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Locomotion mode recognition provides the prosthesis control with the

information on when to switch between di�erent walking modes, whereas the

gait phase detection indicates where we are in the gait cycle. But powered

prostheses often implement a di�erent control strategy for each locomotion

mode to improve the functionality of the prosthesis. Existing studies employed

several classical machine learning methods for locomotion mode recognition.

However, these methods were less e�ective for data with complex decision

boundaries and resulted in misclassifications of motion recognition. Deep

learning-based methods potentially resolve these limitations as it is a special

type of machine learning method with more sophistication. Therefore,

this study evaluated three deep learning-based models for locomotion

mode recognition, namely recurrent neural network (RNN), long short-term

memory (LSTM) neural network, and convolutional neural network (CNN),

and compared the recognition performance of deep learning models to the

machine learning model with random forest classifier (RFC). The models are

trained from data of one inertial measurement unit (IMU) placed on the lower

shanks of four able-bodied subjects to perform four walking modes, including

level ground walking (LW), standing (ST), and stair ascent/stair descent (SA/SD).

The results indicated that CNN and LSTMmodels outperformed other models,

and these models were promising for applying locomotion mode recognition

in real-time for robotic prostheses.

KEYWORDS

locomotion mode recognition, lower limb prosthesis, transportation mode

classification, deep learning-artificial neural network (DL-ANN), machine learning,

wearable device and IMU sensor, assistive devices
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1. Introduction

Able-bodied walkers can simply adjust their movements

in response to the transitions in different environments they

encounter during daily activities. It is a huge challenge for

amputees to cope with these topographic changes. Because they

lost all sensory feedback from their foot-ankle that are necessary

to deal with the transitions between different walking modes,

such as flat walking, stop walking, going up/down stairs, and

walking on slopes (Hansen et al., 2004; Prentice et al., 2004).

Additionally, the walking of amputees costs remarkably more

metabolic energy than that of healthy persons, resulting in

slower walking speeds, asymmetric gait patterns, and decreased

stride length compared to the non-disabled at the same velocities

(Herr and Grabowski, 2012; Ledoux et al., 2015).

In the field of prosthesis design, researchers have been

developing active foot prosthetics for reproducing the dynamic

functions of the limbs for the prosthetic wearers. Different

methods to detect gait phases and events were embedded in the

prosthetic control strategies to increase the accuracy of walking.

Xu et al. (2020) developed an algorithm online for the estimation

of gait phase based on capacitive sensing signals, which could

be applied to their robotic prosthesis to detect two phases. This

method can improve the detection accuracy and the smoothness

of the transition timing between two different gait phases of the

steps. Vu et al. (2018) introduced an algorithm for gait percent

prediction where a full gait cycle discretized 100% within one

cycle is predicted. Flynn et al. (2018) presented a prosthesis

with high-level control which was directed by a wrist-worn

touchscreen system. This system allowed the pilot to select the

high-level behavior of the machine that was in operation. Each

of these state machines consisted of trajectory generators for the

knee actuator, ankle actuator, and weight acceptance systems.

The prosthetic control programs were embedded with phase

and event detection and locomotion recognition algorithms for

walking in different terrains. The prosthesis can automatically

switch safely and smoothly between different control modes.

Therefore, many prosthetic research teams have focused on

developing the adaptation of the prostheses’ behaviors as

locomotion assistance scenarios when amputees transition from

different locomotion modes.

The performance outcomes of these locomotion recognition

systems vary depending on the types of sensors used, and the

algorithms applied. Al-dabbagh and Ronsse (2020) categorized

typical sensors that were employed for locomotion recognition

systems, both exteroceptive sensors and proprioceptive sensors.

Exteroceptive sensors, such as vision or ranging sensors,

measure the external environment to obtain the distances or the

depth of the object. Proprioceptive sensors capture the body’s

movements to provide information on the internal state of

the body. For instance, IMUs, electromyography (EMG), force

sensors, and pressure sensors-based systems are currently the

most popular choices as EMG is a lightweight and inexpensive

wearable sensor that specifically measures electrical muscle

activities produced by muscle movements when performing

tasks. EMG-based recognition studies produced high accuracy

(Huang et al., 2008; Pati et al., 2010; Kim et al., 2014). However,

the limitation of using this sensor requires sensors to be

integrated directly into the skin (Chen et al., 2013). Therefore,

EMG signals could be affected by environmental noise, shifts

in electrode positions, or even the loss of electrode sensor

contact caused by the moisture between sensors and the skin

such as sweating and humidity (Rafiee et al., 2011; Phinyomark

et al., 2013; Taborri et al., 2016). For instance, Huang et al.

(2008) presented a system that using 16 EMGs that could

distinguish between seven gait modes. However, their approach

suffered from EMG signal variations caused by physical changes,

which resulted in decreasing recognition performance over time,

especially in locomotion mode recognition for walking outside

the laboratory conditions. Using pressure-sensitive insoles is

another approach for locomotion mode recognition with a

simple method. This sensor measures the reaction force between

the human body and the ground (Chen et al., 2014, 2015;

Parri et al., 2017; Godiyal et al., 2018). The limitation of these

insole sensors is that their signals are affected by the sensor

positions. Additionally, this sensor is sensible to mechanical

failure given the high and repeated impact forces occurring

between the foot and the ground (Novak et al., 2014; Tiwari

and Joshi, 2020). IMU sensors are the most widely used for all

rehabilitation applications it provides accelerations and angular

velocities of the body part where they are placed to capture

the movements of the human walk (Ahmad et al., 2013; Young

et al., 2014; Zhang et al., 2014). Besides, IMU sensors are

compact, low-energy, enduring, and stable to measure the gait

data in various environments with high precision characteristics

of gait signals (Ahmad et al., 2013; Taborri et al., 2016; Vu

et al., 2020). Furthermore, the information of IMU signals is

applicable to machine learning-based recognition approaches,

allowing the algorithm to gain high performance of recognition

(Kim et al., 2019; Hu et al., 2021). Due to the above reasons, the

use of IMU sensors for the recognition system proposes three

criteria of prosthetic design: electric battery efficiency, sensor

durability, and aesthetics (Ahmad et al., 2013). Hence, IMU

sensor is commonly used for the rehabilitation fields, especially

in practical applications, and potentially applied for commercial

prostheses (Ledoux, 2018).

Labarrière et al. (2020) reported that various locomotion

recognition systems applied either classical machine learning or

pattern recognition techniques.Machine learning-basedmethod

involves numerous classifiers such as decision tree (Liu et al.,

2015; Han et al., 2021), random forest classifier (RFC) (Billah

et al., 2019), linear discriminant analysis (LDA) (Hargrove

et al., 2013; Tkach and Hargrove, 2013; Chen et al., 2015;

Liu et al., 2016), support vector machines (SVM) (Huang
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et al., 2011; Long et al., 2016; Zhou et al., 2016; Ai et al.,

2017; Tiwari and Joshi, 2020), quadratic discriminant analysis

(QDA) (Bhakta et al., 2020), XGBoost (Bhakta et al., 2020),

and artificial neural networks (ANN) (Woodward et al., 2016;

Hu et al., 2018a; Ma et al., 2020), as well as a type of ANN is

back propagation neural network (BPNN) (Gong et al., 2020).

Although these methods have demonstrated the advantages,

such as ease of use and fast training, by exploring data structures

and mapping functions, they are limited in capturing complex

data dependencies resulting in misclassifications. In addition,

classical machine learningmodels performwell only with certain

movement events such as heel strike or toe off. Therefore,

typical machine learning models for locomotion mode detection

require the use of mechanical sensors as force sensors, loadcells,

or pressure sensors to achieve better accuracy. We summarize

existing studies that employ machine learning techniques in

Table 5. Recently, deep learning approaches overcome the

limitations of basic machine learning methods due to their

effectiveness. Among hundreds of deep learning methods, some

deep learning models have been focused on locomotion mode

recognition. For instance, recurrent neural networks (RNN)

and the long short-term memory (LSTM) are among the most

promising models since they can obtain excellent performance

in learning time-series signals (Wang et al., 2018; Lu et al.,

2020a). The convolutional neural network (CNN) has been

employed regularly for terrain mode classification and human

activity recognition because it could learn features automatically

from simple to complex data by complicated layer-by-layer

structures, also from raw sensor signal inputs (Su et al., 2019;

Lu et al., 2020b; Tiwari and Joshi, 2020; Narayan et al., 2021).

Tables 4, 5 show the categorization of existing studies that used

basic machine learning and deep learning models based on an

outline of the material and methods and the accuracies of these

studies. More deep learning studies have been applied in recent

years due to their higher performance. While these existing

studies installed many sensors in their systems to take advantage

of only IMU sensor signals, we aim to reduce the number of

sensors by using only 6-axis IMU to save the space of sensor

positions and the cost of the prosthetic design. The contributions

of this research are as follows:

1. Machine learning and deep learning-based methods are

implemented to classify and detect four locomotion

modes, i.e., level ground walking (LW), standing (ST),

and stair ascent/stair descent (SA/SD). We implement

both traditional machine learning algorithms and deep

learning models.

2. This paper compares the performance of different deep

learning model approaches for the further development of

rehabilitation applications and prosthetic designs.

This paper is organized into four sections. Section 1

introduces the work and related studies. Section 2 proposes

the methodology and different models for locomotion mode

recognition. Section 3 presents the details of materials and

experimental setups. Section 4 shows the results and discussion.

Section 5 provides the conclusion.

2. Methods

Deep learning techniques are now commonly employed in

all fields and research areas (Sarker, 2021). There are various

open-source Python Libraries and Frameworks for machine

learning, such as TensorFlow, Keras, and Matplotlib. This

allows to develop and train the models more simply and

easily (Chen et al., 2020; Labarrière et al., 2020). In this

study, we applied four models of machine learning RFC, and

deep learning RNN, LSTM, and CNN for locomotion mode

recognition. Thesemodels were deployed from theGoogle Colab

environment based on the open-source Keras libraries, using

Python language. We aimed to produce an inexpensive system

installing only IMU sensor for locomotion recognition with

reliable accuracy compared to other methods.

2.1. Data feature extraction

The data feature is important for the recognition algorithm.

Models will extract the relevant characteristics of different

locomotion modes during the training process to make

predictions for unknown datasets. For instance, Figure 1 shows

clearly the changes in IMU signals in different walking tasks:

SD/SA and flat ground walking. This means that the IMU sensor

produces distinct features of different walking modes and the

transitions between them. Additionally, walking signals are in

periodicity time-series, i.e., periodic and sequential. Hence, it

is feasible to utilize deep learning approaches to automatically

extract feature learning from input samples to predict unknown

motion patterns.

2.2. Data labeling and processing

The dataset of locomotion mode from IMU was manually

segmented into activities performed in experimental protocol

and tagged with different labels for different locomotion

modes as shown in Figure 7 and Table 1. The data sequence

was classified into input vectors X = [xt−k, ...xt], each

vector included k samples in time series taken at the

current time t and k-1 samples in the past. This vector was

also a function of the window [xt−k, ...xt] for the window

size of k. The input signals were mapped output labels

of sequences Y = [yt−k, .., yt] to obtain the supervised

dataset. As a result, the network learned to estimate present

and future outputs Y = [yt , yt+1, .., yt+n], where n
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FIGURE 1

Observation signal patterns of the inertial measurement unit (IMU) on di�erent walking surfaces: resultant angular velocity (rad/s) and Force

Sensitive Resistor (FSR) sensors. The distinguished characteristics of tanks (A) level ground walking (LW) and standing (ST); (B) stair descent (SD)

and stair ascent (SA); (C) FW and turning; (D) FW and SA. We use all six input signals of tri-gyroscope and tri-accelerometer for the training

models; however, significant signals are depicted in this figure.

TABLE 1 Notations used for di�erent terrain transitions.

Number Mode transitions Notation

1 Stop walking→ Level ground walking ST→ LW

2 Level ground walking→ Stop walking LW→ ST

3 Level ground walking→ Stair ascent LW→ SA

4 Stair ascent→ Level ground walking SA→ LW

5 Level ground walking→ Stair descent LW→ SD

6 Stair descent→ Level ground walking SD→ LW

indicates the number of consequent outputs to predict in the

future.

2.3. Recognition methodologies

The structure diagram shown in Figure 2 is used to design

for both prediction and recognition purposes. In this section,

representative models, i.e., RFC, RNN, LSTM, and CNN, were

constructed as the target models, which were evaluated for the

possibly highest performance of different deep models using the

same dataset. These models are demonstrated in this section and

described in detail as follows.

2.3.1. Random forest classifier

Random forest classifier is one of the classification methods

which belongs to the supervised machine learning approach, as

depicted in Figure 3. It is widely used for pattern recognition

and segmentation problems. RFC is a strong modeling

technique containing a collection of decision trees to solve

a complex problem and improve the model’s performance.

It is more robust than a single decision tree to limit the

over-fitting issue and the error due to bias. Therefore, the

model enhances the accuracy of valuable results. It classifies

the raw data inputs into a target category of four different

locomotion modes. At the end of the learning process,

the model obtains the features and classifiers distinguished

between four locomotion modes in minimum time with

maximum accuracy.

2.3.2. Neural network model with time series

A. RNN model training

The recurrent neural network is an extension of an ANN,

which has loops in them, as shown in Figure 4. The output at

time t of an RNN unit is computed from both the input at

time t and output at the time t-1. Thus, RNN can remember

the previous and the current inputs and outputs (Ranzato et al.,

2015). In this experiment, we build a typical RNN having
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FIGURE 2

The structure of machine learning approaches. The inputs to the network are created by six signal channels of one IMU, with the length of each

channel being the sliding window of sequential sample inputs. The outputs are classified into four classes of four walking modes.

FIGURE 3

The structure of the overall random forest classifier (RFC). The inputs to the network are created by six signal channels of one IMU, and the

outputs are classified into four walking modes: LW, ST, and SA/SD.

a three-layer structure: input layer, hidden layer, and output

layer. The first layer is an input layer that consists of six input

signals in a time series sequence. The second layer is a hidden

layer that contains 6 x 30 RNN units. Additionally, there is a

sigmoid activation function associated with each note. Here, the

activation functions flow in only one direction, from the input
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FIGURE 4

The left diagram illustrates the recurrent neural network (RNN) with an infinite loop network, with the model outputs fed back as inputs. The

right figure is an unfolded representation of an RNN with X: input, h: hidden state, or output of each unit (LeCun et al., 2015).

layer to the output layer, where one neuron receives inputs,

produces an output, and sends that output back to itself. An

RNN is very much similar to a feedforward neural network. In

this case, its output at time t is the hidden state itself.

B. LSTM model training

Long short-term memory model is an advanced RNN, a

sequential and time series data network for classification and

regression tasks, which is currently the most suitable approach

not only for locomotion mode detection but gait prediction

algorithms. In this model, the dataset is trained by means of a

feature selection and retrieval process to minimize categorical

cross-entropy, and the LSTM prediction principle is applied.

The LSTM network architecture is divided into three layers as

illustrated in Figure 5. The input layer directly processes input

signals in a time series sequence given by the users and forwards

them to the LSTM layers that contain the LSTM nodes. The

input layer calculates the weight values based on the raw signal

inputs, while LSTM layers learn complex representations and

more specific characteristics of the input data. The outputs

of LSTM are fed into the last layer of four output notes

with softmax activation functions that classify the possibility

of four locomotion modes. Model weights are optimized with

an ADAM optimizer algorithm and an adaptive learning rate

optimization algorithm. The model finished training around 70

epochs.

The input data obtained from the accelerometer and

gyroscope sensors are all three-dimensional values of the X, Y,

and Z-axes. Hence, the input window sizes have the dimension

of k time-steps multiplied by six input signals. Every time step,

one input data window is slid into the LSTM model. The model

was trained several times with the lengths of different size

windows of 50 ms, 100 ms, or 200 ms with a 10 ms signal

sampling to observe the performance results as shown in Table 3.

The dataset from four participants is mixed all together in time

series and is split into 80% for training and 20% for validation

data.

C. CNN model training

The convolutional neural network is a feed-forward ANN

that is mostly applied for image recognition and semantic

segmentation. However, it was proven efficient in resolving

signals with time series, given the ability to automatically

extract deep features from raw data. The proposed CNN model

shown in Figure 6 has three 1D convolution layers (Conv1Ds)

with 64 filters and a kernel size of 5 and pooling layers. The

Conv1D layers use batch normalization (BN) to make neural

networks faster and more stable by adding extra layers to a deep

neural network. They are followed by an activation function

of a rectified linear unit (ReLU) and a max pooling layer for

downsampling. At the output layer, softmax activation functions

are used to produce the outputs corresponding to the output

possibilities. In the end, the model is optimized with an ADAM

optimizer, an adaptive learning rate optimization algorithm, and

is done at 160 epochs. The input matrix has two dimensions

for all models: number of features x number of samples. These

models have the matrix input of 6 features with different

sequence time steps of 50, 100, or 200ms, depending on different

training tests.

2.4. Evaluation

To verify the performance of the proposed models, we

employed a traditional approach named cross-validation (Ha

and Choi, 2016; Zdravevski et al., 2017; Gholamiangonabadi

et al., 2020). The dataset of all participants is randomly
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FIGURE 5

The structure of the long short-term memory (LSTM) network and its parameters. The LSTM unit is implemented as a typical LSTM cell detailed

by Colah (2015).

FIGURE 6

The structure of the computational neural network (CNN) and its type and parameters. 1D convolution layer (Conv1D) indicates each input

channel is one dimensional with 64 filters and a kernel size of 5. The Conv1D layers use a batch normalization (BN), and rectified linear unit

(ReLU) is used as an activation function.

partitioned into K groups, one of the groups is used for the test

set, and the rest are used for the training set. The training set

is used to train the model, and the test set is used to analyze

the performance of the model on unseen data. This method

indicates how well the model performs with a new unknown

data set. Overrunning the model several times, we computed

the accuracy and the mean loss to determine the overall

effectiveness of four models by using spare_categorical_accuracy
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FIGURE 7

The experimental platform is set up with four locomotion modes and six mode transitions. Subjects wore the shoes equipped FSRs under the

toe and the heel and performed tasks: Standing and walking on the flat ground for 5 min before walking up the stairs; climbing the stairs to the

fourth floor; and walking downstairs to the starting position.

and val_loss functions of Keras library, respectively. The

accuracy function is calculated as the ratio between the number

of true positive predictions and true negative predictions to the

total number of predictions. The loss is the sum of the squared

error, which is computed as the difference between the true

values and the values predicted by the model of the problem

(James, 2003). The best model achieved greater accuracy, with

low loss.

3. Experiment

This section is divided into three parts. Section 3.1 presents

the hardware design used to read IMU signals. Section 3.2

describes the setup scenarios performed by the subjects. Section

3.3 explains how the signals were recorded and pre-processed.

3.1. Experimental electronic
measurement system

We designed an electronic board for collecting the signals of

human motions. One IMU sensor, two FSRs, and an Arduino

board, Adafruit Feather M0 Bluefruit LE (the processor used

was ATSAMD21G18 ARM Cortex M0, clocked at 48 MHz,

256K of FLASH ROM, and 32K of RAM), were embedded on

TABLE 2 The number of samples and cycles of the dataset.

Subjects Number of samples Number of cycles

Subject 1 44,432 398

Subject 2 69,508 345

Subject 3 54,099 449

Subject 4 61035 387

Dataset (all samples

and cycles)

229,074 1,359

this board. The IMU and two FSRs were utilized to measure

the gait signals of the subjects when they walked in different

scenarios. The IMU (MPU 6000-Invensense) was attached to

the shank and provided a 3-axis gyroscope sensor and a 3-axis

accelerometer. Moreover, the IMU data were transferred to the

Arduino via the SPI interface for high-speed up to 1MHz. The

gyroscope resolution was set at a full range scale of ±2, 000

degrees/s correspondence to a sensitivity of±16 g LSB/degree/s,

and the resolution of the accelerometer was set at a full range

scale of ±16 g with a sensitivity of 2,048 LSB/g (g = 9.8 m/s2).

Furthermore, the FSRs were placed in the shoe sole under the

toe and the heel of the subject to detect the contact of the foot

with the ground in order to label the steps of the dataset. The
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FIGURE 8

The overage accuracy and the loss of recognition learning curves: The (A) for the LSTM model, and (B) for the CNN model. The values were

scaled in the range between 0 and 1, with the accuracy of 1 indicating a perfect prediction, the loss gradually decreases over time, and it tends

close to zero to express perfect learning from the features of the dataset.

FSRs were used for the gait phase detection, and they were

unnecessary for locomotion mode detection. All signals were

recorded in synchronous intervals of 10ms, and then transferred

directly to the computer. The Arduino board was only employed

for recording the IMU signals to create the dataset. To compute

the model predictions, we leave aside the controller board Beagle

Bone Black (BBB), which is more powerful for computation

than Adafruit Feather M0. The gait phase detection, locomotion

recognition algorithm, and prosthetic control program were

embedded in this board. Additionally, a circuit that measures

the battery voltage was designed to detect when the battery is

in low energy. Besides, the wifi of the BBBB unit could be used

for transmitting data to personal devices. This is appropriate

for designing mobile applications so users can easily monitor or

even control their prostheses.

3.2. Experimental protocol

The experiment protocol is shown in Figure 7 and Table 1.

The subjects who participated in this experiment were able-

bodies since this obtains a larger dataset while helping to

minimize the risks to amputees. Four healthy subjects aged

25 to 40 performed walking tasks with one IMU placed on

the lower shank and two FSRs mounted under the sole of the

participant. They were invited to perform different walking

speeds in different scenarios. In the first scenario, subjects

walked upstairs and downstairs of the four-floor building (5

repetitions). In the second scenario, they performed normal

walking on flat ground, stopped, and repeated these activities

in 5 min. For stair walking activity, they were asked to

start walking on the ground, then climb the stairs to the

fourth floor, and continue walking downstairs to the ground.

In this scenario, when subjects transitioned between floors,

they performed several steps of level walking. Subjects were

required to stand 5 s at the start and the end of each

trial. As a result, the data trials contained four locomotion

modes (stop, level ground, upstairs, and downstairs) with

four transitions between locomotion modes. We obtained one

dataset of 229,074 samples belonging to 1,359 walking cycles

on overage of 271.8 walking cycles per participant as shown

in Table 2. We merged all IMU data signals recorded from

participants to assemble a big dataset for training the network

model. Integrating the dataset allowed the model to increase

the chances of extracting the relevant features in different

walking modes.
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TABLE 3 The overage accuracy, loss, and computation delay of the long short-term (LSTM) and the computational neural network (CNN) models

with di�erent window sizes.

Window

length

(Samples)

Accuracy

(LSTM)

Accuracy

(CNN)

Loss

(LSTM)

Loss

(CNN)

Delay

(LSTM)

Delay

(CNN)

Accuracy

(RFC)

Accuracy

(RNN)

Accuracy

(RFC)

50 98.68 99.60 4.75 1.12 133 110 96.08 93.65 ≈92

100 99.62 99.99 1.82 0.02 376 344 – 95.29 –

200 99.83 99.99 0.68 0.01 768 273 – – –

FIGURE 9

Performance of RFC model based on the accuracy and true and false positive rate. The values were scaled in the range between 0 and 1, with an

accuracy of 1 indicating a perfect prediction. The receiver operating characteristic (ROC) curve tends close to 1 over time to express a perfect

learning model.

FIGURE 10

The performance Mean Squared Error (MSE) of the model learning with the window size of 100 time steps (on the right side) is higher than the

performance of the model on the left side with the window size of 50 time steps. MSE is the loss function which is indicated by the loss value

between the prediction and the ground truth.
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TABLE 4 Existing locomotion recognition based on deep learning methods applied on prostheses using inertial measurement unit (IMU) sensors.

References Sensors Methods Targeted Accuracy Problems Online/Offline

Feng et al. (2019) Angle Sensor,

Load cell

CNN LW, SA, SD, RA, RD 92.1% Recognition Off

Wang et al. (2018) Joint angles LSTM LW, SA, SD, ST, SIT 95% Prediction Off and on

Su et al. (2019) 3 IMUs CNN LW, SA, SD, RA, RD 89.2% Recognition Off

Lu et al. (2020b) 5 IMUs CNN LW, SA, SD, RA, RD 95% Recognition Off

Hu et al. (2018b) 5 IMUs CNN LW, SA, SD, RA, RD 95% Recognition Off

Woodward et al.

(2016)

1 x IMU

6 x 1 Load cell

2 x Joint angle

2 x Joint Current

2 x Joint velocity

ANN LW, SA, SD, RA, RD 98.9% Prediction Off

Narayan et al.

(2021)

7 x IMU CNN Sit, Stand, Walk,

Unknown, Straight, Turn,

Curved (left, right)

Stair (up, down)

94.34% Prediction On

Our methods 1 IMU CNN,

LSTM,

RFC,

RNN

LW, SA, SD, ST 99.60%

98.68%

96.98%

95.29%

Recognition

Recognition

Prediction

Prediction

Off

3.3. O�-line data analysis

FSRs were used to extract gait cycles by detecting the heel

contact and the toe off the ground. The positions of FSRs

are under the heel and the toe, and the location of the IMU

is at the subject’s lower shank, respectively. After gathering

and organizing data, labeling was the last step for structuring

massive amounts of data properly for machine learning. In our

models, labeling was done automatically using simple thresholds

and manually creating a structured dataset to train and deploy

models. Compared to the other studies (Kotiadis et al., 2010;

Boutaayamou et al., 2015; Wang et al., 2015; Maqbool et al.,

2017), our models do not require complex pre-processing steps

as they can deal with data with a high signal-to-noise ratio.

4. Results

4.1. Results and discussions

This study described four advanced deep learningmodels for

locomotion detection. The models were learnt from the signals

in three axes of angular rate and the acceleration of the foot.

All signals were taken from healthy subjects walking at different

speeds in four states walking on flat ground, up/downstairs, and

stopped walking. The performances of four proposed methods

are presented in this section using the evaluation described in

Section 2.4 with separate 80% and 20% of all the datasets for

training and validation, respectively. We used the accuracy and

loss as two main parameters of the valuation metric. Figure 8

depicts the accuracy and the loss curves of LSTM and CNN

models. The training loss and validation loss define the mean

absolute error between the ground truth and predicted values for

each epoch of these procedures (Mundt et al., 2021). The loss will

be decreased over time and tend close to zero to express a perfect

study from the features of the dataset. Besides, the validation

loss parameter indicated over-fitting. The training will generally

stop before reaching the specified maximum number of epochs

to avoid over-fitting the data. After this point, the loss will not

decrease further, and an optimum number of training epochs

remains. Figure 8 displays that the LSTMmodel fits well after 80

epochs, faster than the CNN model which obtained stability for

training after 140 epochs. The observation shows no over-fitting

during the learning process for any model.

Table 3 indicates the result performance obtained from four

models over several runs of different window sizes of 50, 100,

and 500 samples, with 10 ms for a sampling interval. Every

sample is delayed by n times equal to the window size, and
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TABLE 5 Existing locomotion recognition based on machine learning methods using signals frommany sensor types.

References Sensors Methods Targeted Accuracy Problems Online/Offline

Han et al. (2021) 1 x IMU Decision Tree Structure

IBPNN

LW, SA, SD, RA, RD, ST, SIT 96.71% Recognition Off

Gong et al. (2020) 3 IMUs BPNN LW, SA, SD, RA, RD, ST 98.4% Recognition Off and On
Billah et al. (2019) 3 x IMU

1 x FSR

Decision Tree LW, SA, SD ≈98% Prediction Off and On

Liu et al. (2015) 1 x IMU

1 x Laser with Camera

6 DOF load cell

1 x EMG electrode

Decision Tree LW, RA, SA, RD, SD ≈99% Prediction Off

Bhakta et al. (2020) 2 x encoders

3 x IMUs

1 x Loadcell

XGBoost LW, RA, RD, SA, SD 89.89//96.19% Recognition Off

Stolyarov et al.

(2017)

IMU LDA LW, SA, SD, RA, RD 94.1% Prediction Off

Chen et al. (2015) 4 x Pressure LDA LW, SA, SD, OBS, SIT 98.4% Recognition Off

Du et al. (2012) 9 x EMG

1 x 6 axis Pressure

LDA LW, SA, SD, RA, RD 98% Prediction Off

Liu et al. (2016) 8 x EMG

1 x Loadcell

1 x IMU

1 x Laser

LDA LW, SA, SD, RA, RD 98% Prediction Off and on

Tkach and

Hargrove (2013)

4 x EMG

1 x Joint angle

1 x IMU

1 x Joint velocity

1 x Joint current

LDA LW, SA, SD, RA, RD 96% Prediction Off

Ai et al. (2017) 4 x EMG

1 x IMU

VSM LW, SA, SD, ST, SQ ≥95% Recognition Off

Huang et al. (2011) 11 x EMG

6 x Loadcell

Pressure

SVM LW, SA, SD, RA, RD, OBS 100% Prediction Off

Huang et al. (2011) 4 x IMU

3 x 2 Pressure

SVM LW, SA, SD, RA, RD 98.4% Prediction Off and on

Zhang et al. (2011) 1 x IMU

6 x Load cell

1 x EMG

SVM LW, SA, SD, RA, RD, ST, SIT 95% Prediction Off and on

Zheng and Wang

(2016)

2 x IMU

1 x Load cell

4 x Pressure

1 x Joint angle

6 x Capacitive

SVM LW, SA, SD, RA, RD, ST 95% Prediction Off

Mai et al. (2018) 2 IMUs SVM LW, SA, SD, RA, RD 99.1% Recognition Off and On

Zhou et al. (2019) 2 x IMU

2 x Load cell

1 x Joint angle

SVM LW, SA, SD, RA, RD, ST 95% Prediction Off and on
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the window will be shifted one sampling step into the future.

Overall, the CNN model obtained the highest accuracy of

99.60%, equivalently the smallest loss value reached 1.11%. By

following the LSTM model, this model achieves over 98.68%

of accuracy and an average loss value of 4.74%. These models

outperformed other models such as the RFC model, achieving

an average accuracy of 96%, and the RNN model, of 93.65%

(Figures 9, 10). Though the RFC model is a simple classifier,

the model performs very well, with the ROC being close to 1.

The ROC curve is a plot of the true positive rate (sensitivity)

vs. the false positive rate (1-specificity) as the threshold is

varied. Figure 10 shows a perfect curve in the upper-left corner,

with 100% sensitivity and 100% specificity. The data in Table 3

indicates that the window size impacts the accuracy of the DL

model. The window size increases from 50 to 100 and 200,

and the performance is also improved as the average accuracy

increases slightly from 98.68 to 99.62%, and 99.83%, and the

loss decreases from 4.75 to 1.18%, and 0.68% in the LSTM

model; however, the computation of the model is expensive,

since generated parameters as weight and bias matrices are

bigger. This leads to a time-consuming output computation. We

highlighted that the deep neural network CNN and LSTM with

a window length of 50 samples are best suited for long-term

prosthetic applications such as daily walking.

4.2. Reference system and performance

Tables 4, 5 summarize the performance of different deep

learning-based models and classification-based models for

recognition and detection of locomotion mode transitions.

The observation showed that existing studies employed types

of different sensor, sensor placements, and methods for their

systems and calculated the accuracy and the loss value to

evaluate the performance of detection algorithms. To the best

of our knowledge, it is difficult to compare our study with

other studies as there are different setting standards for different

systems. However, it was demonstrated that our methods

performed effectively in terms of accuracy and the number of

sensors. This study focused on selecting the optimal model

structures, including efficient deep learning layers and efficient

activation functions that helped the network to learn complex

features in the data to obtain the outputs. Although our methods

were implemented offline, our system provides an opportunity

for real-time applications if we can reduce computation delays

of hardware implementation on the device.

5. Conclusion

Active leg prostheses often switch control strategies for

different locomotion modes. Therefore, we introduced a

locomotion mode recognition system suited for a lower limb

prosthesis with only one IMU. This system is durable, low-

cost, and easily implemented to avoid direct contact with the

human body, and utilizes a minimal source of information.

The proposed methodologies recognize four locomotion modes:

LW, ST, SA, and SD. The transitions between these modes

are easy to compute from the difference between the modes

for prosthetic applications. Our previous study proposed a gait

phase prediction method with the same system. We aimed to

fully control upcoming active prostheses by combining phase

gait prediction, locomotionmode recognition into the prosthetic

control. The real-time commutation of deep learning models

often costs time, with a significant delay generated from the

calculation of vast dimensions of the weight and neurons if the

deep learning models are created with many layers and neurons.

Though our experiments were purely offline, the computational

cost was not a concern. We can expect that computations

of proposed models do not cost much time because we first

learn the models on a personal computer and then make the

predictions on the controller board. It is important to note

that performing a deep learning model requires a specialized

hardware. Hence, we used the board Adafruit Feather M0 (ARM

M0 Cortex, 48 Mhz), presented in Section 3.1, for recording the

data only. Furthermore, when embedding heavy mathematical

computations, we planned to use the board Beagle Bone Black

(BBB), which is known to outperform Adafruit Feather M0.

The second reason is that the models built in our system are

not computationally heavy as we used only a 6-dimensional

vector of signal inputs from one IMU. In the future work, we

aim to overcome these limitations. We strive toward a real-

time performance that is similar to the offline performance by

reducing the cost of model computation to take full control of

the prosthesis while it is being worn.
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