
ORIGINAL RESEARCH
published: 08 July 2022

doi: 10.3389/fnbot.2022.914353

Frontiers in Neurorobotics | www.frontiersin.org 1 July 2022 | Volume 16 | Article 914353

Edited by:

Shuai Li,

Swansea University, United Kingdom

Reviewed by:

Tugrul Oktay,

Erciyes University, Turkey

Ameer Tamoor Khan,

Hong Kong Polytechnic University,

Hong Kong SAR, China

*Correspondence:

Yimin Zhou

ym.zhou@siat.ac.cn

Received: 06 April 2022

Accepted: 25 May 2022

Published: 08 July 2022

Citation:

Zhou Y, Yu Z and Ma Z (2022) UAV

Based Indoor Localization and

Objection Detection.

Front. Neurorobot. 16:914353.

doi: 10.3389/fnbot.2022.914353

UAV Based Indoor Localization and
Objection Detection
Yimin Zhou 1,2*, Zhixiong Yu 2 and Zhuang Ma 1,2

1 Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China, 2University of Chinese

Academy of Sciences, Beijing, China

This article targets fast indoor positioning and 3D target detection for unmanned aerial

vehicle (UAV) real-time task implementation. With the combined direct method and

feature method, a method is proposed for fast and accurate position estimation of the

UAV. The camera pose is estimated by the visual odometer via the photometric error

between the frames. Then the ORB features can be extended from the keyframes for the

map consistency improvement by Bundle Adjustment with local and global optimization.

A depth filter is also applied to assist the convergence of the map points with depth

information updates from multiple frames. Moreover, the convolutional neural network

is used to detect the specific target in an unknown space, while YOLOv3 is applied to

obtain the semantic information of the target in the images. Thus, the spatial map points

of the feature in the keyframes can be associated with the target detection box, while

the statistical outlier filter can be simultaneously applied to eliminate the noise points.

Experiments with public dataset, and field experiments on the established UAV platform

in indoor environments have been carried out for visual based fast localization and object

detection in real-time for the efficacy verification of the proposed method.

Keywords: visual SLAM, self-positioning, real-time localization, convolutional neural network, target detection,

UAV

1. INTRODUCTION

Unmanned aerial vehicles (UAVs) have been developed rapidly in recent years, with diversified
applications from military to civil fields, i.e., police patrolling, urban management, agriculture
spraying, geology exploration, electric power patrolling, rescue and disaster relief, video shooting,
and other industries due to their small size, low cost, high maneuverability, and fast speed
(Chebrolu et al., 2018). As a common positioning system, GPS would lose function and fail to
provide accurate position information in indoor or GPS-denied environments, hence visual SLAM
(Simultaneous Localization And Mapping) technology can be adopted in such positioning scenes
owing to its abundant positioning information and wide applicability (Kasyanov et al., 2017). It
should be aware that the collected image information from UAV are 2-dimensional (2D) without
stereoscopic information, so the “what” of the target can be obtained while the “where” of the target
in the space is unknown. In order to complete such post-disaster rescuing tasks successfully under
complex, unknown environments, two fundamental problems should be solved simultaneously,
UAV self-localization and target detection (Cavaliere et al., 2017).

Visual localization is generally realized via visual SLAM technologies, where the visual odometry
(VO) (Jiang et al., 2018) can be used to estimate the pose variation of the camera via captured
consecutive frames, usually divided into two categories, i.e., indirect/feature-based methods and
direct methods (Su and Cai, 2018). The most representative of the feature methods is the ORB-
SLAM (Mur-Artal et al., 2015), with the aid of ORB (Oriented FAST and Rotated Brief) feature
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possessing rotation invariance and scale invariance via pyramid
construction so as to assist SLAM algorithm to have endogenous
consistency in the feature extraction and tracking, keyframe
selection, 3D reconstruction, and closed-loop detection. Bundle
Adjustment (BA) is performed to minimize the feature
reprojection error in a local set of keyframes. Furthermore, the
localization precision can be improved in ORB-SLAM3 (Campos
et al., 2021), where the pose and map points are optimized
via cumulative errors avoidance at the back-end. However,
ORB-SLAM would fail to track in a less texture environment
due to insufficient feature points extraction. Unlike feature-
based methods, the direct method establishes the relationship
between frames through the gray information of pixels to
construct the camera motion estimation with a faster processing
speed. The direct sparse odometry (DSO) system is further
proposed to optimize the photometric parameters for robustness
improvement (Wang et al., 2017). However, the cumulative error
is inevitable due to a lack of global back-end optimization,
resulting in overall poor system accuracy.

Combining the advantages of the direct methods and feature-
based methods, a fusion scheme SVO (semi-direct visual
odometry) is proposed (Forster et al., 2014), where theminimized
photometric error is used to optimize the pose estimate.
Moreover, only feature points are extracted from the keyframes
for tracking without descriptors calculation for considerable
speed enhancement. However, the initialization of the pose could
fail in the head-up view if all the points are not on the same
plane and SVO lacks global optimization. Then the 2nd version
of SVO2.0 has been proposed by adding multi cameras to
improve the tracking of edges and corners and IMU (internal
measurement unit) pre-integration (Forster et al., 2016), which
can further increase the processing speed. Although vision-fused
IMU can enhance the robustness of the SLAM system, it would
also bring higher algorithm complexity and degrade the real-
time performance.

Object detection is dependent on the image understanding,
mainly including two parts, i.e., type decision and size and
position estimate of the object in the image. Since AlexNet
(Beeharry and Bassoo, 2020) won the championship in
ILSVRC2012, a deep convolutional neural network (CNN) has
widely been applied with autonomously learning features. RCNN
(region CNN) (Girshick et al., 2014) is a pioneering work of
applying deep CNN to target detection. FastRCNN (Girshick,
2015) and FasterRCNN (Ren et al., 2016) are further proposed to
effectively avoid the image scaling problem. On the other hand,
YOLO (You Only Look Once), has been proposed in Redmon
et al. (2016), which can directly regress multiple positions of the
image to acquire the target box and category, thus simplifying
the detection process. Combined with YOLO and FasterRCNN,
a new algorithm SSD (single shot multibox detector) (Liu et al.,
2016) is proposed to obtain the frame coordinates via different
convolutional layers. To date, YOLOv5 is released in Oct 2020,
possessing higher object identification accuracy (Kuznetsova
et al., 2020).

Different from 2D target detection, 3D target detection should
mark the spatial position of the target. In Chen et al. (2017), a set
of 3D object proposals with stereo images for 3D object detection

are generated by minimizing an energy function that encodes
several depth-informed features, i.e., prior object size, object
placement on the ground plane as an extension of FastRCNN
in 3D field. Although the proposed method can outperform in
object detection and orientation estimation tasks for all three
KITTI (database issued by Karlsruhe Institute of Technology
and Toyota Technological Institute) object classes, it has a
low processing speed per image up to 4s with worse real-time
performance. A stereo 3D object detection method is proposed
with Instance-DepthAware module and disparity adaptation and
matching cost reweighting in Peng et al. (2020), where solely RGB
(Red-Green-Blue) images are used as the training data to predict
the depth of the 3D bounding boxes centering in the images.
Although image-based methods have achieved great success in
object detection, the performance of 3D object detection falls
behind the LiDAR-based (Light Detection And Ranging-based)
approaches due to the inaccurate depth information. While the
image-based depth maps can be converted to pseudo-LiDAR
representation via transformation from the dense pixel depths of
stereo imagery and back-projecting pixels into a 3D point cloud
(Chen et al., 2020), the main challenge is the heavy computation
load of the LiDAR-based detection.

The combination of the visual SLAM and object detection
can increase the environment perception capability. For example,
VSO (visual semantic odometry) (Liu H. et al., 2019) can
optimize the reprojection error between images through
semantic information. A semantics SLAM system (Lee et al.,
2019) is proposed with the combination of sensor status and
semantic landmarks which can transform the semantic map
into a probability problem to optimize the reprojection error.
The system robustness can also be improved via the intensity-
SLAM (Wang et al., 2021) and loop detection (Liu Y. et al.,
2019) optimization. Moreover, SOF-SLAM (Cui and Ma, 2019)
can identify the dynamic features through semantic optical
flow and remove these features, achieving stable tracking in
dynamic scenes.

Visual SLAM can assist in target detection as well (Vincent
et al., 2020). A semantic fusion method (Li et al., 2018) is
proposed to combine CNN with a dense vision SLAM scheme
for semantic segmentation, where the category probability
distributions of the images are fused into a SLAM map to
construct a 3D dense semantic map. Further, the semantic
information acquirement efficiency can be greatly increased with
the adoption of the SSD or YOLO framework (Bavle et al.,
2020). For instance, Quadric SLAM (Nicholson et al., 2018) is
proposed to identify the position, size and direction of the object
simultaneously. However, this kind of method usually requires
semantic segmentation of the target based on dense pixel or point
cloud information.

The current target detection algorithms can only estimate the
target position in the images, while the spatial position of the
target still remains unknown. To tackle the mentioned problems
during UAV indoor localization, this article proposes an object
localization framework for object spatial location estimation
(refer to Figure 1). To be specific, the positioning method is
designed to achieve rapid and accurate location estimation of the
UAV. Then the target spatial position estimation based on CNN

Frontiers in Neurorobotics | www.frontiersin.org 2 July 2022 | Volume 16 | Article 914353

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. UAV Based Navigation

FIGURE 1 | The procedure of the proposed method.

is applied to detect the searched target in an unknown space. The
contributions of the article are summarized as follows.

1) A method is proposed for UAV fast self-positioning. Applying
the direct method with a visual odometer delicately, the
optical error is used for inter-frame matching to estimate
the camera posture. The ORB feature extracted from the
keyframes can improve the map consistency while a binocular
depth filter is introduced to increase the positioning accuracy.

2) A method is proposed for target spatial position estimation
based on YOLOv3. The spatial position of the target can be
constructed by correlating the relationship among the feature
points for reliable depth information providence and the
target detection frame in the keyframes. Furthermore, the
statistical outlier filter is used to eliminate the noise to acquire
more accurate target position.

3) Unmanned aerial vehicle platform has been setup for
indoor rapid positioning and object detection. A series of
experiments on the public dataset and in the actual scene have
been performed to verify the effectiveness of the proposed
method with real-time target spatial localization performance.

The remainder of the article is organized as follows. Section II
explains the method of indoor localization in detail. Section III
explains the objection detection and spatial position estimation.
In Section IV, the experiment platform of the indoor UAV fast

localization and objection detection is setup for the proposed
method verification with public data and field scenarios. Section
V concludes the article and future directions are provided.

2. METHOD OF INDOOR LOCALIZATION

Combined with the direct method and feature-based method, a
localization algorithm is proposed in this Section. Here, ORB-
SLAM2 rather than ORB-SLAM3 algorithm is adopted with only
an embedded stereo camera for the localization and the whole
procedure is depicted in Figure 2. The localization algorithm
includes four threads, i.e., tracking thread, feature extraction
and depth filter (FEDF) thread, local mapping thread, and loop-
closing thread.

The VO based on the direct method for localization in the
tracking thread is the first proposed algorithm while the second
algorithm for spatial point depth estimation is designed on the
basis of stereo depth filter embedded in the FEDF thread. The
other two local mapping and loop closing threads are kept the
same as in ORB-SLAM2.

2.1. Direct Method Based Visual Odometer
Since the VO in ORB-SLAM2 has to extract feature points
and calculate descriptors per frame, SVO is adopted for direct
frame matching via feature points. The procedure of the direct
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FIGURE 2 | The framework of the proposed localization algorithm.

method based VO contains three steps: pose estimate, feature
points alignment and pose optimization, where the coordinate
origin of the coordinate axes is the left lens optical center of the
stereo camera.

2.2. Step I. Direct Method Based Pose
Estimation
First, the feature points of the binocular image are extracted till
the number exceeds the threshold, then the image is designated
as the keyframe. Next, the parallax is obtained by binocular
image feature matching and the map point depth can be obtained
with triangulation so as to acquire the initial pose and map
points position. As depicted in Figure 3A, {Ik, Ik−1} are the

image intensities at the kth moment and the previous (k− 1)th

moment, while Tk,k−1 describes the pose variant from the

(k− 1)th moment to the kth moment. π is used to describe the
projection process from 3D space to the image space, while π−1

is the back projection process.
The initial pose of the Tk,k−1 can be obtained via the uniform

velocity model or the identity matrix, while the feature point

coordinate and the related spatial depth of the (k− 1)th frame
can be estimated from the previous multiple frames, denoted as
(pi, di). Then the specific feature point can be projected at the

spatial point pi with the coordinate Pi,k−1 in the (k− 1)th frame
reference. Through theTk,k−1 transformation, it can be converted
with the kth frame reference, denoted as Pi,k. Afterwards, it
can be projected on the kth image via camera model with the
coordinate p′i.

The brightness of the same point in the two consecutive
frames is assumed unchanged due to the transient time interval

(Jiang et al., 2018). Thus, the residual function can be formed
based on the gray value difference of the image patches adjacent
the (k − 1)th feature point and the reprojected point of the
kth frame,

δI
(

Tk,k−1, pi
)

= Ik
(

π ·
(

Tk,k−1 · π
−1

(

pi, di
)))

− Ik−1

(

pi
)

(1)

where δI
(

Tk,k−1, pi
)

is the intensity variation due to the pose

movement from the (k − 1)th moment to the kth moment. Then
the pose variation in Tk,k−1 transformation can be optimized
via the maximum likelihood estimation by minimizing the
photometric residual,

Tk,k−1 = arg min
Tk,k−1

1

2

∑

i∈R

∥

∥δI
(

Tk,k−1, pi
)
∥

∥

2
(2)

where R is the visible image points set in the kth frame back-
projected from the points with the known depth di in the image
at the (k − 1)th moment. Gauss-Newton (G-N) or Levenberg-
Marquadt (L-M) iterative methods (Balabanova et al., 2020) can
be used to solve Equation (2) for the update of Tk,k−1 estimation.

2.3. Step II. Alignment of the Feature Pixels
With the obtained pose Tk,k−1 between two consecutive frames
via direct method, the feature points from the previous frame
(k − 1) can be reprojected on the current frame k but with
coordinate inconsistency due to the noise. Since more accurate
pixel information exists in the common view keyframe adjacent
to the current frame k, the position of the feature pixels in
the k frame can further be optimized through the established
map points in the nearest common view keyframes. The pose
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FIGURE 3 | The illustration of image measurement. (A) The direct method based pose estimation. (B) The alignment of feature pixels. (C) Triangulation measurement

with stereo camera.
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relationship among the k frame and the common view keyframes
Ir1 and Ir2 can be acquired from Tk,k−1, so the feature points p1i
and p2i in the keyframes can be reprojected on the current frame
k, illustrated in Figure 3B. Assuming luminosity invariance, the
residual function can be reconstructed from the image gray
values difference to optimize the coordinates of feature points via
minimized luminosity error,

p′i = argmin
p′i

1

2

∥

∥Ik
(

p′i
)

− Ai · Ir
(

pi
)
∥

∥

2
(3)

where Ir(·) is the previously observed frame, Ai is the rotating
and stretching affine operation. If the common view keyframes
are far away from the current frame, the feature patch in the
keyframe should be first transformed via Ai operation for further
comparison. Again, Equation (3) can be solved via G-N or L-M
methods for more accurate coordinates estimate p′i obtainment.

2.4. Step III. Pose Optimization
With a more precise match between the features of the keyframe
and the previous frame, the feature points can be reprojected
on the current Ik frame. Then the position residual function is
formed by the pixel coordinate difference from the reprojection
point and the related p′i, written as,

∥

∥δpi
∥

∥ =
∥

∥p′i − π ·
(

Tk,wPi
)
∥

∥ (4)

and the pose of the current frame is optimized as,

Tk,w = argmin
Tk,w

1

2

∑

i

∥

∥pi − π ·
(

Tk,wPi
)
∥

∥

2
(5)

while the position Pi on the map can also be optimized via the
same maximum likelihood function simultaneously with G-N or
L-M methods for solution.

2.5. Binocular Based Spatial Point Depth
Estimation
Building an accurate and reliable map is necessary for the
camera pose calculation from the spatial map points via feature
matching and triangulation. Since the map point depth from
the triangulation is highly affected by the parallax from the two
frames, a depth filter is introduced for depth optimization with
the adoption of the calibrated stereo camera for the initial seed
point depth determination.

2.5.1. Triangulation Ranging Model
The stereo camera model should be rectified first, usually with
epipolar line adjustment (Bradski and Kaehler, 2008) to make
the optical axes parallel with OL and OR centers. As shown in
Figure 3C, b is the baseline of the stereo camera, f is the focal
length, pL and pR are the positions of the spatial point P in the
left and right cameras, and {|uL|, |uR|} are the distances from each
axis of {pL, pR}. Based on the similar triangles, it has,

z − f

z
=

b− uL + uR

b
, x = uL − uR ⇒ z =

fb

x
(6)

where x is the parallax, i.e., the difference of binocular abscissa,
and z is the spatial depth. The depth usually follows the normal
distribution (Ammann and Mayo, 2018), i.e., the depth zp of the
spatial point P follows N

(

µ, σ 2
)

distribution. With the depth
zk (followed by N

(

µo, σ
2
o

)

normal distribution) calculated via

epipolar line matching from the new kth frame, new depth
data are fused with the existing ones, still followed by normal
distribution N(µf , σ

2
f
),

µf =
σ 2
o µ + σ 2µo

σ 2 + σ 2
o

, σ 2
f =

σ 2
o σ 2

σ 2 + σ 2
o

(7)

The depth can be assumed as converged if σf is less than the
threshold, whereas the uncertainty of the depth should also be
considered. Given a spatial point P, it is projected on p1 and p2 of
any two frames with the optical centers O1 and O2, respectively,
as depicted in Figure 4A.

The pixel error of the spatial point P is considered as
the distance variation and the related angles changed from
{‖d‖, {p2,β , γ }} to {‖d′‖, {p′2,β

′, γ ′}}. Based on the geometric
relationship, it has,

Eα = Ed −Et

β = arccos < Ed, Et >

α = arccos < Eα, E−t >

(8)

It can be rearranged as,

∥

∥d′
∥

∥ = ‖t‖
sinβ ′

sin γ ′
(9)

where β is the angler between O2P and O1O2, and γ is the angler
between O1P and O1O2. Thus, the depth uncertainty caused by
one pixel bias is,

σo = ‖d‖ − ‖d′‖ (10)

Since the inverse depth also obeys the normal distribution
(Younes et al., 2019), the σo variance can be transformed as

σo =

∥

∥

∥

∥

1

d

∥

∥

∥

∥

−

∥

∥

∥

∥

1

d′

∥

∥

∥

∥

(11)

Finally, with the pose calculation of the new frame, the depth
filter is used to merge the depth and the depth uncertainty into
the previous ones until the uncertainty is less than the threshold
so as to generate the map points accordingly.

2.5.2. Depth Estimation
The depth filter is initialized with the calculated depth from
feature matching of the extracted ORB features from the
keyframe. Given a point P, the left and right image frames can
be triangled via Equation (6) to obtain their initial depth values
(seen in Figure 4B). The point P is assumed as the joint view with
a non-keyframe and keyframe, while the new estimated depth
can be calculated by matching through the feature block mean
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FIGURE 4 | The illustration of depth estimation. (A) Depth estimate with uncertainty. (B) Spatial point depth estimate.
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FIGURE 5 | The relationship between the object and spatial map points.

gradient and epipolar line searching so that the depth filter can
be updated.

Furthermore, the newly added spatial points are fused with
the existing map points. The minimized reprojection error
function is constructed to optimize the pose of the keyframe
and the coordinates of the spatial points. Finally, the redundant
keyframes are filtered out and sent to the loop-closing thread.

Here, the loop-closing thread is the same as ORB-SLAM2 for
similarity comparison of the bag of words of the new keyframes
and existing ones. If the similarity level exceeds a dynamic
threshold, a closed-loop occurs and the pose of the new keyframe
and the closed-loop keyframe are adjusted so that the poses
of all the keyframes are optimized. With the relocation and
loopback ability of ORB-SLAM2, the lost camera’s pose tracking
can be recovered via the position comparison of the feature
points among the previous keyframes and the current frame.
At the same time, a more accurate trajectory and map can be
obtained via closed-loop fusion with the data from different
tracking periods.

3. OBJECT DETECTION AND POSITION
ESTIMATION

3.1. Algorithm Framework
As general object detection algorithms, the target type and
position in the images can be estimated via salient feature
detection. However, especially in complex scenarios, only the
2D target position in the image is insufficient without the 3D
target spatial position. Although the constructed semantic map

combined with the objection detection and visual SLAM can
be used to estimate the object category and position in a 3D
environment, it is mostly achieved based on dense or semi-dense
point clouds for multiple targets estimation, which has a higher
requirement on the collection and calculation. As for the mission
of UAV in indoor environments, there is no need to rebuild the
3D mapping environment or estimate the detailed posture of
the target but only require to label the location of the target in
the searching paths. Hence, object detection and spatial location
estimate to the specific targets are proposed based on the sparse
space points.

The YOLOv3 object detection framework based on CNN is
adopted in this article, which is integrated into the visual SLAM
system. The keyframes are sent to the YOLOv3 object detection
framework to detect the specific target, i.e., people, and the spatial
map points stored in the keyframes are used to construct the
relationship between the detected target and the spatial point
position, so as to estimate the spatial position of a specific target.
The details of the YOLOv3 are omitted here, readers who are
interested in the algorithm can refer to Zhang et al. (2020).

3.2. The Estimate of the Target Spatial
Position
As seen in Figure 5, since the map points information of SLAM
is kept in the keyframes, the feature points in the keyframes can
thus be connected with the objects via the object detection so as
to estimate the spatial location of the target.

First, the keyframe images are sent to the YOLOv3 network
for object detection, which is used to determine the relationship
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FIGURE 6 | The procedure of the spatial target position estimation.

between the feature points in the keyframes and the object
detection frame. If the feature point is inside the detection boxes,
the map points related to the feature points are searched to
identify whether the map points have already been marked with
the target semantic information. If not, it will be marked as a
new pending target and if it is marked as the same pending
target in 3 consecutive frames, the point is thus marked as a
new spatial target point. The world coordinate is applied here as
the reference system to calculate the maximum distance of the
spatial target point distribution in the x, y, and z directions, where
these distances are used as the widths of the target bounding box
to mark the spatial target position in the object detection box.
Subsequently, the ratio of the map points is calculated carrying
semantic information to all map points in the bounding box.
When the ratio exceeds the threshold, the semantic information
of the map points related to other feature points in the box
is updated as the new semantic information, together with the
spatial target position and the detection box. The procedure of
the spatial object location estimation is illustrated in Figure 6.

The object detection box in the detection algorithm is usually
a rectangle, which cannot accurately represent the boundary
between the target area and the background area as background
points are often included inside the target box resulting negative
effect on the accuracy of the target spatial position estimation. For
instance, the target rectangle box in the left graph of Figure 7 not
only contains the target “teddy bear" but also the feature points
of the background wall.

Generally speaking, the distances between the background
points and the target points are large, and the number of
background feature points in the detection box is less than that

of the target. Therefore, the depth information of the feature
points in the object detection rectangle can be filtered by the
spatial point distribution. Here, SOF (Statistical Outlier Filter) is
adopted to remove the outliers (Bokovoy and Yakovlev, 2018).

As for any spatial point, the mean distance to its nearest k
points can be calculated. Assuming the mean distance of each
point follows the normal distribution with the expected average
value µ and variance σ 2, the threshold of the mean distance is
written as,

dmax = µ + α × σ (12)

where α is the scale factor of neighboring points. Therefore, the
points whose distances between the neighboring points are larger
than the defined threshold is removed (refer to the right graph
of Figure 7) so as to estimate the position of the target in space
more accurately.

4. EXPERIMENTS FOR INDOOR UAV FAST
LOCALIZATION AND OBJECT DETECTION

4.1. Experiments of Localization on Public
Data
The public UAV dataset EuRoC (ASL, 2012) is adopted here
containing indoor sequences collected from an AscTecFirefly
micro UAV where the resolution of the stereo camera is
752 × 480 and 20fps (frame per second) processing speed.
EuRoC data includes 11 sequences, while the sequences
{{MH01,MH02,MH03}, V201} are randomly selected from the
large industrial workshop and general office room such as two
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FIGURE 7 | (Left): The position illustration of the target box and the feature points; (Right): The result of the statistical outlier filter.

FIGURE 8 | Image processing time distribution per frame.

typical scenes. Besides, another real trajectory collected by the
Leica MS50 lasers canner is used for performance comparison.
The processing environment of the experiments is Ubuntu 16.04
system, GPU is Nvidia GeForce GTX 1080, and the processor
is Inteli7-8750 with 16GB RAM. Then the proposed method
is evaluated from the processing time per frame and pose
localization accuracy in two criteria indexes.

4.1.1. Processing Time Evaluation
Figure 8 shows the distribution of processing time spent for each
frame, while the horizontal coordinate is the frame number, and
the vertical coordinate is the processing time in seconds. The
red points and blue points delegate the processing rate of ORB-
SLAM2 and the proposed method, respectively. It is shown in

TABLE 1 | The processing time per frame.

Data Number of the

frames

Proposed

method(s)

ORB-SLAM2(s)

MH01 3,682 0.0128 0.0539

MH02 3,040 0.0129 0.0502

MH03 2,700 0.0127 0.0511

V201 2,280 0.0111 0.0357

Table 1 that the frame processing speed of our method is much
faster than that of the ORB-SLAM2 with four random selected
tracks, which is primarily due to the direct matching with the
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FIGURE 9 | Keyframe trajectory comparison on EuRoc datasets.

TABLE 2 | Keyframe trajectory accuracy comparison(m).

Proposed method ORB-SLAM2

Max Mean RMSE Max Mean RMSE

MH01 0.0902 0.0274 0.0347 0.0810 0.0307 0.0363

MH02 0.0900 0.0276 0.0331 0.1012 0.0312 0.0375

MH03 0.1112 0.0338 0.0378 0.1071 0.0391 0.0421

V201 0.1182 0.0588 0.0613 0.0964 0.0392 0.0458

photometric error during tracking with no feature extraction and
descriptor calculation.

4.1.2. Position Accuracy Evaluation
Due to the difficulty in measuring actual 3Dmap points, the track
error of the camera motion is generally used for VO or visual
SLAM algorithm performance evaluation. Figure 9 illustrates the
trajectories comparison among the four datasets and the actual
one from the proposed algorithm and ORB-SLAM2, denoted as
the blue curve, green curve, and dashed line, respectively. To be
specific, the Root Mean Square Error (RMSE) is used for location
evaluation between the estimate and the actual one,

RMSE =

√

√

√

√

1

n

n
∑

i

(

X̂i − Xi

)2
(13)

where Xi is the real data and X̂i is the estimate, n is the group
number of the data. “Max" and “Mean” represent the maximum
and mean discrepancy between the estimates and the real data.
Then the numerical comparison results are listed in Table 2. As
demonstrated in Table 2, the pose estimate accuracy is nearly the
same as the proposed method and the ORB-SLAM2, which is
due to the introduction of depth filter to optimize the depth of

the spatial points during map point location estimation, allowing
the position of the map points with higher accuracy. On the
other hand, it can improve the pose estimation accuracy while
the back-end optimization based on keyframes can enhance
the localization precision as well. Therefore, the whole location
precision is higher or the same compared to ORB-SLAM2.

4.2. Experiments of Target Detection on
Public Data
4.2.1. Image Object Detection
The original YOLOv3 network is used to detect various object
types, but only people are required to be detected under this
circumstance. In order to mitigate the impact of other objects,
the original network is retrained only for the human category.
The images selected from the public data set VOC2012 (PASCAL,
2012) are used for comparison between the original YOLOv3
and the modified network, where the involved parameters
setting in YOLOv3 are listed in Table 3. Figure 10 displays the
detection results where the modified network can well detect the
expected objects.
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4.2.2. Object Spatial Position Estimation
After the object is detected in the image, it is necessary to
associate the object semantic information with the map points
to estimate the spatial position of the object and mark it
on the map. In this article, the public data set TUM (TUM,

TABLE 3 | The parameters involved in YOLOv3.

Paramter Value Parameter Value

Batch 64 Exposure 1.5

Subdivisions 16 hue 0.1

Width 416 Learning-rate 0.001

Height 416 Burn-in 1,000

Channels 3 Max-batches 50,200

Momentum 0.9 Policy steps

Decay 0.0005 Steps 40,000, 45,000

Angle 0 Scales 0.1, 0.1

Saturation 1.5

2020) is used to test the object spatial position estimation.
The Tum data set is provided by the Technical University of
Munich, which includes RGBD, monocular, 3D reconstruction,
and other various experimental scenes. In order to meet the
requirement of indoor scenes containing the object (people) to
be detected, freiburg2− desk− with− person data set is selected
for verification (refer to Figure 11) with a resolution of 640×480
and average fps 28.6fps.

It is known that the relationship between the object detection
frame and the image feature point can be constructed by
detecting the specific object (people) in the keyframes by
YOLOv3, so as to establish the relationship between the object
and the spatial map point and estimate the object spatial position
on the map. As shown in the left graph of Figure 11, the human
object can be detected via the YOLOv3 model with the extracted
feature points in the keyframe images. The result of the spatial
object position estimation is demonstrated in the right graph
of Figure 11, including the spatial point cloud, camera running
trajectory, and the cubic mark of the detected human. Since
the direction of the spatial object frame in this article is based

FIGURE 10 | The result of category detection. (A) Multi-category detection. (B) Single-category detection.

FIGURE 11 | Estimation results of the object spatial position.

Frontiers in Neurorobotics | www.frontiersin.org 12 July 2022 | Volume 16 | Article 914353

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. UAV Based Navigation

TABLE 4 | The performance comparison of the tracking algorithms.

(A) AVERAGE PROCESSING TIME (S) PER IMAGE FRAME

Proposed algorithm ORB-SLAM2

Track 1 0.0158 0.0457

Track 2 0.0186 0.0560

(B) TRACKING ACCURACY COMPARISON(M)

Proposed algorithm

Max Mean RMSE

Track 1 0.0484 0.0309 0.0326

Track 2 0.0730 0.0433 0.0467

The bold values indicate the indexes of the proposed algorithm.

on the world coordinate system when the camera is initialized,
the spatial object frame is not completely consistent with the
direction of the image detection frame, but the relative spatial
position of the object remains unchanged.

4.3. Field Experiments
The UAV platform in the real world has been well set up for
fast localization and objection detection, which is configured
with Pixhawk as the controller, together with main processor
32bit STM32F427 Cortex M4, and other embedded sensors.
The experimental environment is an indoor laboratory scene,
with a length of about 7m and a width of about 6m, mainly
including tables, chairs, and several office supplies. The manually
set labels are equally distributed on the ground with a 0.5m
interval as the positioning reference, shown in Figure 12A.
In the experiments, the quadrotor UAV equipped with a
binocular camera is used as the experimental platform, where
the resolution rate is 2, 560 × 720, the frame processing rate
is 30 fps, and the length of the binocular baseline is 60
mm. In order to facilitate the comparison tests, the collected
binocular video is saved and converted into a data set, which is
analyzed offline.

4.3.1. Indoor Positioning Test
The indoor positioning test is mainly evaluated with the
processing time per frame and the positioning accuracy through
the collected dataset. The dataset consists of two tracks, and
the actual running screenshot is shown in the left graph of
Figure 12B, while the middle track is the linear motion and the
right track is the linear rotary motion.

With these two tracks, the processing rate is compared
between the proposed algorithm and ORB-SLAM2. Table 4A
lists the average processing time per frame under the two track
segments. It can be seen that the proposed algorithm has a faster
processing speed than that of the ORB-SLAM2 in actual scenes.

In order to acquire the positioning reference of the UAV
flight position, ArUco tags with different IDs are equally
distributed on the ground at 50 cm distance in the experimental
environment (refer to the left graph in Figure 12C). The actual
position of each ArUco tag in the world coordinate can be
obtained by the ID of each ArUco tag, and the captured ArUco

image is used to estimate the position of the ArUco tag, so
as to estimate the camera position in the world coordinate
accordingly.

The image of ArUco tag is captured by a vertically downward
high-definition camera installed on the UAV, which has a
resolution of 1, 920 × 1, 080 and frame processing rate 60 fps,
fixed relative to the binocular camera. It is difficult to obtain the
complete trajectory pose due to certain unrecognized phenomena
in the moving process. Then the posture of ArUco on the path
is used as the baseline for evaluation, while the results listed in
Table 4B demonstrate that the proposed algorithm can realize
real-time localization with high precision.

4.3.2. Object Detection Test
As for the object detection test, a dataset containing the detection
object (people) is used for the experiments. The people to
be detected are in a still sitting state. Through the UAV
moving in the scene, the spatial position of the people can
be estimated and marked with a box on the map (refer to
Figure 12C of the actual running screenshot). Since the object
detection is based on the keyframes, only the object detection
results and the object position estimation from the keyframes
are evaluated. In this experiment, the number of keyframes
including the object is 112, and the number of keyframes
with confirmed object detection is 88, while the recall rate is
78.6%.

As for the estimation of the object spatial position, the object’s
handheld ArUco tag is used as the comparison benchmark. With
the confirmed keyframes inclusion, the relative position of the
tag in the keyframes can be estimated via the identification of
the handheld ArUco tag, shown as the tag held by the people
in the left graph of Figure 12C. Whereas in the same keyframe,
the relative position between the center of the spatial object
frame and the current keyframe can also be obtained, compared
with the relative position estimated by the ArUco tag, as shown
in the right graph of Figure 12C. Then three keyframes are
randomly selected where the distance difference between the two
estimated positions is used for comparison, while the results of
the estimated distance difference (m) of the three keyframes are
{0.96, 1.04, 0.88}, respectively.

Through the evaluation of the detection recall rate and the
object spatial position estimation, it can be concluded that the
object can be detected effectively with more accurate spatial
position estimation in actual scenes, which is suitable for real-
time task implementation.

5. CONCLUSION

In this article, a real-time rapid positioning and object detection
method based onUAVhas been explored with the combination of
visual SLAM and CNN techniques. Considering the advantages
of feature-based methods with VO, a fast positioning algorithm
is proposed where the camera pose can be tracked via the
front-end VO with only ORB features extracted from the
keyframes for the purpose of map consistency improvement via
bundle adjustment. The feature-based method is also applied
at the back-end with the depth filter to assist the depth
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FIGURE 12 | The illustration of the indoor test procedure and results. (A) The experimental scene and binocular camera. (B)The tracking screenshot in the actual

scene. (C) (Left): The object detection in the actual scene; (Right): Comparison of object position estimation.

convergence of the map points so as to optimize the framework
for positioning accuracy improvement. Furthermore, a spatial
target position estimation algorithm has been proposed with
the CNN in an unknown space, while the YOLOv3 network
is also applied for the target semantic info obtainment in
the images so as to construct the relationship between the
spatial points and the target. Moreover, the spatial noise can
be removed from a statistical outlier filter so as to acquire a
clearer target boundary. A series of experiments with public
datasets and field tests have been performed to verify the
accuracy and portability of the still object localization method
with only embedded UAV hardware processor for surveillance
or rescuing such task execution, especially in GPS-denied
environments.

Future work will continue to study the UAV posture
estimation with appropriate semantic segmentation and IMU
modules to improve the robustness and accuracy of the UAV fast
localization. More efficient signal filtering algorithms could be
developed to remove the spatial noise in the key features. Besides,
the target attitude estimate should be investigated to increase the
localization accuracy since the actual orientation of the target has
not been considered. The proposed localization method will be
testified in more harsh field experiments.
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Vincent, J., Labbé, M., and Lauzon, J. S. (2020). “Dynamic object tracking

and masking for visual SLAM,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) (Las Vegas, NV: IEEE),

4974–4979.

Wang, H., Wang, C., and Xie, L. (2021). Intensity-SLAM: intensity assisted

localization and mapping for large scale environment. IEEE Rob. Autom. Lett.

6, 1715–1721. doi: 10.1109/LRA.2021.3059567

Frontiers in Neurorobotics | www.frontiersin.org 15 July 2022 | Volume 16 | Article 914353

https://projects.asl.ethz.ch/datasets/
https://doi.org/10.1109/ACCESS.2020.2983121
https://doi.org/10.1109/TRO.2021.3075644
https://doi.org/10.1109/TSMC.2017.2757462
https://doi.org/10.1109/LRA.2018.2849603
https://doi.org/10.1109/TPAMI.2017.2706685
https://doi.org/10.1109/ACCESS.2019.2952161
https://doi.org/10.1109/TRO.2016.2623335
https://doi.org/10.1109/IVS.2018.8500714
https://doi.org/10.1109/TRO.2015.2463671
https://doi.org/10.1109/LRA.2018.2866205
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
https://doi.org/10.1109/TPAMI.2016.2577031
https://vision.in.tum.de/data/datasets
https://vision.in.tum.de/data/datasets
https://doi.org/10.1109/LRA.2021.3059567
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhou et al. UAV Based Navigation

Wang, R., Schworer, M., and Cremers, D. (2017). “Stereo DSO: large-scale direct

sparse visual odometry with stereo cameras,” in IEEE International Conference

on Computer Vision (ICCV) (Venice: IEEE), 3903–3911.

Younes, G., Asmar, D., and Zelek, J. (2019). “A unified formulation for visual

odometry,” in IEEE/RSJ International Conference on Intelligent Robots and

Systems (Macau: IEEE), 6237–6244.

Zhang, M., and Li, Z., and Song, Y. (2020). “Optimization and comparative

analysis of YOLOV3 target detection method based on lightweight network

structure,” in IEEE International Conference on Artificial Intelligence and

Computer Applications (ICAICA) (Dalian: IEEE), 20–24.

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those

of the authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the reviewers.

Any product that may be evaluated in this article, or claim that may

be made by its manufacturer, is not guaranteed or endorsed by the

publisher.

Copyright © 2022 Zhou, Yu and Ma. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The

use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 16 July 2022 | Volume 16 | Article 914353

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	UAV Based Indoor Localization and Objection Detection
	1. Introduction
	2. Method of Indoor Localization
	2.1. Direct Method Based Visual Odometer
	2.2. Step I. Direct Method Based Pose Estimation
	2.3. Step II. Alignment of the Feature Pixels 
	2.4. Step III. Pose Optimization
	2.5. Binocular Based Spatial Point Depth Estimation
	2.5.1. Triangulation Ranging Model
	2.5.2. Depth Estimation


	3. Object Detection and Position Estimation
	3.1. Algorithm Framework
	3.2. The Estimate of the Target Spatial Position

	4. Experiments for Indoor UAV Fast Localization and Object Detection
	4.1. Experiments of Localization on Public Data
	4.1.1. Processing Time Evaluation
	4.1.2. Position Accuracy Evaluation

	4.2. Experiments of Target Detection on Public Data
	4.2.1. Image Object Detection
	4.2.2. Object Spatial Position Estimation

	4.3. Field Experiments
	4.3.1. Indoor Positioning Test
	4.3.2. Object Detection Test


	5. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References


