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Multiple sclerosis (MS) is an autoimmune and neurodegenerative disease resulting

in motor impairments associated with muscle weakness and lack of movement

coordination. The goal of this work was to quantify upper limb motor deficits in

asymptomatic MS subjects with a robot-based assessment including performance and

muscle synergies analysis. A total of 7 subjects (MS: 3 M−4 F; 42 ± 10 years) with

clinically definite MS according to McDonald criteria, but with no clinical disability, and 7

age- and sex-matched subjects without a history of neurological disorders participated in

the study. All subjects controlled a cursor on the computer screen by moving their hand

or applying forces in 8 coplanar directions at their self-selected speed. They grasped

the handle of a robotic planar manipulandum that generated four different environments:

null, assistive or resistive forces, and rigid constraint. Simultaneously, the activity of 15

upper body muscles was recorded. Asymptomatic MS subjects generated less smooth

and less accurate cursor trajectories than control subjects in controlling a force profile,

while the end-point error was significantly different also in the other environments.

The EMG analysis revealed different muscle activation patterns in MS subjects when

exerting isometric forces or when moving in presence of external forces generated by a

robot. While the two populations had the same number and similar structure of muscle

synergies, they had different activation profiles. These results suggested that a task

requiring to control forces against a rigid environment allows better than movement tasks

to detect early sensory-motor signs related to the onset of symptoms of multiple sclerosis

and to differentiate between stages of the disease.
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INTRODUCTION

Multiple sclerosis (MS) is the most widespread disabling
neurological condition of young adults around the world
(Browne et al., 2014; Thompson et al., 2018). Nearly 75% of
people with MS experience upper limb dysfunctions such as
tremor, coordination deficits, and muscle weakness (Bertoni
et al., 2015; Thompson et al., 2018; Valè et al., 2020). These
symptoms severely reduce their quality of life (Mokkink et al.,
2015; Thompson et al., 2018), which might be further impaired
by the rise of pain and fatigue worsening with the progression
of the disease over time (Kister et al., 2013). Because of the
high risk of future disability, the detection of the onset of
subtle functional impairments is crucial in the early stages and
in the asymptomatic phase of the disease. Asymptomatic MS
describes a clinically silent disease state ofMS usually incidentally
discovered after imaging or other diagnostic exams performed,
for example, for routine check-ups. Magnetic resonance imaging
(MRI) and clinical tests have suggested that in asymptomatic
MS subjects despite the morphological evidence of subclinical
disease, the CNS damage remains very limited, and unknown
protective mechanisms prevent its clinical manifestation in these
individuals (Stefano et al., 2006; Siva, 2013; Amato et al.,
2022).

In clinical practice, standard tests like Expanded Disability
Status Scale (EDSS) (Yozbatiran et al., 2006) are used to evaluate
motor impairments. Standard tests provide a global assessment
and not a fine characterization of the movement. This is a
limitation for a disease such as MS that can present a wide
range of symptoms. Given the variety of disabilities in MS,
outcome measures should be able to capture multiple clinical
dimensions (Uitdehaag, 2014). Technology-based, i.e., robotic-
based assessment can help, not only to train but also to
well characterize and quantify motor impairment following a
neurological injury or disease (Padua et al., 2007; Reinkensmeyer
and Boninger, 2012; Lamers et al., 2016). In the last decades,
robots have been proven to successfully help physiotherapists
in MS rehabilitation (Feys et al., 2015; Lamers et al., 2016;
Boffa et al., 2019; Gandolfi et al., 2019), given the advantages
of high-intensity training, for volume and duration, and higher
controllability of the training environment. And also in other
pathologies, robotic rehabilitation played a crucial role in
reducing upper limb dysfunctions, improving manual dexterity,
arm strength, and performance of the activities of daily living
(ADL) (Lamers et al., 2016; Halabchi et al., 2017; Kubsik-
Gidlewska et al., 2017). Despite their potential, robots have been
mostly used for rehabilitation and not as a tool to support and
develop assessment protocols able to increase the knowledge
of the mechanisms underlying the impairment of upper body
functions after MS. Robots are excellent platforms to control the
task, providing different external forces and allowing quantitative
and repeatable motor performance measures that can be used to
assess motor recovery in people with MS (Casadio et al., 2007;
Solaro et al., 2007; Carpinella et al., 2014; Pellegrino et al., 2015,
2018; Simmatis et al., 2020; Valè et al., 2020). Robotic set-ups
have been used with people with MS while performing planar

movement in different mechanical environments using an end-
effector robot (Padua et al., 2007; Solaro et al., 2007; Vergaro
et al., 2010; Carpinella et al., 2012; Pellegrino et al., 2018), or
while MS subjects were performing tasks in 3D, instrumenting
upper limb with EMG sensors and/or motion capture trackers
(Padua et al., 2007; Pellegrino et al., 2015; Lamers et al., 2016;
Gandolfi et al., 2019; Valè et al., 2020). A multimodal assessment
of kinematic and muscle activations allows to consider motor
control and behavior, particularly relevant for neurological
diseases as neural deficits may be masked at the kinematic level
by compensatory strategies and kinematic impairments are a
result of the effect of the neural deficits on muscle activation. The
evaluation of behavioral parameters together with the measure
of neurophysiological signals, such as the muscular (EMG)
activity, and the extraction of muscle synergies opened the
possibility for a comprehensive characterization of the origin,
the expected prognosis, and the functional consequences of
motor impairments after symptomatic MS. Muscle synergies,
by describing how groups of muscles activate together while
performing a motor task, have been proven to be a good
descriptor of motor coordination in unimpaired individuals and
in people with neurological diseases (Cheung et al., 2009, 2012;
Tropea et al., 2013; Ting et al., 2015; Torricelli et al., 2016;
Pellegrino et al., 2018, 2021a). At the same time, they were
able to differentiate between normal and pathological behavior
in different conditions like stroke (Cheung et al., 2009; Tropea
et al., 2013; Pellegrino et al., 2021b), MS (Lencioni et al., 2016;
Pellegrino et al., 2018), or spinal cord injury (Barroso et al., 2015),
resulting in a useful clinical tool (Safavynia, 2011; Torricelli et al.,
2016).

We hypothesize that an instrumented, controlled, and
multimodal assessment based on a robot-assisted analysis
supported by EMG data collection and analysis, such as muscle
synergies analysis, is able to detect minimal subtle abnormalities
in upper limb movements. We expect this to be particularly
relevant whenMS is asymptomatic and the standard clinical tests
like EDSS are not able to detect motor impairment, and only
magnetic resonance imaging is detecting abnormalities in the
white matter of such asymptomatic subjects (Pontillo et al., 2022;
Schiavi et al., 2022; Zhang et al., 2022). This method can provide
objective data, which could be then utilized for the quantitative
evaluation of the course of the disease or of the response to
specific therapeutic strategies. So far, this approach has not been
fully exploited to study asymptomatic MS (Solaro et al., 2007;
Casadio et al., 2008).

Therefore, the goal of this study was to identify and
characterize deficits in motor control and behavior of the
asymptomatic MS population in different dynamic and isometric
planar tasks. Starting from a method grounded in the literature
and already tested with symptomatic MS and stroke subjects
(Pellegrino et al., 2018, 2020, 2021b) based on a robotic
manipulandum to control reaching movements for a quantitative
and repeatable assessment of upper limb kinematics, we
investigated how kinematics and muscle activity were affected by
the disease and by task features, in particular when interaction
forces change.
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MATERIALS AND METHODS

Participants
A total of seven subjects with clinically definite MS according to
McDonald (MS: 3 M−4 F; 42 ± 10 years; 3 subjects with EDSS
= 1 and 4 subjects with EDSS = 0) with no clinical disability,
and seven healthy age- and sex-matched control subjects (C: 3
M−4 F; 42± 9 years) participated in this study. All subjects were
right-handed, i.e., for all subjects, the right and left sides of the
body were respectively the dominant (D) and non-dominant side
(ND). Control subjects did not present any evidence or known
history of skeletal or neurological diseases, and they exhibited
intact joint range of motion and muscle strength. Inclusion
criteria for MS subjects were the following: clinically definite
MS according to McDonald criteria; Expanded Disability Status
Scale (EDSS < = 1); Fatigue Severity Scale (FSS ≤ 20); presence
of neurological signs only, but no signs or symptoms at upper
limbs and consequently, “normal” score for the “arm” portion
of the Scripps’ neurological rating scale (Koziol et al., 1999) for
the sensory (3 out of 3), motor (5 out of 5), and cerebellar (5
out of 5) systems; stable phase of the disease (no relapses in the
last 3 months). The exclusion criteria were: mini-mental state
examination (MMSE)<28, treatment with corticosteroids within
the previous 3 months, and symptomatic oculomotor signs or
visual acuity <8/10.

The study was approved by the local Ethical Committee
(Comitato Etico Regionale Liguria, 06-10-2014, 201REG2014)
and conformed to the ethical standards of the 2013 Declaration
of Helsinki. Each subject provided written informed consent to
participate in the study and to publish individual data.

Experimental Set-Up and Procedure
The protocol consisted of a single session of tests lasting about
2 h. Subjects sat on a chair and grasped the handle of the planar
robotic manipulandum (Casadio et al., 2006), Figure 1A. The
robot had low friction and inertia, zero backslash, and was
actuated by a pair of direct-drive brushless electric motors.

Their forearm and wrist were restrained by means of suitable
holders to remove the effect of the gravity and to limit prono-
supination strategies. The position of the seat was adjusted
in such a way that the movements were restricted to the
horizontal plane. A chair provided secure back support and two
belts prevented appreciable trunk movements. A 19-inch LCD
computer screen was placed vertically in front of the subjects,
around one meter away, at eye level.

MS and control subjects had to control a cursor moving on the
screen. In the dynamic tasks, the cursor motion was controlled
by the movement of the hand grasping the manipulandum. In
the isometric case (Figure 1B), the cursor was controlled by
the two components of the force in the same plane (i.e., the
plane parallel to the floor). About 1N of force exerted on the
sensor caused a shift of 1.4 cm of the cursor position on the
screen. The robot encoders recorded the end-effector position. A
force sensor (Gamma SI 13010, ATI Industrial Automation Inc.)
restrained to a fixed position measured the force applied to it in
the isometric tasks.

Participants performed the experiment with their right-
dominant (D) and left-non dominant (ND) hands separately.
Subjects interacted with four different mechanical environments
as in (Pellegrino et al., 2018, 2021b), Figure 1C. In particular:

1- Assistive force field (AF). A constant assistive force field
attracted the hand of the subjects toward the peripheral target
(force amplitude: 5N).

2- Null force field (NF). The hand of the subjects moved in the
workspace with no external forces acting on it.

3- Resistive force field (RF). A resistive force field attracted the
hand of the subjects toward the center of the workspace,
i.e., an elastic force opposed the subjects’ movements toward
the peripheral targets (linear spring stiffness coefficient was
15 N/m).

4- Isometric force task (IF). The subject’s hand applied isometric
forces to reach the peripheral targets. To note that in this
task subjects held a fixed force sensor instead of the handle
of the manipulandum.

The task consisted in reaching eight targets positioned in
eight equally spaced directions and placed 14 cm away from a
central target. This distance corresponded to a displacement of
14 cm of the end-effector in the FS, AF, and RF tasks, and to
a 10N force step for the IF task; Figure 1B. Each target (green
circle, 10mm radius) was presented five times in random order.
Therefore, subjects performed 40 center-out movements per task,
for a total of 160 center-out movements for each arm. Each target
was presented again only after all eight targets had been reached.
The cursor (yellow circle, 5mm radius) position corresponding
to the motion or the force applied at the robot end-effector
was continuously displayed during the execution of all tasks.
All subjects started the experiment with the dominant (right)
arm. The different tasks were presented in random order within
each arm. Subjects were asked to reach the targets as accurately
as possible, at their self-selected speed (no time constrain). The
protocol required a minimum of 2min break between each task.
Subjects were allowed to rest when and as long as they needed.

We recorded muscle activity of 15 muscles from each
upper limb with surface electrodes for electromyography
(CometaWavePlus, Cometa Srl, Italy). Electrodes were placed
according to the guidelines of the Surface Electromyography for
the Non-Invasive Assessment of Muscles European Community
project–SENIAM (Hermens et al., 2000) and Anatomical
guideline (Perotto and Delagi, 2005) on the following muscles
like in previous studies (Pellegrino et al., 2018, 2021a,b):
triceps brachii long (TB-long) and lateral head (TB-lat),
biceps brachii short (BB-short) and long head (BB-long),
brachioradialis (BRAD), brachialis (BRA), pronator teres
(PRON), infraspinatus (INFR), latissimus dorsi (LAT), upper
trapezius (TRAP), rhomboid major (RHOM), pectoralis major
(PECT), anterior (DELT-ant), medial (DELT-mid) and posterior
(DELT-post) deltoid.

Data Analysis
Task Performance
Movement and force trajectories were sampled at 60Hz and
smoothed by using a 6th order Savitzky–Golay filter (cutoff
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FIGURE 1 | (A) Experimental setup for the movement tasks. Subjects held the handle of the planar robotic manipulandum and made reaching movements toward

eight targets presented on a computer screen placed in front of them. The targets are shown as green circles. (B) In the force task, subjects did not move their arm

and hold with their hand a fix force sensor. The movement of the cursor in the screen was controlled by the isometric force applied by the subjects to the force sensor.

Targets and directions were the same in both tasks. We considered equivalent directions that corresponded in joint coordinates and the left-arm movement/forces

(and corresponding cursor trajectories) were mirrored at the midline in the endpoint space. (C) Experimental protocol. Tasks were performed in four different

mechanical environments: assistive force (AF), null force (NF), resistive force (RF) and isometric force (IF). Subjects executed the task with their right-dominant (D) and

left-non- dominant (ND) arms.

frequency: 11Hz for the movement signals and 8Hz for the
force signals), which was also used to estimate the subsequent
time derivatives of the trajectory. A lower cutoff frequency was
chosen for the force because the signals read from the force sensor
were noisier than the movement signals read from the encoders.
We focused on the center-out cursor movements, i.e., each trial
considered in the movements from the moment in which the
cursor is in the central target until the moment in which the
cursor is in the peripheral target. The cursor movement onset
was defined as the first time instant in which the cursor speed
exceeded the threshold of the 10% of the maximum peak speed
for the movement task while (Casadio et al., 2008) the movement
ended when the cursor was inside the target and its speed
underwent and remained under the same threshold (Casadio
et al., 2008). We analyzed the following performance indicators:

- Average speed (m/s)–average speed of the cursor movement.
- Normalized Jerk index (adimensional)–the square root of the

jerk; i.e., the third time derivative of the cursor position,
averaged over the entire movement duration and normalized
with respect to cursor movement duration (MD) and path
length (PL) (Teulings et al., 1997).

Normalized Jerk =

√

1

2

∫

dtj2∗
MD5

PL2

This indicator is a measure of smoothness, high values
correspond to jerky movements, indicating impaired
motor control.

- 100-ms aiming error (deg)–the angular difference between the
target direction and the actual movement direction, estimated
in the first 100ms of the movement or of the force exertion
(Casadio et al., 2007, 2008).

It indicates the ability to plan the movement, i.e., feed-forward
component of motor control.

- End-point error (m)–the distance between target and cursor
position when the speed of the cursor, after reaching a peak,
felt for the first time below 10% of the maximum speed of that
movement trial (Casadio et al., 2007). It indicates accuracy in
the execution of the movement.

EMG Analysis

Preprocessing and muscle activations
EMG signals were acquired at 2 kHz, band-pass-filtered (30–
550Hz), rectified, and then low-pass-filtered (cutoff: 10Hz) to
obtain the EMG envelopes (Cheung et al., 2009, 2012). The
envelope of each muscle signal was normalized by its median
value obtained during the center-out cursor movements of all
the tasks, i.e., for each subject, we computed the median over all
his/her EMG signals considered in the study. The normalization
based on the median value instead of the maximum is more
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robust against high-amplitude spikes arising from noise (Cheung
et al., 2009). The normalized EMG envelopes for each subject,
arm, task, and repetition were segmented according to the 8
task directions.

Spinal maps
Pre-processed EMG signals were used to estimate the
correspondent spatiotemporal organization of the MN
activity in the spinal cord (Yakovenko et al., 2002; Coscia
et al., 2015; Pirondini et al., 2016; Pierella et al., 2020). To
characterize the spinal motor output, EMG activity was
mapped onto the estimated location of MN pools innervating
the different muscles of the upper limb using weighting
coefficients as reported by Kendall (McCreary and Provance,
1993), Supplementary Table 1. Specifically, for each spinal
segment, the indirect measure of MN activity was computed
as the weighted summation of all EMG signals innervated
by such segment, where weight coefficients were those tabled
in literature (McCreary and Provance, 1993) and reported in
Supplementary Table 1. The map was limited to levels between
C2 and T1 in relation to the set of recorded muscles. To compute
the spinal maps, the normalized EMG envelope of each muscle
related to each trial was resampled on 100 time points. To
compute the spinal map, S, for each segment, j, we used the

following equation: Sj =

∑nj
i=1 ki,jEMGi

nj
; where nj is the number

of EMGi waveforms corresponding to the jth segment and ki,j
is the weighting coefficient of the ith muscles following the
values reported in the Kendall’s chart. To describe the similarity
between two spinal maps, we used the 2D Pearson’s correlation
coefficient (ρ2D−GROUP) (Yakovenko et al., 2002; Coscia et al.,
2015; Pirondini et al., 2016; Pierella et al., 2020). The averaged
2D Pearson’s correlation coefficient obtained by comparing
each MS subject, each arm and task with the correspondent
control subjects were considered representative of the degree of
similarity between the MS group and their respective control
groups. To obtain a reference value for the degree of similarity,
the spinal maps of each control subject within the same arm
and task were compared with the spinal maps of all other
control subjects using Pearson’s correlation coefficient and
then averaged across the control subjects (ρ2DINTRA−GROUP)
(Pellegrino et al., 2020, 2021a). In the same way, for each task, we
estimated the similarity between arms (ρ2D−ARM) within groups
for each population.

Muscle synergies
The same preprocessed EMG dataset used for the spinal maps
was used to extract the muscle synergies for each subject,
task, and arm. In detail, we applied the non-negative matrix
factorization (NNMF) algorithm (Lee and Seung, 2001; Tresch
et al., 2006; Cheung et al., 2009) to a matrix obtained by
concatenating for each muscle (rows), the normalized EMG
envelopes related to the eight directions (columns) averaged over
the five repetitions. The NNMF algorithm extracts from the EMG
envelopes a defined number of positive components or muscle
synergies, represented by a matrix of weights (W) accounting
for the participation of each muscle in each synergy, and a
matrix of activation coefficients (H) representing the timing of

activity of each muscle synergy. For each subject, to objectively
determine the minimum number of muscle synergies required
to reconstruct the data set, we used the common or the higher
number obtained from two different methods based on the
inspection of the R2 curve that represents the fraction of total
variation explained by the synergy model (d’Avella et al., 2006).
The first method estimated the minimum number of synergies
that achieved an R2

> 90% (Tresch et al., 2006). The second
method instead is detecting a change in the slope of the R2 curve
(Berger and d’Avella, 2014). For the second method, a series of
linear regressions were performed on the portions of the curve
included between the N-synergy (N = 1 to 16) and its last point
(i.e., 16th synergy). N was then selected as the minimum value for
which themean squared error of the linear regression was<10−4.
In case of a mismatch between the two criteria, the larger N was
chosen (Berger and d’Avella, 2014). The same number of muscle
synergies was retained across subjects within the same arm, task
and group to compare the weights and activation coefficient
vectors of muscle synergies among populations; the number
was established as the rounded average across subjects (Coscia
et al., 2014). To compare muscle synergies among tasks, arms,
and groups, the weight coefficients of each muscle synergy were
ordered according to theirmatching with a set of reference weight
coefficients (Pirondini et al., 2016; Pellegrino et al., 2018) using
the highest normalized scalar product between the two vectors
for each task (d’Avella et al., 2003). To obtain the referencemuscle
synergies, for each condition and each arm separately, we created
a set of reference muscle synergies by first pooling together the
weight coefficients related to the right and left arms for control
subjects. Then, according to Cheung et al. (2012), we used a
hierarchical clustering procedure based on the minimization of
the Minkowski distance between vectors to categorize them. The
number of clusters was equal to the number of muscle synergies
extracted for each task. We obtained the set of reference muscle
synergies by averaging the synergy vectors within each cluster.
Then, we ordered the synergy vectors from each subject, in
each task, and in each arm separately, with respect to the set of
reference muscle synergies obtained.

To assess the similarity between groups in all tasks and arms
for the weight coefficients, we computed the scalar product
(DOTGROUP) between the synergy vectors of each arm and task
of the two groups, and then we calculated the mean values
across subjects and synergies. In the same way, we estimated the
similarity between sides (DOTARM) within each group for the AF,
NF, RF, and IF tasks. We evaluated the similarity of the activation
coefficients of muscle synergies by using the Pearson correlation
(Tropea et al., 2013). Analogously to the weight coefficients, we
estimated the similarity between groups (rGROUP) and between
arms (rARM) in all tasks. To obtain a reference value to assess the
degree of similarity between groups, the weight and the activation
coefficients of each control subject were compared, respectively,
with the weight and activation coefficients of all other controls
and then averaged across muscle synergies and across individuals
(DOTINTRA−GROUP and rINTRA−GROUP, respectively) (Pellegrino
et al., 2018, 2020). To evaluate the effect of task and directions on
the coefficients’ activation profiles (H), we calculated their root
mean square value (RMSsyn) for each direction and task (Coscia
et al., 2014; Pellegrino et al., 2020).
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Statistical Analysis
To test if the indicators related to behavioral performance, the
spinal maps and the number and similarity measures of muscle
synergies differed between the two subject groups and depended
on the task or on the arm dominance, we ran repeated-measures
analyses of variance (rANOVA) with two within-subjects’ factors:
“task” (1–4: FS, AF, RF and IF), “arm” (1–2: D and ND arm);
and one between groups factor, “disease” (1–2: C and MS).
Furthermore, to investigate if the indicators of similarity between
the two body sides in terms of behavioral indicators, spinal maps
and muscle synergies (i.e., DOTARM and rARM) differed between
the two subject groups and depending on the task, we ran a
rANOVA with one within-subjects’ factors: “task” (1–4: FS, AF,
RF and IF), and one between groups factor, “disease” (1–2: C
and MS).

The assumption of sphericity was tested on each variable using
Mauchly’s test. If the assumption was rejected the Greenhouse-
Geisser correction was applied. Post hoc analysis (Fisher’s
LSD test) was used to verify statistically significant differences
obtained with repeated measures ANOVA. The significance level
was set at p < 0.05. The statistical analysis was performed within
the Statsoft environment.

RESULTS

The two populations had similar task performance when relying
on hand movements in the dynamic exercises, while relevant
differences emerged when relying on the force applied by the hand
in the static exercise.

As expected, from the visual inspection of cursor trajectories
we could not notice relevant differences between asymptomatic
MS subjects and their controls when performing a movement
task. While differences emerged from the cursor trajectories
generated during the force task. An example displaying the cursor
trajectories of an MS and the matched control participant is
shown in Figures 2A,B, for the movement in the null field and
for the force exerted in the static task, respectively. In the latter
case, with respect to controls, the MS subject had the cursor
trajectories corresponding to the force profiles more entangled,
with several overshoots of the target, especially when performing
the task with the ND arm.

The two populations performed the required tasks at a similar
speed (C: 0.156 ± 0.011 m/s SE, MS: 0.157 ± 0.013 m/s SE). No
significant effect of the pathology emerged when considering all
tasks for all indicators (Figure 3). AsymptomaticMS subjects and
their controls had more similar performance when controlling
the cursor with their hand motion, than with their force in the
static task. Indeed, in the latter case, MS participants with respect
to their controls generated less smooth [disease x task: jerk index
F(3,36) = 0.32 p = 0.021] and accurate trajectories both in the
initial (planning) part of the trajectory and at the end of the
first sub-movement [100-ms aiming error F(3,36) = 2.59 p =

0.03, end-point error F(3,36)= 1.49 p< 0.001] particularly when
controlling a force trajectory, IF task (post hoc jerk: p = 0.036,
100-ms aiming error p = 0.026, end-point error p = 0.006).
The difference between MS and control subjects in the end-point

error resulted statistically significant also for the NF (p = 0.026)
and the RF tasks (p= 0.014).

Additionally, a slight, but significant asymmetry between the
two sides of the body was observed for all participants, both MS
and controls: there was a significant effect of the arm for the
100-ms aiming error [F(1,12) = 33.93 p < 0.001]. No significant
differences between the two populations related to the similarity
of performance between the two sides of the body were observed.

Asymptomatic MS participants had different muscle activation
patterns than controls when exerting forces or when moving in
presence of external forces generated by a robot. These differences
were not evident when they moved their arm in absence of
external forces.

As for the analysis of muscle patterns, first we used spinal
maps as a tool to describe the spatiotemporal organization of the
muscle signals at the level of the spinal cord. In control subjects,
the spinal maps were characterized by a main activation from
10 to 60% (Figure 4A) of the trial, and from 10 to 100% in
the static task (see Supplementary Material). This activity was
observed between C3 and C6 for the lateral (right-left, i.e., 0◦

and 180◦) directions and for the directions closer to the body
of the subjects (i.e., 270◦ and 315◦) while the activity was more
diffuse along all the spinal segments in the directions toward
targets further away from the subject (i.e., 45◦ 90◦ 135◦); see
Figure 4A. The MS subjects had a different organization of
the spinal maps with respect to control subjects confirmed by
differences in the 2D Pearson’s correlation coefficient ρ2D−GROUP

[F(1, 12) = 8.31 p < 0.001; disease x task effect: F(3, 36) =

19.5, p < 0.001; see Figure 4B], mainly due to the prolonged
main burst of the spinal map activity for MS subjects, especially
in the directions involving an extension of the arm (i.e., 45◦,
90◦, 135◦) for the RF, NF, and AF tasks (all post hoc tests p <

0.001), see Supplementary Material for spinal maps of NF, AF,
and IF tasks. This was observable in both the dominant and
non-dominant arm. Additionally, for both populations, there was
a significant effect of the arm [F(1,12) = 7,0 p = 0.019] that
consisted in a more diffuse activity along all the cervical levels
while moving the dominant arm for the directions involving arm
extension toward targets on the opposite side of the arm used
to execute the task (i.e., 90◦ 135◦ 180◦). The spinal maps of the
two arms were more similar for the controls than for the MS
subjects [ρ2D−ARM−pathology effect: F(1,12) = 18.47, p = 0.01,
see Figure 4C]. Finally, the mechanical environment determined
significant differences in the spinal maps when comparing arms
of the same subject [ρ2D−ARM− disease x task effect: F(3, 36) =
10.9, p = 0.001; post hoc AF and NF: p = 0.01 and IF: p = 0.02];
see Figure 4C.

Asymptomatic MS and control subjects, had same number
and similar structure, but different activation profiles of the
muscle synergies.

The number of synergies was not significantly different
between populations [F(1,12) = 3.7, p = 0.46] and between the
dominant and non-dominant arms for both populations [F(1,20)
= 1.77, p = 0.38]. The number of synergies was different among
tasks [task effect: F(3,36) = 98.69 p = 0.001]. In the dynamic
tasks: NF, AF, and RF tasks five muscle synergies were extracted
for dominant (NF: 5.14 ± 0.4SE, AF:4.94 ± 0.34SE and RF: 5.07
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FIGURE 2 | Example of trajectories of the cursor movement toward the eight targets during the null force task (A) and during the static force task (B) for a MS subject

(bottom row) and the matched control subject (top row). All subjects executed the same task with the left-ND (left column) and with the right-D arm (right column), for

sake of simplicity we reported the data of the tasks performed with the right-dominant arm.

± 0.42SE) and non- dominant (NF: 4.97 ± 0.29SE, AF: 4.65 ±

0.34SE and RF: 5.21 ± 0.42SE) arm of control subjects and for D
(NF: 5.42 ± 0.20SE, AF: 5.47 ± 0.42SE and RF: 5.41 ± 0.36SE)
and ND arm (NF: 4.68± 0.47SE, AF: 5.25± 0.45SE and RF: 5.11
± 0.74SE) of MS subjects. While in the IF task, only four muscle
synergies were identified for dominant (control 3.52 ± 0.48MS
subject 3.85 ± 0.26) and non-dominant (control 4.01 ± 0.30MS
subject 3.52± 0.36) arm of both populations.

The organization of the muscle synergies in response
to the mechanical environment that characterized each task
did not change among subjects of the two populations and
between arms. Indeed, we did not find a significant global
difference when comparing the DOTINTER−GROUPS obtained
from the comparison between MS and control subjects and the
DOTINTRA−GROUP obtained from the comparison within the
control group [F(1,12) = 0.97, p = 0.41; Figure 5A]. In the
comparison of D and ND arm (DOTARM), we did not find
any difference in weight coefficients of the dominant and non-
dominant arm (DOTARM) of both controls andMS subjects in all
tasks [F(1,12)= 0.74, p= 0.34; Figure 5C].

Conversely, when investigating the synergies temporal
activations comparing by Pearson correlation, the activation
profiles ofmuscle synergies between the two populations (rGROUP
Figure 5B) and between D and ND arm (rARM, Figure 5D),
we detected relevant differences. As for the comparison
between the two populations, we found a significant difference
in the activation profiles of muscle synergies between the
rINTER−GROUPS and rINTRA−GROUP [F(1,12) = 4.891, p < 0.047;
Figure 5B], The synergies 2-3-4 had the greater differences
between groups as described below.

In Figure 6, we reported an example of weight coefficient and
in Figure 7 the RMS of the activation profiles of the 5 extracted
muscle synergies for the NF task. In particular, the following
synergies were extracted:

Synergy 1 principally involved the activity of muscles
controlling the upper arm during elbow extension for both
arms (TB-long and TB-short). It was mainly active during
movements/force exertion directed toward 45◦, 90◦, and 135◦.
For asymptomatic MS subjects, in the dynamic tasks, it was also
active during movements toward 0◦ and 180◦.
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FIGURE 3 | Behavioral indicators of the cursor trajectories during the motion tasks (motion trajectories) in absence of external force (NF), in presence of assistive (AF)

or resistive (RF) force and during the isometric task (IF, force profiles). In particular average speed (A), Jerk index (B), 100ms-aiming error (C) and end-point error (D).

Control subjects (C) and MS subjects (MS) are shown respectively with gray and red colors as indicated in the legend. Solid colored bars and striped bars represent

the right-D and left-ND arm. The error bars indicate the standard error of the indicators. *Indicates significant differences (p < 0.05) between subject groups (C vs. MS)

for each task.

Synergy 2 included the activity of muscles controlling the
upper arm during horizontal shoulder abduction and extension,
it principally involved the DELT-ant and DELT-med, with
contributions from other muscles (i.e., LAT and PECT). For
controls, this synergy in the dynamic tasks was mainly active
toward 90◦ and 45◦ while in the isometric task was mainly active
for forces exerted toward 0◦ and 315◦, while in asymptomatic MS
participants for the RF and IF tasks, it was mainly active in the
directions 270◦ and 315◦.

Synergy 3 principally involved the activity of muscles
controlling the upper arm during horizontal shoulder adduction
and flexion (DELT-post, RHOM, and INFR). For controls, it was
mainly active during movements/force exertion directed toward
0◦, 270◦, and 315◦, while for the asymptomatic MS participants
in the dynamic tasks, it was mainly active in the directions 45◦,
180◦, and 135◦.

Synergy 4 principally involved the TRAP, with minor
contributions from other muscles. In control subjects, it
facilitated the stabilization of the shoulder in themovement/force

toward the body, i.e., 225◦, 270◦, and 315◦, while in asymptomatic
MS, the activation of this synergy wasmore similar in the forward
and backward directions.

Synergy 5 principally involved muscle participating in the
flexion of the arm and adduction of the shoulder (BB-long, BB-
short and PECT). Synergy 5 was more active during movements
directed toward the body of the subject, mainly in the 225◦- 270◦

directions. This directionality of the activation profiles was not
observed for asymptomatic MS subjects.

In the IF task, synergy 5 was absent and the contribution of
the BB-long and BB-short was distributed in the other synergies;
while the activity of PECT muscle was presented in synergy 2.

As for comparison between the D and ND sides, the
correlation between the activation profiles of the two arms
(rARM) for both groups did not result in a significantly different
[F(1,12) = 0.263 p = 0.617] Figure 5D. The limited number of
subjects did not allow significant differences between arms seen
in previous works to emerge, but it was sufficient to highlight
differences between MS and control subjects.
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FIGURE 4 | (A) Spinal maps obtained from the resistive field task for control (first two rows) and MS subjects (last two rows) divided by directions and arm (left-ND

and right-D). On the x-axis, the trial duration is represented as a percentage. Spinal maps refer to equal movements in the joint space, i.e., for each column, the top

panel indicates the corresponding target directions (gray target) for the right arm, while the corresponding target directions of the left arm were mirror symmetric with

respect to the vertical midline. (B) Mean and standard error of the inter-group similarity (ρ2D−GROUP) between control and MS subjects in presence of assistive (AF),

resistive (RF), isometric (IF) and in absence of external force (NF) for the dominant (solid-colored bars) and non- dominant (striped bars) arm. The gray bars, solid

colored and striped, reflect the intra-group degree of similarity in the control group respectively for the D and ND arm. (C) Mean and standard error of the between arm

similarity (ρ2D−ARM) for controls (C, gray bar), and multiple sclerosis subjects (MS, red bar) in presence of assistive (AF), resistive (RF) and in absence of external force

(NF). * Indicates significant differences (p < 0.05).

DISCUSSION

Besides fatigue, motion, and cognitive deficits, upper limb
dysfunction is one of the important characteristics of people
with multiple sclerosis (MS). In the early phase of the disease,
MS subjects might be asymptomatic, the disease might be silent,

and therefore, subjects do not present any appreciable deficit.
In this study, we wanted to test if a protocol, using a robotic
manipulandum and an EMG system, and a set of indicators
taking into consideration not only behavioral but also muscular
and motor coordination parameters allowed the identification
of differences in motor abilities between asymptomatic MS
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FIGURE 5 | Comparison of weight coefficients of muscle synergies by the scalar product (DOT) and activation coefficients by Pearson correlation (r). (A,B) MS

subjects (red bars) compared to control subjects (gray bars), i.e., inter-groups indicator for the dominant (D, solid-colored bars) and the non-dominant (ND, striped

bars) arm compared to the same indicator computed intra-group. (C,D) comparison between the two arms for MS subjects (MS, red bars) and control subjects (C,

black bars). The error bars represent the standard errors. * Indicates significant differences (p < 0.05) between subject groups.

subjects and their matched control subjects. We found that subtle
differences are detectable using such in-depth analysis. Task
performance based on the movement ability or force control
suggested that a force task is more sensitive to differences due
to the disease in MS people with no evident disability. The
cursor trajectories generated during this force task were different
between the two populations on visual inspection (Figure 2B),
while the trajectories generated during the dynamic tasks (NF,
AF and RF) were more similar (Figure 2A). In fact, force
trajectories generated by asymptomatic MS subjects were less
smooth and accurate than those of their controls, as already
highlighted in Vergaro et al. (2010) and Pellegrino et al. (2018).
Moreover, in accordance with previous works (Casadio et al.,
2007; Solaro et al., 2007; Vergaro et al., 2010; Valè et al.,
2020), MS subjects executed more inaccurate movements with
end-point errors higher that controls in a both force and
movement tasks.

The fact the IF task allowed to detect difference not observable
in movements tasks might be due to the fact that force
and motion are likely to have separate neural representations
(Casadio et al., 2015). Thus, it could be more challenging to
modulate a force exerted by the hand rather than moving the arm
in the workspace, i.e., the ability to control forces in isometric
conditions could be earlier and /or more affected by the disease
onset, revealing abnormalities in the related motor commands.

Therefore, this task could be further explored as sensitive tool
to detect differences between stages of the disease also in the
early phase.

As for the muscle patterns, we found that MS might influence
the ability to generalize and adapt muscle activation patterns
in different movement and force tasks even when the disease
did not manifest its evident motor symptoms. In fact, the
spinal maps highlighted additional differences between MS and
control subjects. Few studies applied this method to upper limb
movements of subjects with neuromotor disabilities (Coscia et al.,
2015; Pirondini et al., 2016; Pierella et al., 2020; Pellegrino et al.,
2021a,b), and to the best of our knowledge, none was focused
on asymptomatic MS subjects. We found that spinal maps were
sensitive to MS also in case of asymptomatic subjects. They
confirmed that the IF task represents a suitable task to detect
muscle activity deficits between MS and control subjects, with
different muscle patterns than in the RF task.

These differences in modulation and activation of specific
muscle groups in MS subjects suggested to further investigate
the coordinated activity of groups of muscles, i.e., the
muscle synergies.

We did not find any difference in the number of synergies
between asymptomatic MS and control subjects. This was
expected because it is in accordance with our previous study with
symptomatic MS subjects (Pellegrino et al., 2018) and with the
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FIGURE 6 | Weight coefficients of the muscle synergies during the task in absence of external forces (NF). Weight coefficients (W1 to W5) are shown for the two arms

(solid colored: right-D and striped: left-ND). Control subjects (C) and MS subjects (MS) are shown with different colors as indicated in the legend, gray and red. The

error bars represent the standard error.

literature (Clark et al., 2010; Cheung et al., 2012) suggesting a
correlation between the dimensionality of muscle synergies and
the level of the neurological motor and functional impairments.
The latter observation steamed from studies in stroke survivors,
e.g., Cheung et al. (2012) found that mildly impaired stroke
survivors have their muscle synergies similar to the control
subjects. Moreover, the number of muscle synergies both in the
movement and isometric tasks was consistent with what has been
already found by others with similar protocols (d’Avella et al.,
2006; Roh et al., 2013; Pellegrino et al., 2018). The isometric
task was characterized by a smaller number of synergies than the
movement tasks for both populations.

Also, the MS and control subjects did not show significant
differences in the structure of their muscle synergies. For both
populations, the analysis identified two primary synergies which
involved the distal muscles, one synergy that involved proximal
muscles and two synergies included shoulder muscles, as also

observed by other authors (Flanders and Herrmann, 1992;
d’Avella et al., 2006).

Conversely, the temporal activations of the muscle synergy
for asymptomatic MS subjects, as for symptomatic MS subjects
(Pellegrino et al., 2018), differed from that of the controls
in all tasks. Indeed, the activation of the muscle synergies
was less direction-specific than in controls. These results are
in line with the literature that used muscle synergy analysis
to highlight muscle coordination deficits in symptomatic MS
(Pellegrino et al., 2018) or other neurological conditions like
stroke (Safavynia, 2011; Cheung et al., 2012). In fact, as in our
case, specific synergies dominated by the activation of shoulder
muscles were altered both in chronic (Roh et al., 2013) and acute
(Tropea et al., 2013; Pierella et al., 2020) stroke subjects with
moderate impairment of the upper limbs.

In conclusion, taken together, these findings suggest that the
combined analysis of behavioral and muscle activation patterns
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FIGURE 7 | Polar plots of mean RMS for the activation profiles coefficients of the muscle synergies (H1–H5) in null force (NF, first column), assistive force (AF, second

column), resistive force (RF, third column) and isometric force (IF, fourth column). Each radial line represents one of the eight directions. For each direction, mean RMS

of the activation profile coefficients for control (C, gray) and multiple sclerosis (MS, red) subjects, respectively.

could improve the understanding of motor impairment in
subjects with asymptomatic MS and that such approach can
help extracting biomarkers useful to discriminate subjects with
and without MS since the early onset of the disease and in
the asymptomatic phase. We demonstrated that the interaction

with external forces is a powerful task to highlight meaningful
functional impairments in asymptomatic MS subjects. Indeed,
evident differences were visible in particular in the isometric
task or when the robot applied resistive forces. The behavioral
parameters describing movement quality, i.e., smoothness
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and accuracy, were sensitive to alterations in movement
execution due to MS disease. Spinal maps and muscle synergy
analysis revealed modifications of muscle activity in the MS
population providing additional insights on the possible different
characteristics of MS subjects with no clinical disability. A
cautionary note: due to the small sample size of the population
involved, this study is to consider a proof-of-concept study.
Future developments will consist in enlarging the MS population
with similar clinical conditions to further validate the results
and have widespread indications for monitoring the onset of the
first signs of sensory-motor disability and the design of proper
rehabilitation protocols.
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