to just look at any point of
interest on the screen, and the drone will move to look at the same
location so that the fixated point moves toward the center of the
image on the screen.

Once dAIsy software starts, the user can see on the monitor
what the drone is “seeing” through its camera. In addition to
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FIGURE 3 | Left: Pupil Core goggles. 1: front camera; 2 and 3: eye-oriented cameras; 4: cable connecting the goggles to the computer. Right: green framing around

the eye image and red dot on the pupil image indicating that all cameras have been positioned correctly.

the camera frames sent by the drone, dAIsy adds on the corners
four AirTags (Surface Tracking, https://docs.pupil-labs.com/
core/software/pupil-capture/#surface-tracking) that the Pupil
Core goggles use to identify the boundaries of the relevant surface
(i.e., themonitor), so that it canmap the gaze correctly. The result
of the gaze detection, returned by the Pupil Core messages, is a
pair of coordinates (x,y) with values in [0, 1], having [0.5, 0.5] as
the center of the surface. In order to map the goggles’ output to
device command inputs, we implemented a PID (Proportional
Integral Derivative) controller. After controllability tests we
found that values (P = 140, I = 0, D = 0), assigned to the
controller, result in a smooth and natural control of the drone.

It is fundamental that the user maintains the head still in order
to allow the Pupil Core to identify all the four AirTags. If one or
more AirTags are out of sight of the external camera, the goggles
cannot detect the surface on which the gaze should be mapped
and no command is sent to the Device. In addition, when the
gaze detection is inaccurate for any reason (e.g., the user blinks),
no command is sent since the “confidence” of the detection is
filtered, as stated above, at 0.8. The eye-oriented cameras are able
to sample the frames at 200fps with a resolution of 192 x 192
pixels. The front camera is able to sample the frames at 60fps with
a resolution of 720p. Pupil Core is able to compute the gaze with
an accuracy of 0.6 degrees.

Hand Listener
The hand control is based on a custom color-based blob detection
algorithm written in Python, which exploits one of the most used
libraries for computer vision, OpenCV. A webcam is oriented
toward the user’s hand, and the software identifies the hand
itself as the “blob” to consider. In order to improve the process
accuracy, the user wore a blue glove and the blue-color blob was
used by the software as the stimulus to be tracked. At present, the
system’s ability to directly exploit bare hand images was out of the
scope of this work. We plan is to enhance this aspext in future
work. The software identifies the position of the hand within an
imaginary square in the camera field of view, and this is used
to issue commands to the drone. In particular, the commands
control the planar movements of the drone based on the offset of
the hand position (center of the colored blob) with respect to the
central point of the square area (Figure 4). This also allows the

regulation of the speed of the drone’s movement in the desired
direction based on the size of the offset.

The Hand Listener command rate depends on the webcam
hardware specifications, considering that the frame rate is lower
because of the blob detection algorithm. The webcam used
during the experiments has a frame rate of 30fps with a resolution
of 1080p.

Participants
Fifty-nine healthy participants (19 females, 40 males) took part in
the study. The mean age of the participants was 27.3 years (SD=

5.8; range: 18–58 years). People with visual impairments or left-
handed were excluded from the study. The reason for the first
type of exclusion is that visual impairment intrinsically prevents
such users from exploiting the vision-based module. The reason
for the second type of exclusion is merely related to the present
setup, where the camera captures the hand gestures points of
the right hand of the user, and the software module recognizes
right hand configurations. This can be trivially extended in the
future by using two cameras and creating a mirrored version of
the software. However, at the moment the aim of the study was
just to compare N and T interfaces.

Participation was voluntary, and before running the
experiment each participant had to sign an informed consent
form. The form and the experimental protocol was approved by
the Ethics Committee of the Department of Dynamic and Clinical
Psychology, and Health Studies of Sapienza University of Rome.

Using a within-participants experimental design, participants
performed the two tasks (Exploration, Accuracy), in the two
conditions (traditional “T”, natural “N”). The sequence of the
tasks was always the same. Instead, the order of the conditions
was alternated: 30 participants experienced the T condition in the
first session and the N condition in the second session, whereas
29 participants first experienced the N condition and then the
T condition.

Experimental Setup
The participant was set with the back against a wall (Figure 5). A
46-inch screen showing the streaming images seen by the drone
was located 120 cm away from the participant who could see
them. The keyboard of the traditional interface was located on a
table in front of the participant. The webcam for the hand-gesture
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FIGURE 4 | Hand Listener: commands issued to the drone via hand gestures. The offset of the hand with respect to the center indicates the planar direction toward

which the drone has to move. The five hand position examples in the figure indicate that the drone should move respectively: forward (1), backward (2), rightward (3),

leftward (4), and forward-leftward (5).

FIGURE 5 | Setup of the experiment involving: (1) Experimenter’s computer

used to control the whole system through dAIsy; (2) Screen where the

streaming images seen by the drone are shown to the participant; (3)

Experiment participant wearing the eye-tracking Pupil Core goggles for gaze

identification; (4) container used to host the fragile Pupil Core goggles during

intervals between different experimental sessions; (5) Webcam to detect hand

gesture; (6) Hand with glove for gesture recognition; (7) White background to

facilitate hand gesture recognition; (8) Keyboard of the traditional interface.

recognition NUI was located in front of the participant’s right
hand, and a white panel covering the whole view of the webcam
was located on the wall behind the participant for enhancing
color contrast. The Pupil Core goggles were worn by the user as
normal eyeglasses. The experimenter sat on the left side of the
table and operated the computer controlling the whole system
through dAIsy.

Virtual Environment and Tasks
Here we used dAIsy to control the Anafi Parrot drone
(Anafi Parrot, https://www.parrot.com/en/drones/anafi)
(Figure 6) as a device. This drone comes with the Parrot
Sphinx simulator system (version 1.9) that we used to create the
virtual environment considered for the experiments (Figure 6).
In the virtual environment, the view was in first person as the
users explored the scene through the drone’s camera. The video

shown to the users reached a frame rate of a common video, near
30 FPS (frames per second).

In the Exploration test, participants explored a straight path
flanked by houses. The environment consisted of six houses
and four trees (Figure 7). The task required the participants to
drive the drone forward along the path and control the drone’s
gaze to identify the possible presence of trees between the alleys
separating the houses. In particular, the participants had to take
off, move forward until they reached the first alley, direct their
gaze to it to identify the possible presence of a tree, redirect the
gaze toward the straight path, and repeat these operations with all
the alleys encountered along the way. Once they had inspected all
the alleys and reached the end of the route, they could land. The
system calculated the time from take-off to landing of the drone
and took a measure of performance.

In the Accuracy task, the environment involved a sequence
of beacons located on the floor to form a track (Figure 8).
The participants had to follow the track as fast and precisely
as possible. The average distance of the drone from the closer
beacon (accuracy), and the time taken to reach the end of the
track (efficiency), were used as a measure of performance.

The closest position of the drone to a certain beacon was used
to calculate their distance:

d(beacon, drone)

= min(x,y)drone

√

(xbeacon − xdrone)2 + (ybeacon − ydrone)2

Then, the average distance of the drone from the track is
computed as the average of the distances of the drone from the
set B of beacons on the track

µd =
∑

beaconǫB

d(beacon, drone)

|B|

where B is the set of considered beacons.

Questionnaires
A background survey was administered at the beginning
of the experiment, including both demographic questions
and questions related to previous relevant experiences. This
questionnaire was intended to identify possible correlations
between the participants’ traits and previous experiences and the
performance and experience in the experiments. Two additional
questionnaires were administered after each session of the
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FIGURE 6 | Left: Anafi Parrot drone. Right: a snapshot of the rendering of the Parrot Sphinx simulator used in the experiments.

FIGURE 7 | Exploration task. Left: top view of the simulated environment used in the test allowing the experimenters to visualize the whole set-up off-line. Right:

first-person view seen by the user.

FIGURE 8 | Accuracy task. Left: top view of the simulated environment used in the test allowing the experimenters to visualize the whole set-up off-line. Right:

first-person view seen by the user.

experiment: one for the perceived embodiment of the device and
one concerning the quality of the virtual experience.

The first questionnaire on perceived embodiment was
composed of 20 statements taken from previous Embodied
questionnaires (Casper et al., 2015; Roth and Latoschik, 2020;
Peck and Gonzalez-Franco, 2021) or specifically adapted or
created for the current experiment. Participants were asked to
assess how much they agreed with the statements on a 10-point
Likert scale (1: completely disagree; 10: completely agree). The

aim of the questionnaire was to investigate various aspects of
the sense of embodiment intended as the perception of one’s
physical body while interacting with virtual reality through the
NUI or traditional interface. The statements in particular aimed
at assessing these three aspects of embodiment: (1) Self-location:
perception and localization of somatic stimuli, statements 6, 7,
9, 14, 15, 16, 20; (2) Body-ownership: awareness of ownership of
the body, statements 8, 11, 12, 13, 15, 16, 17, 18, 19; (3) Agency:
sense of control over movements, statements 2, 3, 4, 5, 10.
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TABLE 1 | Items of the embodiment questionnaire used in this study.

1 I was piloting the drone

2 The drone responded to my commands

3 The drone moved exactly as I wanted it to

4 I felt that I was responsible for the movements I saw

5 The drone was moving on its own

6 I felt like I was in the virtual environment

7 It was as if my eyes were the eyes of the drone

8 I felt like the drone

9 I had the feeling that I was moving in sync with the drone

10 It felt like my hands were in control of the drone.

11 I felt like I was outside my body

12 I felt like I had another body

13 I had the feeling that the drone’s movements were affecting my movements

14 During the take-off of the drone I felt a sense of elevation

15 I felt like I was floating like a drone

16 I felt a sense of lowering during the drone’s landing

17 I felt that I was, in some way, connected to the drone

18 I had the feeling that the drone was part of me

19 I had the feeling that the drone and I were the same thing

20 I had the feeling that I was in the drone’s place

TABLE 2 | Items of the SUXES Virtual experience questionnaire used in this study.

1 Is fast

2 Is pleasant

3 Is simple

4 Has no error

5 Is easy to learn

6 Is natural

7 Is useful

8 I would like to use it again

The items of the questionnaire on embodiment are reported in
Table 1.

The Virtual experience questionnaire was based on the SUXES
evaluation method (Turunen et al., 2009). Participants rated 8
features of the system on a 7-point Likert scale (1: completely
disagree; 7 completely agree). The target of the questionnaire was
different for the two sessions of the experiment: the system and
keyboard were assessed after condition T, whereas the system,
eye-tracker, and hand-control were assessed after the N session.
The 8 items evaluated by the Virtual experience questionnaire are
reported in Table 2.

Procedures
The whole experiment lasted about 1 hour. The experiment
was organized into four phases (Figure 9), the succession of
which depended on the order of the two conditions/tasks. To
facilitate the explanation of the structure of the experiment to the
users, they were asked to watch a series of introductory slides,
and an example video of the tasks. Once the basic concepts
were understood, the questionnaire on previous experience was
administered, and an identification code was assigned to the

participant to guarantee anonymity. The instructions for the
commands and execution of the task were then shown depending
on the first task to face.

The N condition required additional settings. For the hand-
control, participants were asked to wear the light blue glove with
their right hand. The webcam’s view was shown to allow the
participant to understand the field of action within which they
could move their hand to issue commands to the drone. The
Pupil Core goggles were then worn by the participant, and the
experimenter tuned the position and direction of the internal
cameras to correctly capture the eye gaze. The participant then
assumed a comfortable position to view the screen through the
front camera of the Pupil Core. Depending on the height of the
user, thicknesses were placed under the screen to avoid unnatural
postures. Then the calibration procedure was carried out. To this
purpose, while keeping the head still, the participant directed the
gaze to seven target stimuli appearing in sequence on the screen.

For both conditions, after reading the instructions of the
commands and of the first task (and performing the necessary
procedures, in particular in condition N) the participant
underwent a training phase to allow the familiarization with the
interface and the drone commands. In the virtual environment of
the first task, the participant was free to move and test the system
for 2min in the T condition and 3min in the N condition; in
particular, in the latter condition the participant was supported
by the experimenter who gave indications to understand in detail
the commands issued with the Pupil Core and those with the
hand gestures. At the end of the training, the actual experimental
phase was carried out on the first task, and this was recorded.
After a short break, the instructions for the second task were
shown, which was then carried out and recorded. The phase
two of the experiment ended with the administration of the two
questionnaires (virtual experience and embodied cognition). In
phase three, the procedure was repeated, the participant read
the instructions of the next condition, performed the respective
training and tasks, and then answered the two questionnaires.

Data Analysis
We carried out data analysis using the statistical open-source
software “R”, version 3.6.3. We considered two performance
metrics: (a) time of execution in both tasks; (b) accuracy
(average distance from the closer beacon) for the second task; (c)
frequency distributions for the two tasks. We performed Kernel
Density Estimation (KDE) to compare the frequency distribution
over the two conditions. To assess the statistical significance
of the results we used t-tests for paired samples. To detect
possible correlations with the characteristics of the participants,
obtained from the questionnaire on previous experiences, the
participants belonging to the first quartile for each condition
were also analyzed separately. The same was done with the
scores obtained through the “Embodied cognition” and “Virtual
experience” questionnaires.

RESULTS

Overall, the results confirmed only one out of three hypotheses.
In particular, the Keyboard traditional control proved to lead
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FIGURE 9 | The four phases of the experiment. The order of the conditions T and N (and the related instructions preceding them) were differentiated for the two

groups of participants.

to a higher performance than the NUI, thus falsifying our first
hypothesis. Instead, in agreement with the second hypothesis,
the degree of embodied cognition assessed by the questionnaires
showed a higher score with the NUI. Finally, the analyses based
on the first quartile of the questionnaires found no relevant
correlations in terms of either sample characteristics or level of
embodiment, so disconfirming the third hypothesis.

Previous Experience of Participants
Data from the questionnaire showed that 83.1% of participants
had never used a drone before. The sample was thus divided
into 61% who had had previous experience with video games
and 39% with little or no experience. Familiarity with the use
of keyboards was reported by 47.5% of the participants. None of
the participants had had previous experience with NUIs similar
to the one employed in the test. Experience in video games and
keyboard proved to lead to a better performance in condition T;
no correlation was found with results in N. Experience gap was
not related to a better performance with natural interfaces. As
shown in the results both groups, independently of experience,
had a higher performance in condition T.

Performance
Figure 10, related to the performance (completion time) in the
Exploration, shows that the time employed by the participants to
complete the path was longer for the N condition (red) than for
the T condition (blue) with a mean difference of 61.73 seconds (t
=−8.04, ds= 7.67, p < 0.000).

Figure 11, referring to the performance (completion time)
and accuracy (average distance from the closest beacon) related
to the Accuracy task, shows the frequency distribution relating
to such metrics. The results show an average difference of 23.68 s
in the execution time (t = −4.27, ds = 5.54, p < 0.000) and an
average distance of 0.34m to the beacons (t = −2.80, ds = 0.12,
p < 0.001).

The alternation between the two possible orders of the two
experiments was done to avoid affecting the results. Afterwards,
an analysis was carried out to exclude the influence of one type
of condition over the second one. In particular, we compared
the two possible orders of the experiments with a t-test that
showed no significant difference in mean performance (t = 0,84,

FIGURE 10 | Exploration task 1 in the two conditions N and T. Frequency

distribution of the time taken to complete the task in the two conditions N and

T. Vertical lines indicate the first, second and third quartiles (25%, 50%, 75%).

P > 0.05). The order of the experiments did not significantly
affect the outcome possibly because there was not a significant
learning effect of the knowledge acquired with one experiment
over the other.

Virtual Experience
Figure 12 shows the results of the SUXES scores for the two
conditions, indicating no relevant differences. The T system
obtained an average rating of 4.70 (sd = 1.77); the N system
obtained an average rating of 5.29 (sd = 1.49). The T condition
scored slightly higher than N for items 3 and 5 (“is simple”;
“is easy to learn”), thus suggesting that the use of the keyboard
is easier.

Figure 13 instead shows the SUXES scores for the three
different interfaces or interface components: the keyboard,
the eye-tracking control, and the hand-gesture control. All of
them were analyzed separately with separete SUXES. Keyboard
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FIGURE 11 | Accuracy task 2 in the two conditions N and T. Top:

performance measured as task execution time. Bottom: accuracy as average

distance from the beacons. Vertical lines indicate the first, second and third

quartiles (25, 50, 75%).

obtained an average rating of 4.57 (sd = 1.79); eye-tracking
control obtained an average rating of 5.83 (sd = 1.28); hand
control obtained an average rating of 5.11 (sd= 1.50).

The results show that the eye control resulted to be better than
the others in each aspect.

Embodied Cognition
Figure 14 reports a summary of the answers to the questionnaire
on Embodied cognition. The results show a higher score for
the N condition than for the T condition. The answers that
differ most in the two conditions are those related to the sense
of “self-location” (items: 7-9-15-20) and “ownership” (items:
8-13-15-19).

DISCUSSION

The results obtained, although partially in disagreement with our
initial hypotheses, reveal interesting effects of the two interfaces.
Despite only half of the participants being familiar with the
keyboard, this proved to be a more efficient interface than
the others in terms of the user’s performance. Several aspects
could explain this result. First, regardless of experience, everyone
knows how to use a keyboard. Conversely, the use of NUI,
although natural, requires learning as it is something new to
the participants, as suggested by the SUXES questionnaire items
related to learning. In this respect, the difference of performance
of N versus T that decreases substantially by passing from the
first Exploration task to the second Accuracy task (it is worth
reminding that the two tasks were always presented in the same
order with all participants) suggests that learning can improve the
usability and performance of the NUI interface. This effect could
be however also due to a difference in the two tasks. For instance,
the NUI seems better suited for the Accuracy task where the
participants have to dynamically control the drone flying along
a predefined track as fast and accurately as possible, a challenge
for which the eye-tracking and hand-gesture interfaces might
be particularly well suited. Further investigations are needed to
ascertain these two possibilities.

Another possible explanation of the lower performance of
the NUI with respect to the traditional interface is suggested
by the participants’ Virtual-experience ratings related to the two
interfaces. Indeed, the results show that the eye-tracker control
was rated as the best, but it was combined with the hand-gesture
control that received a lower score and this could have overall
lowered the performance. Future work could thus investigate
possible alternatives to the gesture control.

Considering the results of the Embodiment questionnaire,
and specifically in relation to the “Sense of agency”, the NUI
did not perform well as expected. The discretization of actions
(button clicked/not clicked) via the keyboard is different from
the continuous command given by the eyes and the hand,
which is extremely sensitive. In particular, some participants may
have encountered problems maintaining a fixed point on the
screen due to involuntary movements and saccades. Moreover,
hand control requires high levels of proprioception to perform
an accurate control, while participants often found themselves
giving unintentional commands as they were unaware of the
exact position of their hand in relation to the webcam lens.

These aspects led us to reconsider the actual naturalness
of the commands used. Keeping the head constantly still and
intentionally directing the gaze without error is not a natural
behavior in humans. For example, instinctively looking at a
point to the right side of the visual field involves moving the
head to that side and not simply directing the gaze to it.
Moreover, the position used to “drive” the drone through the
hand-gesture control is something new to which participants
were not accustomed. Considering that cars are common tools
for humans, they perceive as “natural” the control of a moving
devices through a steering wheel, so the hand-gesture control
used in the experiment could appear non natural.
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FIGURE 12 | System-related answers of the SUXES questionnaire in the two conditions N and T.

FIGURE 13 | Comparison of the average scores for the SUXES questionnaire for the different interfaces, and interface components: keyboard, eye-control, hand

control.
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FIGURE 14 | Average response scores to the Embodied Cognition questionnaire.

In summary, there are several factors that might have
contributed to higher performance of the traditional interface
versus theNUI: (a) prior knowledge of the keyboard, regardless of
familiarity; (b) association of an efficient interface (eye-tracking)
with a less efficient one (hand-control); (c) high sensitivity of the
NUI devices; (d) difference between discrete commands (in T)
and continuous commands (in N); (e) lack of naturalness of some
aspects of the controls used in the condition N.

Overall, the results achieved in the presented experiments
seem to testify that, more than ten years after the Norman’s claim
that “natural interfaces are not natural” (Norman, 2010), and
some critical analysis of the related problems (see for example
Malizia and Bellucci, 2012), much research is still needed to
model and design fully efficient, effective and satisfying NUIs
according to the familiar definition of usability (Bevan et al.,
1991; Bevan, 1995). This calls for taking into account the users,
to create a system adaptable to their technical skills and physical
abilities; the application, to choose the best interaction channels
for each intended task; the available equipment, to take into
account the current limitations and possibly create pluggable
modules to update following future technological advances; and
the environment where the application is deployed, to anticipate
and overcome possible obstacles created by environmental
conditions, as for example light level and noisy background for
gesture recognition.

Limitations and Future Work
The results of the experiments highlight important weaknesses
in the proposed system that prompt various directions for
future investigation. Numerous modifications could optimize the

controls that we started to investigate here and demonstrate a real
advantage of natural interfaces over traditional ones. Regarding
eye control, an improvement might involve the possibility of
moving the head and not only the eyes. Regarding the hand
control, this should more closely reflect the naturalness of
common driving gestures that are experienced by humans.
Moreover, the use of the glove as an intrusive element should be
eliminated. The sensitivity of both controls should be modified
so that unintentional changes are less impairing. Testing the eye-
tracker and hand-gesture devices of the N condition in isolation
could allow the evaluation of their distinct efficiency.

To increase the level of embodiment, it could be useful to
implement sounds coming from the device and to implement
voice control. Another important possibility is that the utility
of the NUIs would manifest more strongly when one has to
control a higher number of degrees of freedom of the drone, for
example the drone flight altitude and the zooming in and out of
the camera. It would also be interesting to test the interfaces when
the participants control real drones in real environments.

In the light of the lower performance found with the
NUI continuous control in comparison to the traditional
interface based on discrete commands, and also based on its
higher embodiment sense, future work might also compare the
two interfaces in different experimental conditions to better
understand if in other conditions NUI leads to a higher
performance. In particular, the NUI might yield a higher
performance when the control becomes more challenging, for
example if the drone is perturbed by random external forces for
example simulating a flight with strong/irregular wind. Indeed
here an embodied natural control might result more automatic
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(vs. deliberative), hence freeing the pilot’s higher level cognitive
functions to facilitate the drone control.

In addition, the continuous nature of the NUI with respect
to the discrete one of the traditional interfaces might facilitate a
fine-tuned control. To test this effect, one might also consider a
third experimental condition where the goal of the pilot is to keep
the drone as stable as possible in a certain area in the face of the
perturbations described above. This would allow one to collect a
very informative score of the continuous/discrete features of the
two interfaces.

A further interesting test could be directed to compare the
two interfaces with two participant groups, one formed by drone
flight expert pilots and a second one by naive participants. This
could give valuable information about the potential utility of the
NUI with respect to the traditional control. In particular, it could
for example reveal that the NUI only benefits the naive group, or
that, more interesting, it benefits both groups.

Finally, testing participants with physical impairments could
be more significant as the success of Assistive Technology is
defined and determined by people’s possibilities, perspectives,
and goals. For example the interfaces proposed here might be
very useful for people with arm and hand limitations that make it
difficult for them to control devices via a keyboard.

CONCLUSIONS

A shift from traditional interfaces toward the so-called Natural
User Interfaces (NUIs) has been predicted for many years.
However, the keyboard is a tool that has been successfully in use
for more than a century. Eradicating such a long-lived tool from
everyday life is not easy and would require a major improvement.
This has in particular been shown in this study, suggesting that
effective NUIs leading to a higher performance than a keyboard-
based interface requires notable advancements. In particular,
traditional interfaces are “artificial” but at the same time very
accurate. Thus, to overcome their performance the usability of
NUIs has to go above a certain threshold that compensates for
such accuracy.

The study highlighted several weaknesses and limitations for
the NUI proposed here that are presumably responsible for
not confirming the initial hypotheses on higher performance
of the employed NUIs with respect to the traditional interface.

Working on that could be the next step. Natural interfaces have
great potential, in particular for Assistive Technologies, but this
study shows that their actual utility depends on the possibility of
achieving a strong naturalness to compete with more traditional
interfaces that are commonly used by humans.
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