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During task execution, the autonomous robots would likely pass through many narrow

corridors along with mobile obstacles in dynamically complex environments. In this case,

the off-line path planning algorithm is rather difficult to be directly implemented to acquire

the available path in real-time. Hence, this article proposes a probabilistic roadmap

algorithm based on the obstacle potential field sampling strategy to tackle the online path

planning, called Obstacle Potential field-Probabilistic Roadmap Method (OP-PRM). The

obstacle potential field is introduced to determine the obstacle area so as to construct

the potential linked roadmap. Then the specific range around the obstacle boundary is

justified as the target sampling area. Based on this obstacle localization, the effectiveness

of the sampling points falling into the narrow corridors can be increased greatly for

feasible roadmap construction. Furthermore, an incremental heuristic D* Lite algorithm

is applied to search the shortest paths between the starting point and the target point

on the roadmap. Simulation experiments demonstrate that the OP-PRM path planning

algorithm can enable robots to search the optimal path fast from the starting point to the

destination and effectively cross narrow corridors in complex dynamic environments.

Keywords: path planning, narrow corridor, obstacle potential field, OP-PRM algorithm, incremental heuristic

search algorithm

1. INTRODUCTION

Trajectory planning refers to searching for available paths from the starting point to the target
point while satisfying the constraints in a complex environment. Recently, trajectory planning for
robots has become a research hotspot (Aggarwal and Kumar, 2020), especially for autonomous task
execution in unknown environments.

The commonly used trajectory planning algorithms include sampling-based Probabilistic
Roadmap (PRM) (Lin and Saripalli, 2017; Patle et al., 2019), Rapidly exploring Random Tree (RRT)
(Zhang et al., 2020) and their variants PRM* (Palmieri et al., 2019), and RRT* (Wang et al., 2020),
search-based A*, D* (Ab Wahab et al., 2020). The typical method to solve the trajectory planning
is to grid the configuration space so as to construct the grid map with the occupied grids and
the free grids, where the adjacent free grids are connected as the feasible target planning space.
A search algorithm, such as A*, is normally applied on this type of map to search the available
paths. However, the limitation of the grid map is that the rotation angle of the robot is discrete
(Kala, 2019).
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The roadmap is a kind of discrete graph contained in
the discontinuous configuration space. After generating the
roadmap, the graph search technology can be used for path
planning, which is related to the shape of the obstacles and the
dimension of the configuration space. The robot path planning
problem can be expressed as finding a path τ [0, 1] → Cfree

from the current starting point S → τ (0) ∈ Cfree to the target
point G → τ (1) ∈ Cfree, where Cfree represents the free area in
the configuration space C, and the obstacle area is represented
as Cobst , C=

(

Cfree ∪ Cobst

)

. In the path planning, the roadmap
R(V ,E) is constructed, where V is the vertex set and E is the edge
set that connects the vertices. The roadmap is usually constructed
offline with a sampling strategy, i.e., random sampling, Halton
points, Gaussian sampling, and obstacle-based sampling (Wang
et al., 2019), while the search algorithm is used to find the path
online when querying (Debnath et al., 2019).

The general sampling strategy is random uniform sampling
to sample points in the Cfree area. Since the volume of Cfree in
a dense obstacle environment takes a small proportion of C,
the generation of effective sampling points in narrow corridors
largely depends on setting a higher limit of sampling area
to reduce the calculation cost. Such representative robot path
planning algorithms include basic PRM and lazyPRM (Bohlin
and Kavraki, 2000), the latter is less likely to generate samples
in narrow corridors. In the obstacle-based sampling strategy
(Amato et al., 1998), a sample qobst is first generated in Cobst ,
and sample qfree is generated in Cfree, while qfree is moved
toward qobst until it crosses the obstacle boundary so as to
generate an effective sample qboundary to be added to the vertex
set. However, narrow corridors take a small region of the
Cfree among Cobst , thus the sample migration method of qfree
moving to qobst does not always increase the effective sampling
points in narrow corridors. Another improved mechanism is
that qobst moves in random directions until it reaches the
obstacle boundary to generate an effective qboundary as a new
sample.

Extensive studies have been carried out via sampling-based
methods to deal with path planning with narrow corridors
in dense obstacle scenarios. Denny and Amatoo (2013) have
proposed a Toggle PRM to introduce sampling in the obstacle
configuration space. However, it is time consuming to maintain
a large number of effective sampling points in both the obstacle
and free spaces, not to mention large storage demand. Tahir
et al. (2018) introduced a new concept of potentially guided
bidirectional trees in the intelligent RRT* algorithm, called PIB-
RRT*, thus greatly improving the convergence rate and memory
utilization.Wang et al. (2020) proposed an optimal path planning
algorithm based on the convolutional neural network, namely
the neural RRT*, which can use the A* algorithm to generate
the training data set consisting of the map information and
the optimal path, gaining the balance between effectiveness and
efficiency. Saha et al. (2005) refined and thinned the robot itself
to indirectly increase the width of the corridor. However, this
method does not pay attention to the sampling technique of the
narrow corridor. Another widely adopted mechanism is to use a
hybrid sampling technique, with a set of samplers, each of which
can generate certain samples. Vonásek et al. (2020) proposed

using multiple samplers simultaneously, and the contribution
of each sampler is determined by the connectivity. With the
same principle, Tsardoulias et al. (2016) divided the configuration
space into various areas using different samplers based on
the obstacle density and connectivity. Kannan et al. (2016)
also used hybrid sampling technology to make the roadmap
generation process conscious of almost all possible isomorphic
path generation.

In addition, strategy can be applied to uniformly sampling
in the obstacles neighborhood (Bera et al., 2014). With the
Gaussian sampling strategy, a sampling point can be generated in
Cobst , while the acquired other sampling point within a specific
distance, is followed by the Gaussian distribution with zero
means (Boor et al., 1999). However, the possibility of generating
samples near obstacles is quite low. As for the bridge test
sampling strategy (Hsu et al., 2003), an invalid sampling point
is first generated in Cobst to connect to another generated invalid
sampling point, where the midpoint can be added in vertex set V
if it falls into the Cfree space. This method is similar to “bridging”
among obstacles to increasing the number of effective sampling
points but with fewer sampling points generation in a narrow
corridor to save more calculation time. The dual roadmap can
generate roadmaps Rfree and Robst in Cfree and Cobst respectively
at the same time (Kala, 2019), which does not limit the width
of narrow corridors but can generate effective sampling points
in any ordinary corridor. At present, there is seldom literature
that investigates real-time path search based on a roadmap. Allen
and Pavone (2019) proposed a new method for kinematic and
dynamic motion planning in a random roadmap containing
static and moving obstacles. However, this method is not suitable
for real-time application and more time is required for path
planning.

Search-based methods are also commonly applied for path
planning on the constructed roadmap (Aine and Likhachev,
2016), as listed in Table 1. Given the known global map of
the static environment, search methods seem less important.
In dynamic environments, however, with unknown or mobile
obstacles, reverse search combined with incremental search is
more effective. For example, D* (Xue et al., 2014) and D*
Lite (Koenig and Likhachev, 2005) are dynamic incremental
algorithms extended from A* (Sudhakara and Ganapathy, 2016;
Le et al., 2018). D* Lite algorithm can dynamically search the
shortest path on the grid map, and use the point distance
generated in the previous iteration to constantly update the
optimal path from the current point to the target point
(Koenig and Likhachev, 2005). They can reuse the previous
searched information to speed up the current search, and its
implementation is fast enough to play an important role in the
real-time planner (Yang et al., 2016; Amarat and Zong, 2019).
Jump Point Search (JPS) algorithm is also extended from A*,
which identifies and selectively expands only certain nodes in a
grid map called jump points (Harabor and Grastien, 2011). JPS
expands the successor nodes based on the strategy of searching
jump points, which makes it have better real-time performance
than A*.

Online path searching based on the sampling roadmap is
an important process. Yuan et al. (2015) proposed a hybrid
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TABLE 1 | Performance comparison of the search algorithms:Dijkstra (Wang et al., 2011), A* (Le et al., 2018), D* (Xue et al., 2014), LPA* (Koenig et al., 2004), and D* Lite

(Koenig and Likhachev, 2005).

Algorithm Search direction Heuristic Incremental Applicable scenarios Practical applications

Dijkstra Forward No No Global known information, static planning. Selection of the shortest route in the

network communication

A* Forward Yes No Global known information, static planning. ApollGames, Robot path planning

D* Backward No Yes Partial known information, dynamically

programmable.

Robot pathfinder, Mars rover path planning

LPA* Forward No Yes Partial known information, assumed

dynamic unknown free space.

Robot path planning

D* Lite Backward Yes Yes Applicable to the mentioned above. Applicable to the mentioned above

sampling strategy composed of bridge test sampling and non-
uniform sampling to increase the number of effective sampling
points in narrow corridors and boundary regions to generate
a roadmap. Then the optimized A* algorithm is applied to
search the path with redundant edges removal. Hrabar (2008)
proposed a combination of the PRM algorithm and D* Lite
for path planning, where a stereo camera embedded in the
robot is used to detect obstacles and dynamically update the
path in unknown configuration space. Khaksar et al. (2019) also
proposed a combination of the D* Lite algorithm and random
roadmap algorithm for path planning in complex terrain.

In general, there is not much work to deal with the issue of
generating effective sampling points in narrow corridors, though
the path planning with sparse obstacles has been extensively
discussed (Qureshi and Ayaz, 2016). Additionally, most search-
based path planning methods consume a lot of memory and
time to find the optimal path, while they are quite sensitive to
the global environment information as well. This article aims
to propose a sampling strategy based on obstacle potential field
to tackle this issue. Considering the potential of the obstacle
configuration space to negotiate with the reactive robot, sampling
is only performed in the obstacle area and its vicinity. Each
sampling point is connected with the nearest vertices, and the
edge intersecting with the obstacle is removed by collision
detection so as to construct a feasible and optimal roadmap. The
contributions of the article are summarized as follows:

1. By introducing the potential field, an effective sampling
strategy is proposed to determine a certain range around the
obstacle boundary as the specific target sampling area. For
each sampling point, an edge connection is made with the
nearest vertices adjacent to each other, while the edges that
intersect with the obstacle are removed. Hence, an effective
roadmap can be constructed with minimum feasible sampling
points.

2. The upper limit of the potential field is proposed to tackle
the mobile obstacles so as to reduce the load of path
replanning and enhance the online path planning efficiency
and adaptability.

3. Combined with the constructed roadmap, an incremental
D* Lite search algorithm is adopted to dynamically search
the collision-free path online, which has higher real-time
performance than that of the traditional A* algorithms.

4. Extensive experiments have been performed to testify to the
effectiveness of the proposed method with the comparison of
the current path planning algorithms.

The remainder of the article is organized as follows. The roadmap
construction for the path planning is explained in Section 2.
Section 3 introduces the proposed path planning algorithm
including potential-based sampling generation and the involved
strategy. In Section 4, the experiments are performed to verify
the effectiveness of the proposed path planning algorithm, and
comparison experiments are also provided with typical sampling-
based algorithms. The conclusion is given in Section 5.

2. ROADMAP CONSTRUCTION
PREPARATION

The roadmap construction is fundamental to available path
searching in the configuration space, while the roadmap method
performs well with light computational cost in robot motion
planning (Lin and Saripalli, 2017), i.e., PRM. Here, for sampling,
only a straight line connection is considered.

Probabilistic Roadmap Method requires traversing all the
queues of the collision twice when constructing the roadmap in
Cfree, where the roadmap construction process is described with
Algorithm 1. First, for each random sampling, it is necessary to
detect whether it falls into Cobst and perform collision detection
for all sampling points (Referring to line 5 in Algorithm 1).
Second, each sampling point in the vertex set V is connected by
a straight line according to a local search algorithm, such as k-
nearest, and all edge queues are traversed to remove the edges that
intersect the obstacle area (Referring to line 12 in Algorithm 1).
Obviously, this kind of roadmap has poor connectivity in narrow
corridors due to its small proportion of the configuration space.
The key to solving this connectivity problem is to generate more
effective sampling points inside the narrow corridors.

It should be mentioned that narrow corridors usually exist
among obstacle configuration spaces, while the smaller the width
of the corridor, the tighter they surround the obstacles. If the
sampling in Cfree is constrained to only sampling in a certain
range around the obstacle area, sampling points could effectively
fall into the narrow corridors between obstacle configuration
spaces. Hence, a sampling strategy is proposed to avoid motion
assumptions and heavy calculation.
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Algorithm 1 | Roadmap Construction Algorithm.

Input: n: the number of points to put in the roadmap; k:
the number of the closest neighbors to examine for each
configuration;

Output: A roadmap R = (V ,E)
1: Initialization V ← ∅,E← ∅
2: while |V| < n do

3: Repeat:
4: q← a random configuration in C
5: Until q is collision-free
6: V ← V ∪

{

q
}

7: end while

8: for all q ∈ V do

9: Nq ← the k closest neighbors of q chosen from V ;
10: for all q′ ← Nq do

11: if
(

q, q′
)

/∈ E and 1
(

q, q′
)

/∈ NIL then

12: E← E ∪
{(

q, q′
)}

13: end if

14: end for;
15: end for;

As it is known, a roadmap is a collection of edges determined
by two feasible points with obstacles avoidance, where the key to
roadmap construction is to use effective sampling points as much
as possible. Here, on the inspiration of Qureshi and Ayaz (2016),
a potential field is introduced in the configuration space used to
assist sampling so as to increase the number of effective sampling
points in the narrow corridors among the obstacle configuration
spaces. The involved sampling generation will be explained in the
next section.

3. THE PROPOSED ALGORITHM

The proposed online path planning algorithm is explained in
detail.

3.1. Potential Field Based Sampling
Strategy
The potential field is a potential energy field artificially
constructed using a gradient descent method (Khatib, 1986). In
the potential field, the obstacle is assignedwith repulsive potential
Urep, causing the robot to be repulsed by the obstacle. The applied
robot is assumed as a particle, without shape and dynamics
consideration due to simplicity, since the path planning could
be irrelevant to the robot itself (Kantaros and Zavlanos, 2016).
The target area is assigned with the attraction potential Uatt , and
the robot tends to be attracted to the target. The repulsive and
attractive potentials can make the force F that the robot bears
equal to the negative gradient of the electric potential, i.e., F =
−∇U, whereU represents the superposition ofUrep andUatt and
∇ is the differential operator. The robot would move along the
direction where the gradient drops the fastest without collision.

The shortest distance dmin, from the current position to the
closest vertex in Cobst is calculated as,

dmin = min
q′∈Cobst

d
(

q, q′
)

(1)

where q′ ∈ Cobst is the obstacle state closest to the current state
q ∈ Cfree and d

(

q, q′
)

is the straight line distance between the

two points, q and q
′
. The repulsive potential generated in Cobst is

represented as,

Urep =

{

1
2Kr

(

1
dmin
− 1

d∗
obst

)2
dmin ≤ d∗

obst

0 dmin > d∗
obst

(2)

where Kr is the gain coefficient proportional to the magnitude
of the repulsive potential defined by the original potential field
principle. If the distance dmin is greater than the constant
d∗
obst

, the repulsive potential of the robot from the obstacle is
considered to be zero, which indicates that the robot is far away
from the nearest obstacle area.

The repulsive force generated by the obstacle repulsive
potential is given as Equation (3), which is equal to the negative
gradient of the repulsive potential in Equation (2),

−→
F rep =

{

Kr

(

1
d∗
obst
− 1

dmin

)

1
d2min

∂dmin
∂q dmin ≤ d∗

obst

0 dmin ≥ d∗
obst

(3)

where ∂dmin
∂q =

(q−q′)
d(q,q′)

. Both repulsive potential and repulsive

forces decrease gradually from the obstacle area to the outside
area along the gradient.

Due to the existence of the repulsive potential in the obstacle
area, the obstacle has a certain potential energy impact on
the surrounding free configuration space, and diffuses to the
surroundings in the form of a potential field gradient, as shown
in Figure 1. In detail, red and green dots represent the starting
and target points of the robot, black areas represent obstacles, and
arrow rays represent the potential field generated by the obstacle
configuration space in Figure 1A. Additionally, in Figure 1B, the
vertical and horizontal correspond to the potential and position,
respectively.

For narrow corridor sampling, this gradient can help
determine the boundary of the obstacle and sampling near the
boundary of the appropriate range, so as to increase the number
of sampling points falling into the feasible corridor. Algorithm
2 describes the process of using gradient descent in the potential
field, where λ is a small incremental distance. According to the

Algorithm 2 | GradientDescent(qinit).
1: q← qinit ;
2: while ∇Urep 6= 0 do

3:
→

Frep ← RepulsivePotentialGradient(q);

4: q← q+ λ
−→
Frep
−−−→
abs(F)

5: end while

gradient, the minimized boundary range of the obstacles can be
easily calculated including narrow corridors, and the appropriate
gradient range can be intercepted by the density of obstacles in
the configuration space.

In this article, a simple but effective method is adopted to
determine the obstacle boundary and target sampling space
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FIGURE 1 | Obstacle repulsive potential field experienced by random samples: (A) The diagram of the potential field direction; (B) The diagram of the potential field

gradient.

by introducing potential fields into the planning configuration
space. First, the potential field of each sampling point is calculated
to ensure the connection of the narrow corridors. The potential
field set threshold is defined as,

U0 = Urep − λ

−→
Frep
−−−→
abs(F)

(4)

The potential field valueUq of the sampling points which is larger
than the potential field set threshold is saved in the vertex set
list. In other words, only samples around the obstacle boundaries
are selected. The whole algorithm design process is shown in
Figure 2.

This improved algorithm is called OP-PRM (Obstacles
Potential field-Probabilistic Roadmap Method), as the PRM
is regarded as the basic sampling algorithm whose original
sampling strategy would be replaced by the proposed strategy
based on the potential field. The 1st step is to initialize and
obtain the path planning information, including starting point,
target point, and target planning configuration space. The target
planning configuration space includes Cfree and Cobst .

In the 2nd step, artificial potential fields are introduced into
the configuration space, considering the narrow corridor barriers
between the obstacle configuration spaces, for the purpose of
increasing the number of sampling points falling in the corridors
as much as possible. The 3rd step is to compare the potential
field value Uq of the sampling point with the set value U0.
If U0 ≤ Uq, more sampling points closer to the obstacle
configuration space are added in the vertex set V , and vice
versa.

Then the 3rd step is repeated until the number k of sampling
points reaches the threshold. Thus, a roadmap can be connected,
though the constructed network map may partially pass through
the obstacle configuration space. After the collision detection
process, the edges that intersect the obstacle are removed,
and the routes near the obstacle configuration space are still
retained to improve the connection feasibility of the narrow
passage.

In general, the major difference between the OP-PRM and the
PRM is that the sampling points in the obstacle configuration
space are considered during the sampling process, but the range
of the obstacle configuration space is expanded according to
the repulsive potential field gradient while narrow corridors are
included as well. On the other hand, the sampling points close to
the obstacle boundary are retained to establish more potentially
available shorter paths.

The key to sampling strategy based on obstacle potential field
is how to determine the target sampling area, which is shown
in Figure 3. The dotted area in Figure 3A represents the target
sampling area determined by the obstacle potential field, and the
red dots in Figure 3B represent the pending vertices randomly
falling into the target area of the obstacle potential field. When
the potential fields of two obstacles expand from the boundary
to the periphery, the two potential field areas are overlapped in
the narrow corridor. The optimal range is that the potential field
of the one obstacle just extends to the nearest boundary of the
other obstacle without touching the other obstacle. Based on the
sampling strategy of obstacles, samples near the obstacle will be
selected and the sampler usually discards the sampling points that
fall into the obstacle area. With the constructed roadmap, only
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the edges that intersect the obstacle are discarded via OP-PRM,
as shown in Figure 3C, while the connection between the vertices
is represented by the blue lines.

FIGURE 2 | Roadmap construction based on obstacle potential field.

As shown in Figure 3D, q1 moves toward q2 along the
connected straight line of the two points until reaching the
boundary of the obstacle so as to acquire the boundary point
q1boundary, similarly to q2 to obtain the boundary point q2boundary.
Therefore, the width of the narrow corridor can be calculated as,

d =
√

(xq1boundary − xq2boundary)2 + (yq1boundary − yq2boundary)2

·
abs(xq2 − xq1)

√

(xq2 − xq1)2 + (yq2 − yq1)2
(5)

Then the coefficient λ can be obtained as,

λ = kd (6)

where k is a proportional constant whose value is less than 1
to ensure that a safe distance is reserved around the obstacles.
Given the width of the narrow corridor, the threshold value of
the potential field can be obtained via Equation (4). The sampling
area based on the obstacle potential field is determined by the
threshold value, i.e., Uq ≥ U0.

3.2. Search Strategy
In the random roadmap, the priorities of the connected vertices
are evaluated as,

f
(

q
)

= g
(

q
)

+ h
(

q
)

(7)

where g
(

q
)

is the actual cost from the current point to the starting
point and h

(

q
)

is a heuristic function, representing the estimated
value from point q to the target point. As a result, f

(

q
)

is the
priority evaluation value of the vertex q, and the smaller the f

(

q
)

value, the higher the priority of the vertex.
Compared with the A* algorithm, the D* Lite algorithm can

dynamically search the optimal path in real-time. Therefore,
the incremental heuristic D* Lite algorithm is used here. The
main idea of the D* Lite algorithm is to search the reverse
path from the target point to the starting point when a new
obstacle is found in the path so that the corresponding heuristic
function h

(

q
)

becomes the estimated value from the point q
to the starting point, and g

(

q
)

is the cost from the point q to
the target point. When a new obstacle is detected, the D* Lite

FIGURE 3 | Sampling strategy based on the obstacle potential field: (A) Obstacle potential field; (B) Target sampling result; (C) Random roadmap; (D) Narrow corridor

width calculation.
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algorithm does not need to completely replan the path, while
the original information can still be used to find a path with
obstacle avoidance. The D* Lite method is given in Algorithm

3 and readers who are interested in the algorithm can refer
(Koenig and Likhachev, 2005). Note that heuristic solutions are
mostly near-optimal solutions with the trade off computational
efficiency.

Algorithm 3 | Main program of D* Lite.
1: qlast = qstart
2: Initialize();
3: ComputeShortestPath();
4: while qstart 6= qgoal do

5: if g
(

qstart
)

= ∞ then

6: there is no known path;
7: end if

8: qstart = argminq′∈Succ(qstart)
(

c
(

qstart , q
′
)

+ g
(

q′
))

9: Move to qstart ;
10: Scan random roadmap for changed edge costs;
11: if any edge costs changed then

12: km = km + h
(

qlast , qstart
)

13: qlast = qstart
14: for all directed edges(u, v) with changed edge costs do

15: cold = c (u, v);
16: Update the edge cost c(u, v);
17: if (cold > c (u, v)) then
18: if

(

u 6= qgoal
)

then

19: Update rhs value;
20: end if

21: end if

22: if
(

rhs (u) = cold + g (v)
)

then

23: E← E ∪
{(

q, q′
)}

24: if
(

u 6= qgoal
)

then

25: Update rhs value;
26: end if

27: end if

28: Update vertex(u);
29: end for;
30: ComputeShortestPath();
31: end if

32: end while

3.3. Dynamic Obstacle Accommodation
The proposed path planning algorithm is also able to dynamically
search the optimal path with the assistance of previous
searched information when the obstacles move within a certain
distance in an omni direction, which is demonstrated in
Figure 4.

Let Urep and Uatt be the potentials of one
sampling point before the obstacles move and
1Uatt and 1Urep be the potential differences.
The ranges of new potential field values are

derived as,







Uupper =
U2
att

min(Uatt)
+ Urep

Ulower =
U2
att

max(Uatt)
+ Urep

if 1Uatt ≥ 1Urep (8)







U
′

upper =
U2
rep

min(Urep)
+ Uatt

U
′

lower
=

U2
rep

max(Urep)
+ Uatt

if 1Uatt < 1Urep (9)

where min(Uatt) and min(Urep) represent the minimum values of
the attractive potentials and repulsive potentials corresponding
to all points within the neighborhood of the current location, and
max(Uatt) and max(Urep) represent the maximum values of the
attractive potentials and repulsive potentials, i.e., the potential
of the points within the neighborhood of the current location is
calculated and compared to obtain the maximum and minimum,
respectively. The scope of the neighborhood depends on the
tolerance to environmental variation. The ranges of the new
potential field values can be divided into two cases:

1. If the attractive potential difference is larger than the repulsive
one, the attractive one would be the main factor affecting the
range;

2. If the repulsive one is larger, it would play a more vital role in
the range determination.

Hence, once the obstacles in the planning configuration space
have moved and the new potential field values are derived
from the superposition of new attractive potentials and repulsive
potentials, the strategy used here is described as follows. If the
new potential field value is within the range in Equation (8)
or Equation (9) and the direction of the potential field is the
same as that of the last moment, it means that the movement of
the obstacles is within the tolerance which has not reversed the
direction of the potential field, the previous searched information
would be adopted for path planning; Otherwise, the path should
be replanned. In a such case, the proposed OP-PRM path
planning strategy can accommodate mobilized obstacles in a
certain range with more adaptivity and higher efficiency.

4. EXPERIMENT RESULT AND ANALYSIS

In this section, experiments for the path planning of the robot
are demonstrated. In the simulation experiments, the kinematics
and dynamics of the robot are not considered, where the robot
is regarded as a particle and the performance of the proposed
OP-PRM algorithm is verified viaMATLAB simulation.

The sampling processes of the lazyPRM, PRM, and OP-PRM
algorithms are demonstrated in Figures 5A–C. It can be seen
that the LazyPRM algorithm samples the entire map with no
collision detection, hence the sampling is uniformly random.
PRM algorithm includes collision detection of sampling points
in the sampling process, so there is no sampling point in the
obstacle area which is also uniformly random sampling in the free
area. Although the OP-PRM algorithm does not have collision
detection during the sampling process, with the introduction
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FIGURE 4 | An example of the combination of obstacles moving direction. The red arrows represent the moving directions of the obstacles.

of the obstacle potential field, the sampling is only performed
around the obstacles and their vicinities, and the sampling
randomness can be reduced as a regional heuristic sampling. In
comparison with the sampling efficiency of the three algorithms,
when n = 100, n = 200, and n = 300 (where n is the number of
sampling points in each experiment), each algorithm is sampled
100 times and the average values of the sampling points in the
narrow channel are calculated, summarized in Table 2.

It can be seen that the proposed OP-PRM algorithm can
improve the number of sampling points in the narrow channel
with different n values compared to PRM and LazyPRM, and
can also improve the sampling efficiency in the narrow channel
with a smaller number of sampling points. Under the same
condition, a group of path planning experiments is conducted
to search for the optimal path from the starting point to the
target point. In the two-dimensional configuration space, the
maximum value of the sampling point is set to n = 200,
and the result of global path planning of the three algorithms
is shown in Figure 5D where only the robot accompanied by
the OP-PRM algorithm succeeds in passing through the narrow
corridor. Furthermore, other cases of global path planning with
the three algorithms are depicted in Figure 6, as the extension

of Figure 5D. The comparison of Figures 6A,C,D shows that the
robot accompanied by the OP-PRM algorithm can pass through
the narrow corridor in most cases which are declared in Table 2,
while Figure 6B is the case where both the robot applied with
PRM and OP-PRM algorithm succeeds in passing through the
narrow corridor.

After 100 sets of independent experiments, the number of
times the LazyPRM, PRM, andOP-PRM algorithms pass through
the narrow channel is shown in Figure 7A. It can be seen that
the OP-PRM algorithm can improve the success rate of passing
through narrow channels under different sampling points.

The execution time is also an important criterion for the
performance evaluation of path planning. The execution time of
the three algorithms at 100 sets of different n values is averaged,
as shown in Figure 7B. The LazyPRM algorithm is not applied
to perform collision detection on sampling points based on the
basic PRM algorithm, since collision detection on all sampling
points is a time-consuming process. The OP-PRM algorithm in
this article also does not perform the collision detection process,
so its execution time is almost the same as that of the LazyPRM,
and the sampling area is heuristically limited to the obstacle area
and its surroundings.
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FIGURE 5 | The sampling results of lazyPRM, PRM, OP-PRM algorithms at n = 200: (A) LazyPRM sampling process; (B) PRM sampling process; (C) Proposed

OP-PRM sampling process; (D) Obtained path planning result.

TABLE 2 | Performance evaluation of the path planning algorithms with 100

experiments.

Experiment category Sampling

points/Algorithm

n = 100 n = 200 n = 300

The average number of

sampling points in a narrow

corridor

LazyPRM 1.2 2.5 3.5

PRM 1.65 2.55 3.15

Proposed

OP-PRM

3.6 6.9 10.4

The success rate of passing

through the narrow corridor

LazyPRM 85% 91% 93%

PRM 83% 92% 95%

Proposed

OP-PRM

80% 90% 95%

The times of planned path

through the narrow corridor

LazyPRM 4 9 12

PRM 19 27 38

Proposed

OP-PRM

75 86 90

The average distance of the

path planned (pixels)

LazyPRM 791.94 782.62 776.72

PRM 770.05 772.28 750.99

Proposed

OP-PRM

761.44 745.68 740.98

The average execution time

of path planning (seconds)

LazyPRM 0.98 3.87 8.23

PRM 7.52 29.27 65.69

Proposed

OP-PRM

1.16 3.74 8.41

Furthermore, when the upper limit of the number of sampling
points is n = 300, the execution time of the lazyPRM and the OP-
PRM does not exceed 10 s, while the execution time of the PRM
is about six times more than the other two algorithms, which
identify that performing no collision detection on the sampling
process can save much time. Moreover, the PRM algorithm
requires performing collision detection at each sampling point
during the sampling process, so the execution time would
increase greatly as the number of samples increases.

When the obstacles move within a certain distance, the path
planning results of the OP-PRM, PRM, and LazyPRM algorithms
are shown in Figure 8. In this group of experiments, compared
with the position of the obstacles in Figure 6, the bottom
obstacle here has moved 70 pixels toward the right direction

and the results are similar to Figure 6. The RRTs (Ferguson
et al., 2006; Zucker et al., 2007), RRTX (Otte and Frazzoli,
2016), and the replanning methods based on RRT (Bekris and
Kavraki, 2007) would require performing rewire operations of
the cascade connection of the affected branches to repair the
graph and remodel the shortest-path tree even with slightest
obstacle modification detection, while our proposed method
can accommodate roughly large obstacle movement without
replanning.

Results in different scenarios to testify the ability to plan with
dynamic obstacles are depicted in Figure 9, where the bottom
obstacle has moved 70 pixels toward the right direction and
there is one more obstacle on the far-left side compared with the
configuration space in Figure 6. Both Figure 9 demonstrate that
our proposed algorithm can deal with themobile obstacles during
real-time path planning. In specific, the rules we have indicated
in Dynamic obstacle accommodation could handle the slight
obstacle movement without re-sampling and roadmap update,
and the sampling and roadmap would update only if the obstacles
move greatly.

In addition, the performance comparison of lazyPRM, PRM,
and OP-PRM algorithms in environments without narrow
corridors is performed to show their capability with sparse
obstacles, where the vertical and horizontal distances among
obstacles exceed 100 pixels, as shown in Figure 10. The three
algorithms share almost the same path in Figures 10A,B, while
the planned path with OP-PRM is the longest in Figure 10C

and shortest in Figure 10D, i.e., the OP-PRM shows certain
varied capacity due to the randomness of its sampling point
selection. Furthermore, considering more complex cases, i.e.,
the environments with concave polygon obstacles, our proposed
method can transform the concave polygon obstacles into convex
polygon ones by connecting their vertices as a path to adapt,
while the four subfigures (refer to Figure 11) demonstrate
different ways of passing through the narrow corridor. In these
environments, OP-PRM and PRM share similar paths, while
the planned paths with PRM and OP-PRM are the shortest
among the three algorithms in Figures 11B,C. On the other
hand, the result of Figure 11D can illustrate the limitation of
the proposed sampling strategy, as the OP-PRM would generate
some sampling points close to the leftmost obstacle in this
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FIGURE 6 | (A–D) The comparison of global path planning with LazyPRM, PRM, and OP-PRM algorithms.

FIGURE 7 | The Comparison of experimental results with the criteria of passing time and execution time: (A) The number of the planned paths through narrow

corridors; (B) The average execution time of the path planning.

FIGURE 8 | (A–D) The experiments of dynamical obstacle accommodation.

situation, leading to a longer path. It should also be noted that the
average execution time in the experiments with concave polygon
obstacles is 2.8s, 13s, and 6.1s for OP-PRM, PRM, and LazyPRM,
respectively, which once again verifies the effectiveness and
efficiency of the proposed method.

To summarize, the performance of the proposed OP-PRM
algorithm is compared with the LazyPRM and the PRM

algorithms via the number of sampling points in the narrow
corridor, the execution time, and path length of the path planning
aspects. The sampling efficiency of the OP-PRM algorithm in
narrow corridors is significantly higher than those of the two
algorithms, while the execution time of the OP-PRM is almost the
same as the LazyPRM, both of which are several times faster than
that of the PRM. The average path distance of the OP-PRM is the
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FIGURE 9 | (A–D) Different scenarios with more generated obstacles to testify the dynamical ability of the OP-PRM.

FIGURE 10 | (A–D) The performance comparison in the environments without a narrow corridor.

FIGURE 11 | (A–D) The performance comparison in environments with concave polygon obstacles.

shortest as well. Hence, the proposed OP-PRM has higher online
path planning performance, especially in dynamical obstacle
environments. Although the proposed method is discussed in
2D maps, it can be extended to 3D space with the potential
field principle for obstacle detection and available free nearest
path generation. It is further mentioned that the performance
of the effective sampling points with the proposed method
falling into the narrow corridor is not affected by the width
of the corridor, since the repulsive forces of the obstacles are
irrelevant to the distance between the obstacles. Moreover, only
comparisons are made among PRM, LazyPRM, and the proposed
method, for which we are concerned is the effectiveness of the
sampling strategy with the introduction of the potential field to
the narrow corridor.

5. CONCLUSION

This article proposes a probabilistic roadmap algorithm based
on the obstacle potential field sampling strategy, called the
Obstacle Potential field Probabilistic Roadmap method (OP-
PRM). The obstacle potential field is introduced to determine
the obstacle area and a certain range near the obstacle boundary
as the target sampling area. This new method can increase
the number of effective sampling points that fall into narrow
corridors in a simple and efficient way so as to construct
a concise connected random roadmap, even under mobile
obstacles conditions. Furthermore, the incremental heuristic
D* Lite algorithm is applied to search for the shortest
paths between the starting point and the target point on

Frontiers in Neurorobotics | www.frontiersin.org 11 June 2022 | Volume 16 | Article 910859

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Ye et al. Path Planning Using OP-PRM

the roadmap. A two-dimensional map simulation experiment
has been performed to demonstrate that the OP-PRM path
planning algorithm can allow the robot to pass through
the narrow corridor map with a faster speed and higher
success rate.

Further research will extend the proposed algorithm to a
variety of complex maps and three-dimensional environments so
as to enhance flight autonomy.
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