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As bio-inspired vision devices, dynamic vision sensors (DVS) are being applied in more

and more applications. Unlike normal cameras, pixels in DVS independently respond to

the luminance change with asynchronous output spikes. Therefore, removing raindrops

and streaks from DVS event videos is a new but challenging task as the conventional

deraining methods are no longer applicable. In this article, we propose to perform the

deraining process in the width and time (W-T) space. This is motivated by the observation

that rain steaks exhibits discontinuity in the width and time directions while background

moving objects are usually piecewise smooth along with both directions. The W-T space

can fuse the discontinuity in both directions and thus transforms raindrops and streaks

to approximately uniform noise that are easy to remove. The non-local means filter

is adopted as background object motion has periodic patterns in the W-T space. A

repairing method is also designed to restore edge details erased during the deraining

process. Experimental results demonstrate that our approach can better remove rain

noise than the four existing methods for traditional camera videos. We also study how the

event buffer depth and event frame time affect the performance investigate the potential

implementation of our approach to classic RGB images. A new real-world database for

DVS deraining is also created and shared for public use.

Keywords: dynamic vision sensors, rain removal, intelligent driving, outdoor vision systems, deraining

1. INTRODUCTION

Recently, the bio-inspired Dynamic Vision Sensors (DVS) are becoming more and more popular
in vision applications due to the fast response time, ability of adaptive sensing in rapidly changing
light conditions, and low power consumption (Soman et al., 2016). Pixels in DVS independently
respond to the luminance change with asynchronous output spikes by mimicking the neural
architectures present in biologic nervous systems. The speed of a DVS is not limited by traditional
concepts such as exposure time. Hence, it can capture fast motion which can only be detected
by expensive high-speed cameras. Moreover, a DVS also has attractive features such as high
dynamic range, high temporal resolution, and little redundant information. All of these make DVS
a promising vision sensor for the applications in wearable devices, intelligent driving, and outdoor
surveillance (Bi et al., 2018; Chen et al., 2020). Particularly, since DVS has a strong resistance to
artifacts from flickering light sources such as the LED traffic signs and car taillights, it is expected
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that DVS has a significant impact on the rapid analysis or real-
time monitoring of intelligent driving applications (Dong et al.,
2019).

Designers are facing a serious problem during implementing
the DVS for outdoor vision applications. The sensors are
frequently affected by various bad weather conditions (Li et al.,
2016), especially by rain. Raindrops inevitably cause dynamic
streaks at high velocities on the acquired images. These rain
streaks may deform and interfere with nearby regions and,
hence, degrade the performance of many algorithms of the DVS
vision systems such as tracking, recognition, and object detection.
Therefore, to improve the performance of such applications in
rainy conditions, the rain streaks outputted from a DVS should
be eliminated.

For traditional cameras, there have been plenty of studies on
this topic. Garg and Nayar (2004) first exploited the dynamic
motion of raindrops with irradiance constraints to remove
rain streaks from videos. Since then, researchers have proposed
many methods that are based on the priors of rain streaks
on photometric appearance (Shen and Xue, 2011; Tripathi and
Mukhopadhyay, 2011), frequency domain (Barnum et al., 2007,
2010), repetitive and discontinuous local patterns (Li M. et al.,
2018), temporal correlations (Kim J.-H. et al., 2015), joint spatial
and wavelet domain features (Xue et al., 2012; Zhang et al.,
2019), and spatial discriminatively (Jiang et al., 2017). Moreover,
methods depending on the matrix decomposition (Ren et al.,
2017), Gaussian Mixture Model (GMM) distribution (Chen
and Chau, 2013), and the low-rank property of rain free
scenes (Abdel-Hakim, 2014; Kim J.-H. et al., 2015) have also been
presented.

While having made great improvements to the field, current
rain removal approaches are no longer suitable for DVS. Directly
applying them may cause low efficiency, serious blurs, or even
fails in detecting and removing rain streaks. It is attributed
to the factors in two aspects. First, the RGB and grayscale
information, which are common in traditional cameras, are not
presented in DVS data since a DVS only produces streams of
events. Second, due to the strong response to light intensity
change, the visual appearance of rain streaks becomesmuchmore
evident in DVS, which is a scene different from traditional rainy
images. Removing rain streaks from data outputted from DVS
cameras is a new and important problem that deserves more
researchers’ attention.

In this article, we focus on addressing a such problem and
present a novel, simple but surprisingly effective approach to
removing rain streaks from videos acquired from a stationary
DVS camera. The idea of our approach comes from the
observation that raindrops are usually small-sized water droplets
having higher velocities along the vertical direction. This
indicates two intrinsic properties of raindrops and streaks on
images: the discontinuity in the width direction due to their small
sizes and motion directions closer to the vertical direction, and
the discontinuity in the temporal direction. In DVS cameras,
such properties are more distinctive since the visual appearance
of raindrops is more evident. Therefore, we propose to view
and process the DVS images from the width and time (W-T)
perspective instead of the normal height and width perspective.

In the W-T perspective, we can fuse the discontinuity in the
width and temporal directions and thus transform the rain into
approximately uniform noise which can be easily removed. The
contributions of this article can be summarized as follows.

• Width and Time Space Deraining (WTSD) model. We present
the first DVS image deraining model where the rain steaks are
detected and removed in the W-T space, which significantly
reinforces the discontinuity of rain streaks. In the W-T space,
rain streaks usually have different geometric and temporal
properties, compared with the background scene, thus can be
removed by adopting de-noising algorithms. To restore the
useful details erased during the denoising process, we combine
the images before and after the deraining process and also
present a method to retrieve the source information for the
erased parts.
• DVS-Deraining (DVS-D) database. We create a DVS-D

database which collects a variety of dynamic vision sensor rain
images and their derained ground truth. To the best of our
knowledge, this is the first real-world deraining database for
Dynamic Vision Sensor outputs.
• We conduct a set of systematic experiments to investigate

the effectiveness of our approach. The relationship
between approach parameters and performance is studied
comprehensively. Moreover, three traditional approaches are
also implemented for comparison. The results demonstrate
that our approach can not only remove most rain streaks for
DVS videos in an online manner but also has the potential to
handle traditional camera cases.

The rest of this article is organized as follows. Section 2 discusses
the related studies. We discuss the working principles of DVS
cameras and analyze the differences between images produced by
a DVS and a traditional camera in Section 3. Then, we introduce
the discontinuity of rain streaks in Section 4. Section 5 presents
our proposed approach. Experiments results are shown in Section
6. Section 7 concludes this article.

2. RELATED STUDY

We briefly introduce existing rain removal studies on the
traditional camera platforms.

To quantitatively measure the quality of the derained image,
Wu et al. (2020) propose a bi-directional feature embedding
network (B-FEN) and also create a deraining quality assessment
(DQA) database. For the problem of single image deraining,
Zhang and Patel (2017) utilize a set of convolutional filters to
represent background clear images and rain streaks, respectively.
Once these filters have been learned, the rainy image can be
decomposed by solving an optimization problem. In Kang et al.
(2011), a rainy image is decomposed into low frequency and
high frequency parts by a bilateral filter. Rain streaks in the
high frequency part are separated by morphological component
analysis (MCA)-based dictionary learning and sparse coding.
Noted the limitations of standard batch-mode learning-based
approaches, Sun et al. (2014) present a novel rain removal
method that utilizes the structural similarity of the image
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bases. The Gaussian mixture model (GMM) is exploited to
patch priors of rain streaks with various scales in Li et al.
(2016, 2017). Moreover, promising deep learning and artificial
neural networks have also been studied for this problem (Li
X. et al., 2018; Liu et al., 2018; Qian et al., 2018; Zhang
and Patel, 2018; Jiang et al., 2020). Zhu et al. (2020) propose
a gated non-local deep residual learning framework that can
avoid over-deraining or under-deraining. In Ding et al. (2021),
studied to remove rain streaks in light field images according
to the observation that they usually have different slopes and/or
chromatic values, compared with the background scene, along
with the epipolar plane images. Since a single image provides
less information than a video, these approaches usually suffer
from high computation requirements or limited performance
and thus may not be suitable for the online implementation of
DVS deraining.

For the video rain removal task, pioneering research is
presented in Garg and Nayar (2004). The visual appearance
of raindrops on vision systems and the photometric model
are studied. Then, rain streaks are detected by combining the
linear photometric constraint and their dynamic motions. This
approach may generate false detections between rain streaks
and moving objects (Kim H. G. et al., 2015) and the linear
photometric constraint is also not valid for DVS platforms.
Zhang et al. propose to exploit both temporal and chromatic
properties of rain streaks to detect them in the video. Images
often get blurred due to a temporal average of the background.
In addition, the chromatic property no longer exists for rain
streaks in DVS. Barnum et al. analyze the overall effect of
rain and snow in the frequency domain by using a physical
and statistical model (Barnum et al., 2007, 2010). The amount
of rain or snow can be reduced by suppressing the detected
rain or snow parts in the frequency domain. This approach
gives false detection results when frequencies corresponding
to rain are too cluttered (Tripathi and Mukhopadhyay, 2014).
Hiroyuki et al. propose to remove snowfall-liked noise in an
image sequence by applying the temporal median filter to each
pixel of the successive images.While this method is extremely fast
for online implementation, any movement will cause blurring
artifacts (Barnum et al., 2007). Besides, filtering the noise only
along the temporal direction limits its performance. Additional
early methods on this topic have been summarized in Tripathi
and Mukhopadhyay (2014).

An important aspect of DVS rain removal is object detection
and tracking. Zhang et al. (2015) proposed a robust and
general tracking system by using dominant color-spatial based
object representation and bin-ratio based similarity measure.
In Lee and Wittenburg (2019), proposed to perform object
detection by video slicing. Although the Width and Time
space are similar to video slicing, our study differs from
Lee and Wittenburg (2019) in two aspects: (1) deraining
vs. object detection; (2) DVS vs. RGB camera. In terms of
video slicing, the main contributions are: (1) we fully and
systematically investigate how the shape of a rain streak
changes after slicing and present two observations. (2) In the
experiment, we study how the event buffer depth, a parameter
of video slicing, affects the performance of deraining. We

found that event buffer depth has little influence on the
deraining results.

Removing rain from DVS event videos is a newly emerged
issue that is essential to the applications designed for DVS. People
have paid little attention to this topic and we can hardly find
any related research for DVS. To the best of our knowledge, this
article is the first one focusing on the problem of deraining event
videos from a stationary DVS camera.

3. DYNAMIC VISION SENSORS

A CeleXTM DVS is adopted as an example platform. We first
introduce its basic working principles and output data. Then, we
summarize the unique features of DVS images.

3.1. The Basic Working Principle
A CeleX DVS is highly efficient with a customized FPGA
board as the interface for configuring and reading output data.
Applications could configure the sensor by setting the control
registers in the FPGA. Sensor output data is also handled by the
FPGA and eventually output to the application according to the
configuration, as demonstrated in Figure 1.

The essential difference between a DVS and a traditional
camera is that each pixel in a DVS can individually monitor
the relative change in light intensity and autonomously generate
an output event. A CeleX DVS has asynchronous row and
column arbitration circuits to process these output requests and
ensure only one is granted at a time when they receive multiple
simultaneous requests (CeleX4, 2019). Therefore, the output of a
DVS is not a classical frame, but a stream of asynchronous digital
events.

A CeleX sensor provided with the customized FPGA board
and corresponding Software Development Kit (SDK) has three
working modes: Full-Picture data, Event Data, and Optical-Flow
data. The Full-Picture data mode outputs the information of
all pixels sequentially, which is similar to conventional cameras.
When the Event Data mode is enabled, the sensor only outputs
the values of active pixels the intensity change at which exceeds
the predefined threshold. In the Optical-Flow data mode, the
SDK outputs optical flow data, i.e., the speed and direction of
each pixel.

In this article, we focus on rain removal for DVS working in
the Event Data mode. One can also base the optical flow data
on the detection and removing rain. However, since raindrops
distribute randomly in 3D space, their projection of them onto
the sensor has different velocities and intensities. The sensor in
Optical-Flow data mode can hardly capture the accurate motion
of all rain streaks, particularly those very thin or short. On the
contrary, these rain streaks are well-sampled in the Event Data.
An event from a CeleX DVS can be specified by a tuple (X, Y , A,
T), where X and Y are the address (row and column) of the pixel
triggering an event, and A and T are the absolute brightness and
activation time when the pixel event is triggered, respectively. In
the Event Datamode, the events of object motion are grouped as
event frames and outputted periodically, the Event Frame Time
can be adjusted from 1 to 1,000 ms.
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FIGURE 1 | The working principle of the CeleXTM chipset.

3.2. Unique Features
According to the working principle of DVS cameras, the data
produced has the following unique features compared to that
from traditional cameras.

(A) No information about the stationary background is
preserved and only object motions are captured.

(B) The output event images are approximately binary ones, i.e.,
no grayscale OR RGB information.

The first feature benefits rain removal due to two reasons.
First, the rain streaks are evident since only object motions are
captured. Second, we only need to separate rain streaks from
moving objects, as the stationary background is not presented.
However, the second feature also poses challenges to the rain
detection process because of the loss of grayscale and RGB
information, which deliver several important constraints that
have been widely exploited to detect rain streaks.

Because of these features, the traditional camera-oriented
deraining approaches may produce pessimistic results when
handling DVS data. Examples are shown in Figure 2. On the
one hand, new mechanisms are demanded to separate rain
streaks and background objects without using the grayscale and
RGB information. On the other hand, we should also study
and utilize the feature (A), which has not been considered
during the deraining process in existing methods. Therefore,
removing rain streaks from data outputted from DVS cameras
is an important problem. A new DVS-camera oriented deraining
approach is demanded.

4. PRIOR KNOWLEDGE

In general, the observation model for a rainy video can be termed
O, where O is a 3-order tensor representing the input video.
Here, h × w is the event frame size (height × width) and t is the
time length. The goal of our approach is to distinguish B from
O. This is an ill-posed inverse problem (Jiang et al., 2018), which
could be handled with prior knowledge.

4.1. Discontinuity in Width and Time
Directions
Being aware of the loss of RGB and grayscale information
from DVS, we should exploit their strong response to motions
for deraining. As aforementioned in Section 3.2, the motion
of raindrops and streaks are more evident to be recognized.
Therefore, we focus on utilizing the dynamic features of rain.

Rain is a collection of randomly distributed water droplets of
different shapes and sizes that fall at high velocities (Garg and
Nayar, 2004). The size of a raindrop typically varies from 0.1
to 3.0 mm and can be approximately described by the uniform
distribution (Barnum et al., 2007). The terminal velocity v of a
drop is related to its diameter rd and can be given by v(rd) =
−0.2 + 5.0rd − 0.9rd

2 + 0.1rd
3 (Barnum et al., 2007), which

could reach about 9.4 m/s for raindrops with a size of 3.0
mm. Compared to normal moving objects, raindrops have the
following characteristics: small size, high velocity, and motion
directions close to the vertical axis.

Consider a DVS camera observing a volume of rain. A
raindrop will be imaged as a straight streak with constant
breadth (Barnum et al., 2007). From the above characteristics,
one can recognize two intrinsic properties of the rain streaks,
i.e., uniform distribution for the breadth b and length l, and the
discontinuity in the width and time directions.

First, b and l can be predicted according to the diameter
rd of the drop, its distance z from the camera, the exposure
time e, and the focal length f (Barnum et al., 2007), i.e.,

b(rd, z) =
rdf
z and l(rd, z) =

v(rd)ef
z +

rdf
z . It’s usually

assumed that the distribution of raindrops in the world is
uniform and remains constant over time (Garg and Nayar,
2004). Thus, z is also uniformly distributed. Then, with fixed
focal length and camera speed, the breadth b and length
l have a uniform distribution over space and time. This
property is adopted to analyze the transformation of rain streaks
in Section 5.1. For the second property, we can consider
streaks are discontinuous in the width direction because (1)
rain streaks usually occupy only several pixels in the width
direction due to their small sizes; (2) their motion directions
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FIGURE 2 | A rainy DVS frame and the deraining results of two existing algorithms and our approach. Observe MCSC (Li M. et al., 2018) only removes part of the rain

streaks and ReMAEN (Yang and Lu, 2019) failed to preserve most texture details of background objects. (A) Input. (B) MCSC. (C) ReMAEN. (D) Our.

are generally close to the vertical axis. It is easy to comprehend
the discontinuity in time directions because of their small
sizes and high velocities. Normally, the probability that a
pixel is continuously projected by raindrops for a series of
sampling instances is negligible (Garg and Nayar, 2004). One
can also figure out such properties from the example shown in
Figure 4.

Now, we have noticed that rain streaks are discontinuous

in the width and time directions, and their breadth and length

are also uniformly distributed. For the normal background

objects, it has been recognized that they are largely piecewise

smooth from the spatial and temporal perspective (Jiang et al.,
2018). Therefore, we can utilize such properties to separate
background objects from rainy DVS videos, which is discussed
in the next section.

5. OUR APPROACH

5.1. The Width and Time Space
Def. 1 (W-T Space): For a DVS event video specified by a
3-order tensor O ∈ R

h×w×t , it is viewed as a set of images
[I1, I2, · · · , It] where Ii = O(:, :, i) in the normal space. O(:, :, i)
is a two-dimensional section slice of O. In the W-T space, the
video is viewed as another set of images [Î1, Î2, · · · , Îh] where
Îi = O(i, :, :) and Îi ∈ R

w×t . Similarly, O(i, :, :) is the first frontal
slice ofO.

In the normal space, images are viewed along the time direction
while in the W-T space they are viewed along the height
direction. An example is displayed in Figure 4E. We call
the images in the normal and W-T space the original and
transformed images, respectively. When viewed from a different
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FIGURE 3 | Transformation from normal space to the W-T space.

perspective, the appearance of rain motion in the W-T space is
no longer streaks.

5.2. Rain Streaks in the W-T Space
In this section, we discuss how the projections of rain streaks
differ from those in the normal space.

Consider a DVS camera observing an object moving at a
constant velocity and the projection of the object onto the
original imaging system is a parallelogram occupying l and b
pixels in the height and width direction, respectively, as shown
in Figure 3. We slice the original images at a certain height Hs

and obtain the corresponding transformed image O(Hs, :, :) in
the W-T space. Np denotes the number of original frames in
which the object covers at least one pixel at height Hs. Then,
the width of the object’s projection in the transformed image
equals Np. Therefore, the ratio between the object’s projection
pixel numbers in the W-T space and the normal space is:

rp =
b× Np

l× b
=

Np

l
. (1)

We approximate the projection of raindrops in the normal space
as a parallelogram. When a certain pixel is covered by rain, the
probability that its temporally adjacent pixels are also covered by
rain is negligible (Garg and Nayar, 2004). Therefore, we adopt
Np = 1 for rain streaks. Then, we have:

rp =
1

l̄
, (2)

where l̄ is the expected length of a rain streak and it is obvious that
l̄ ≥ 1. Therefore, (2) indicates that a raindrop or streak projects
much fewer pixels in the W-T space.

Now, let us investigate how the number or density of rain
streaks in one image changes in the W-T space. Given a rainy

DVS event video O ∈ R
h×w×t , then the average rain streak

density in a frame ofO can be computed as

ρavg =
N̄

h× w× t
, (3)

where N̄ is the quantity of total rain streak projections inO. In the
W-T space, any transformed image Îi is comprised of the ith row
of several original images.We consider rain streaks are uniformly
distributed in time and space. Then, the expected number of rain
streaks that simultaneously cover the same row in the original
image is:

n = N̄/h× t × l̄. (4)

Finally, the average rain streak density in a frame Îi in the W-T
space can be given as:

ρ̂avg =
n× t

w× t
=

N̄ × l̄

h× w× t
(5)

From (2), (3), and (5), one can make two conclusions:

• The number of pixels of raindrop or streak projects in theW-T
space is 1/l̄ times that in the normal space.
• The density of rain streak projections in the W-T space is l̄

times that in the normal space.

From the two observations, we find that in the W-T space one
could “see” more “rain streaks” that are smaller in size than those
from the original images. The rain streaks seem to be “ground”
into approximately uniform noise by the transformation process.
Due to the temporal continuity, the background object motions
will be transformed into geometric curves that still be solid
and have a regular appearance. Therefore, we can remove such
rain streak noise and the system noise by denoising algorithms,
which is the main motivation of our study. It is worth noting
that the reason why we perform the deraining process in the
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FIGURE 4 | (A–D) Four frames from a rainy DVS sequence comprising 60 images. (E) Their W-T perspective.

width-time space instead of the height-time space is l̄ >> b̄,
i.e., we can get more outstanding “grinding” effect from the
transformation process.

5.3. Example
In this example, we are given a DVS sequence comprising 60
images, in which a car moves from right to left and a man walks
in an opposite direction. Figures 4A–D are four selected images.
Please note that we select a sequence of 60 images only because
it is long enough such that the images in the W-T space can be
observed by naked eyes. Our approach needs just 5 frames to
remove rains effectively.

The right part of Figure 4E shows three W-T space images,
each image includes 2 evident curves with regular shapes, which
is the motion of the car and the man in the original images. One
can also find approximately uniform noise in the images. Recall
the aforementioned intrinsic properties of rain streaks, we can
recognize that the approximately uniform noise represents the
raindrops and noise in the original images.

The background object motions are transformed into
geometric curves that still have regular appearances while
raindrops become approximately uniform noise which are much
easier to remove by adopting state-of-art denoising methods.
Therefore, we can remove raindrops and streaks in DVS videos

in a simple but effective way, which is the main motivation of
our study.

5.4. Remove Raindrops and Streaks
Now, we discuss how to remove raindrops and streaks from DVS
outputs based on the aforementioned principle. We name this
method the Width and Time Space Deraining (WTSD) model,
as shown in Figure 5.

A First-In First-Out buffer B (h × w × d) is created for the
rain removal, and d is the buffer depth. Each layer of B comprises
one normal event frame. The newest frame is pushed on the top
of the buffer (layer 1) and the oldest frame is moved out from
the bottom (layer d). The rest of the layers updates accordingly.
Our rain removal approach works on the top layer frame (I1) for
a quick response when implemented online.

The images in buffer B (h × w × d) are first transformed into
theW-T space. Hence, the size of the image is w× d and the total
number is h. In the W-T space, as aforementioned, the raindrops
and original noise become approximately uniform noise while
the object motions are transformed into thick solid curves. We
observe that:

• The solid curves of object motions have periodic patterns.
They have high texture similarities and similar pixels in these
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FIGURE 5 | The structure of WTSD. (A) The event frame buffer. (B) A transformed image in the W-T space. Rain streaks and system noise become approximately

uniform noise. (C) The extracted motion curves. Note that the edges are hampered. (D) After processing all the images in the W-T space, rain free images in normal

space are retrieved by performing the transformation reversely. (E) Using our repairing method, we get images having more edge details.

curves have no reasons to be close at all, as pointed out
in Buades et al. (2011).
• The noise pixels transformed from raindrops and original

noise have little correlation with each other.

Therefore, one could utilize pixel similarity as a criterion to
distinguish object motions and raindrops. Due to the above
reasons, the well-known non-local means (NLM) filter (Buades
et al., 2011) is adopted to remove noise (raindrops and original
noise) in the W-T space. With NLM, we can better remove
the noise while preserving more details of background objects.
Pseudo-codes of the noise removal algorithm are listed in
Algorithm 1.

Finally, combining the images in the W-T space and
performing the transformation process reversely, we can
reconstruct a rain free image Iclean1 for the original image I1 in
B. It must be noted that although the NLM successfully removes
almost all the noise, it also aggressively erases several parts of
the moving objects, especially the edges. Next, we discuss how
to restore the lost information.

5.5. Repair
After performing the NLM-based denoising in theW-T space, we
obtain an approximate binary mask of the background moving
objects. Their shape and structure are correctly masked while
details around edges and regions with discontinuous intensities
may be erased. Considering such erased parts have a strong
correlation with the extracted parts, we utilize the denoised image
Iclean1 and the original image I1 to restore the curves of motions.

Algorithm 1 | Remove rain and noise in the W-T space

Input: Source image Îi, filter strength H, template window size
wt , search window size ws, threshold Tbin

Output: Denoised image Îcleani

get Înlmi by applying NLM filter on Îi with parameters H, wt

and ws.
get Îbini by performing thresholding operation on Înlmi with
threshold Tbin.
Îcleani ← element-wise multiplication of Îi and Îbini .

In an image, a pixel p is located by a coordinate (hp,wp). The
neighborhood of p is defined as a (2r + 1)× 1 block:

H(p, r) = {q(hq,wq)|hq ∈ [hp − r, hp + r],wq = wp} (6)

Now, we simply replace the neighborhood pixels H(p, r) of a
center p(hp,wp) by pixels in the same region in I1, if the pixel

p(hp,wp) is activated in Iclean1 . Let I
rpd
1 denote the repaired image,

we have:

I
rpd
1 (p) =

{

I1(p) if ∃q ∈ H(p, r) : Iclean1 (q) ≥ 0
0 otherwise

(7)

where I(p) means the value of pixel p in the image I.
This method can significantly restore the lost details at a light

price of introducing tiny noise around background objects. Since
the NLM filter almost removes all noise, adding such a tiny noise
is acceptable.
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FIGURE 6 | The rainy input, rain removal results by different methods, and the ground truth (GT) of nine different frames. WTSD is our approach while MCSC, PMG,

and ReMAEN are the ones for comparison. Note the part framed in red of PMG results. (A) Input. (B) MCSC. (C) PMG. (D) ReMAEN. (E) WTSD. (F) GT.

6. EXPERIMENTS

6.1. Setup
Since one can hardly find any generally accepted database for
DVS deraining, we create a new real-world database that is

recorded throughout our experiments. We name the database
DVS-Deraining (DVS-D)1. The data is taken by a CeleX-IV
DVS camera with the default configuration. The CeleX-IV is

1https://github.com/chenglong3383/DVS-D
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a sensor with 640 × 768 pixels and a maximum of 200 Meps
output (Guo et al., 2017). We record the raw data from the
sensor into a binary file, which comprises a series of stream
events with each representing the full information of the fired
pixels. The raw data can be decoded and visualized with different
modes and parameters by the official software development kit
(SDK) (CeleX4, 2019). A series of stream events of 26 s in length is
selected as the input samples. All the experiments are conducted
on a server of Ubuntu 18.04 with an Intel(R) Xeon(R) Gold 6134
CPU at 3.2 GHz, 8× 32 GB RAM. Our approach is implemented
in Python 3.6 and OpenCV 4.1. The NLM filter is configured as
follows. The parameter regulating filter strength is set as H =
100, the template window size is 13, and the search window size
is 15. The threshold in Algorithm 1 is 65.

We compare our approach (WTSD, the abbreviation for
“Width and Time Space Deraining”) with three recent methods.
They are the learning based deraining method named Recurrent
Multi-scale Aggregation and Enhancement Network (ReMAEN)
in Yang and Lu (2019)2; and Li M. et al. (2018)3; Multiscale
Convolutional Sparse Coding (MCSC) method; and the method
adopting the patch-based mixture of Gaussians (PMG) (Wei
et al., 2017)4. In fact, ReMAEN is a single image based method
while the other two methods are video based ones. However,
as reported in Jiang et al. (2018), the learning based deraining
methods could outperform some video based methods and show
great vitality and a wide application prospect. Therefore, the
comparison with ReMAEN is reasonable and challenging.

To evaluate these approaches by the same criteria, we select 50
frames from the inputs event video and then manually remove
the rain streaks and noise to get a set of ground truth. The frames
include scenes of “car and man”, “two walking men”, “single
man: a distant view”, “single man: a close view”, and “only rain”.
These 50 frames are used as the dataset or the testing set when
comparing the approaches by quantitative indexes in Section 6.3.
For method ReMAEN, another 200 different frames have also
been labeled as the training set. For methods MCSC and PMG,
the input images are first denoised by the mean filter to remove
the system noise. Otherwise, both methods would be greatly
disturbed by the system noise.

6.2. Visual Comparison
Figure 6 shows the results of the four approaches conducted on
9 example frames. Our method utilizes the previous 10 frames
to remove rain. One can observe that MCSC and PMG have
a similar level of performance. They only remove part of the
rain streaks from all input scenes due to that both approaches
utilize the three-layer model to construct the image, i.e., the rain
layer, background layer, and moving objects layer, while in DVS
images only the rain and moving objects are presented. The low
rank recovery-based optimization problems proposed by them
may need reconstruction for DVS scenarios. Moreover, part local
regions of certain images outputted from PMG get smeared due
to the interference from temporal neighbor images. Examples are

2https://github.com/nnUyi/ReMAEN
3https://github.com/MinghanLi/MS-CSC-Rain-Streak-Removal
4https://github.com/wwzjer/RainRemoval_ICCV2017

framed in red in Figure 6. Approach ReMAEN removes most of
the rain streaks but hampers the texture details of background
objects. In our approach, WTSD removes almost all the rain and
noise in all scenes with a slight loss of background object details.
In general, WTSD presents the best visual results compared to
the ground truth.

6.3. Quantitative Results
For quantitative evaluation, we adopt a set of quantitative
indexes, which are the mean squared error (MSE), the peak
signal-to-noise ratio (PSNR), the visual information fidelity
(VIF) (Sheikh and Bovik, 2006), the structural similarity
(SSIM) (Wang et al., 2004), the multi-scale structural similarity
(MS-SS) (Rouse and Hemami, 2008), the feature similarity
(FSIM) (Zhang et al., 2011), and the universal image quality index
(UIQI) (Wang and Bovik, 2002).

6.3.1. Approaches Comparison

The performance indexes of all methods are calculated over the
50 frames. From the results presented in Table 1, one interesting
observation is that the VIF indexes are low for all cases. The
reason is that VIF assesses image quality mainly according to
visual appearance. DVS images are actually the stream of events
and their visual effect greatly differs from that of traditional
images. Thus low VIF indexes are reasonable. ReMAEN and
our approach have close PSNR, SSIM, and MS-SS indexes.
The MS-SS from ReMAEN is even slightly better. It is in
agreement with the aforementioned rationality of considering
comparing with learning based single image deraining methods.
Other indexes from ReMAEN are relatively worse because their
training process is only evaluated by PSNR and SSIM indexes. In
general, WTSD outperforms other compared methods in terms
of most performance indexes, which confirms the conclusion
from visual comparison.

6.3.2. Parameters

We report how our approach performs with different parameters.
Note that we only change one parameter at a time and the others
are set as their defaults, which are: d = 10, h = 640, w = 768 and
the event frame time Tf = 30 ms.

Event Buffer Depth We vary the buffer B depth d from 3 to
50 and run our approach for the 50 frames.

From Table 2, one can observe that although our approach
generally performs best for a depth of 50, it can still provide
close SSIM and UQI results and even better MSE, PSNR andMS-
SS results for a depth of 5. Therefore, our approach can work
properly with a small volume of historical data. This makes the
online implementation possible in terms of both computation
and storage requirements. The best results of MSE and PSNR
are obtained for a depth of 3. The reason is the NLM window
size is far larger than the depth. This leads to minimal edge detail
loss, which can compensate for the MSE and PSNR degradation
caused by a few left rain streaks. It is worth noting that we still
get acceptable results for the other depths, which indicates the
robustness of the approach.

Event Frame Time In the Event Data mode, the events are
grouped as event frames and outputted periodically. For a smaller
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TABLE 1 | Quantitative comparison of different approaches.

Method MSE PSNR VIF SSIM MS-SS FSIM UIQI

Input 2234.651 14.680 0.107 0.244 0.374 0.444 0.151

MCSC 1303.015 17.327 0.0574 0.823 0.755 0.756 0.787

PMG 1308.653 17.313 0.0546 0.801 0.746 0.738 0.680

ReMAEN 1045.639 20.267 0.10 0.906 0.918 0.765 0.401

WTSD 790.034 20.782 0.262 0.922 0.904 0.922 0.917

Values in boldface are the best ones.

TABLE 2 | Quantitative comparison of different event frame buffer depths.

d MSE PSNR VIF SSIM MS-SS FSIM UIQI

3 469.267 21.801 0.209 0.891 0.878 0.852 0.902

5 744.283 20.846 0.229 0.920 0.908 0.913 0.916

7 818.348 20.612 0.233 0.917 0.903 0.919 0.913

10 846.601 20.577 0.243 0.920 0.904 0.923 0.915

15 840.685 20.606 0.244 0.920 0.905 0.923 0.916

20 840.685 20.606 0.244 0.920 0.905 0.923 0.916

25 840.685 20.606 0.244 0.920 0.905 0.923 0.916

30 835.386 20.670 0.246 0.921 0.905 0.923 0.916

40 822.589 20.765 0.249 0.921 0.906 0.924 0.916

50 810.712 20.830 0.253 0.922 0.907 0.925 0.917

Values in boldface are the best ones.

event frame time, the rain streaks are shorter. Now, we study how
our approach handles such variations of raindrops and streaks.
The inputs are re-generated from the raw data using the official
SDK for event frame times [5, 15] ms. Since the number of frames
rapidly increases when Tf gets smaller, manually removing rain
for Tf = 5 ms becomes a task that is almost impossible for us
to complete. Hence, we only compare the results of five time
instances with a buffer depth of 10. The results are presented in
Table 3.

The overall best performance is produced when Tf = 15
ms. The reason is that the discontinuity of rain in the time
direction is more evident due to shorter streaks. Note that only
the VIF index gets a notable degradation when Tf = 5 ms.
This can be explained as the continuation of background objects
is also hampered for small Tf , which may cause damage to the
object structure. The values of MSE and PSNR are the best when
Tf = 5 ms, this can be interpreted for a similar reason as the
previous section.

6.3.3. Discussion of Each Component

We study the distinctive effects of the Our approach has
two major components: the NLM-based denoising and the
repairing processes.

To elaborate on their distinctive effects of them, we substitute
two classical denoising methods, i.e., the median filter (MF) and
the side window median filter (SWM) (Yin et al., 2019)5, for the
non-local means filter and then test them with and without the
repairing process. We also report their results when all the frames

5https://github.com/Ldpe2G/ArmNeonOptimization/tree/master/

sideWindowBoxFilter

are put in buffer B, i.e., the case that performing offline global
deraining for the whole video. All the denoising methods are
applied in the W-T space. The results are depicted in Table 4.

As the results show, the NLM-based methods (NLM-RG)
outperform others. Observe the performance is improved when
the repairing process joins. It is worth noting that using
global deraining leads to the best result for every method.
This is expected since we can utilize the maximal amount of
history and future data to remove noise in the W-T space
for most images. Therefore, the global deraining approach
(NLM-RG) is suitable for offline implementation for optimal
performance.

6.4. Potential Implementation for Classical
Images
We have demonstrated that by transforming DVS images into the
W-T space, almost all rain streaks from a DVS camera can be
removed. Finally, we present an example of the implementation
of the W-T space for traditional cameras. In the denoising
process, the NLM filter is replaced by the SWM filter to
preserve edge information in the images. Moreover, the repairing
component is skipped since it is designed for DVS images.
As shown in Figure 7, in the W-T space, one can observe
the noise transformed from rain streaks and also the curves
having regular patterns. Note that in the output image, most
rain streaks are removed while the image is slightly blurred. We
can further exploit the regular patterns of the background to
keep more details in the W-T space, which shall be our future
study.
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TABLE 3 | Quantitative comparison of different event frame times Tf (ms).

Tf MSE PSNR VIF SSIM MS-SS FSIM UIQI

30 646.495 20.461 0.304 0.933 0.913 0.937 0.929

15 477.290 21.707 0.302 0.951 0.938 0.962 0.941

5 298.897 23.948 0.181 0.942 0.938 0.964 0.927

Values in boldface are the best ones.

TABLE 4 | Quantitative comparison when adopting different denoising methods in the W-T space.

Method MSE PSNR VIF SSIM MS-SS FSIM UIQI

NLM 846.601 20.577 0.243 0.920 0.904 0.923 0.915

NLM-R 790.034 20.782 0.262 0.922 0.904 0.922 0.917

NLM-RG 379.717 23.185 0.369 0.947 0.933 0.942 0.936

MF 795.768 19.433 0.0837 0.828 0.810 0.751 0.857

MF-R 762.147 19.518 0.102 0.831 0.789 0.745 0.857

MF-RG 597.407 20.808 0.151 0.900 0.860 0.860 0.889

SWM 1325.803 17.001 0.0779 0.648 0.598 0.615 0.146

SWM-R 2221.985 14.705 0.106 0.246 0.375 0.445 0.154

SWM-RG 995.026 18.348 0.133 0.649 0.660 0.632 0.553

NLM-R denotes the NLM-based method for repairing. NLM-RG means the same method when adopting global deraining. Same notations are applied to the MF and SWF-based

methods. Values in boldface are the best ones.

FIGURE 7 | (A) One image selected from a normal rainy video. (B) The corresponding output image from our approach. (C) One image in the W-T space sliced at a

height of 200.

7. CONCLUSION

In this article, we have presented a novel, simple but surprisingly
effective approach to removing raindrops and streaks from a
DVS event video. Based on the prior that rain is discontinuous
in the width and time directions, we propose to perform

the deraining process in the width and time space, in which
rain appears to be approximately uniform noise that can
be easily removed. We find that the non-local means filters
produce good deraining results when adopt in the denoising
process in the W-T space. The experimental results demonstrate
that our approach can better remove rain noise than the
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four existing methods for traditional camera videos. The best
performance is achieved when the event buffer depth is 50
and the event frame time is 15 ms. We also create a new
real-world database for deraining algorithms for DVS images.
In summary, we have made the following findings in this
manuscript.

• The output of DVS has two unique features: (1) no stationary
information and (2) no grayscale and RGB information. These
make conventional deraining methods no longer suitable for
DVS.
• The number of pixels of raindrop or streak projects in theW-T

space is 1/l̄ times that in the normal space.
• The density of rain streak projections in the W-T space is l̄

times that in the normal space.
• In the denoising process in the W-T space, the non-local

means filter produces good deraining results as background
object motions have periodic patterns.
• The parameter event buffer depth has little influence on the

performance.
• Our approach also has the potential to handle traditional RGB

rainy videos, which is our future study.
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