
TYPE Original Research

PUBLISHED 14 October 2022

DOI 10.3389/fnbot.2022.932671

OPEN ACCESS

EDITED BY

Alexander N. Gorban,

University of Leicester,

United Kingdom

REVIEWED BY

Maryam Parsa,

George Mason University,

United States

Avinash Kumar Singh,

University of Technology

Sydney, Australia

*CORRESPONDENCE

Edward Staley

corban.rivera@jhuapl.edu

RECEIVED 30 April 2022

ACCEPTED 12 September 2022

PUBLISHED 14 October 2022

CITATION

Rivera C, Staley E and Llorens A (2022)

Learning multi-agent cooperation.

Front. Neurorobot. 16:932671.

doi: 10.3389/fnbot.2022.932671

COPYRIGHT

© 2022 Rivera, Staley and Llorens. This

is an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

Learning multi-agent
cooperation

Corban Rivera1, Edward Staley1* and Ashley Llorens2

1Johns Hopkins Applied Physics Lab, Intelligent Systems Center, Laurel, MD, United States,
2Microsoft Research, Microsoft, Redmond, WA, United States

Advances in reinforcement learning (RL) have resulted in recent breakthroughs

in the application of artificial intelligence (AI) across many di�erent domains.

An emerging landscape of development environments is making powerful

RL techniques more accessible for a growing community of researchers.

However, most existing frameworks do not directly address the problem of

learning in complex operating environments, such as dense urban settings or

defense-related scenarios, that incorporate distributed, heterogeneous teams

of agents. To help enable AI research for this important class of applications,

we introduce the AI Arena: a scalable framework with flexible abstractions

for associating agents with policies and policies with learning algorithms. Our

results highlight the strengths of our approach, illustrate the importance of

curriculum design, and measure the impact of multi-agent learning paradigms

on the emergence of cooperation.

KEYWORDS

multi-agent, policy learning, reinforcement learning, artificial intelligence, learned

cooperation

1. Introduction

Reinforcement learning (RL) offers a powerful approach to generating complex

behaviors for intelligent systems that could not be explicitly derived or programmed. In

the RL setting, the problem of learning an effective control policy is posed as a sequential

decision-making problem for an agent interacting with a learning environment (Sutton

and Barto, 2018). Given that learning the environment dynamics is an essential aspect of

the RL problem, the ultimate effectiveness of a learned policy is dependent on the extent

to which the learning environment reflects the essential aspects of the intended operating

environment for the target system. Hence, many RL breakthroughs to date have focused

on gaming and other applications with structured and predictable environments (Silver

et al., 2016; Brown and Sandholm, 2019; Vinyals et al., 2019).

Translating progress in RL to increasingly complex applications of artificial

intelligence (AI) will require the design of representative learning environments with

corresponding complexity. Ensuring that future progress is reproducible and accessible

for a broad community of researchers will require tools and frameworks that enable

RL solutions to gracefully scale to address the problem of learning effectively in

these increasingly complex settings. In general, RL frameworks must balance multiple

tradeoffs, including ease of prototyping vs. training at scale, high-level abstractions vs.

fine-grained control, and richness of features vs. ease of use.

Frontiers inNeurorobotics 01 frontiersin.org

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2022.932671
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2022.932671&domain=pdf&date_stamp=2022-10-14
mailto:corban.rivera@jhuapl.edu
https://doi.org/10.3389/fnbot.2022.932671
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnbot.2022.932671/full
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Rivera et al. 10.3389/fnbot.2022.932671

2. Related work

Advances in the field of reinforcement learning has

resulted in astonishing progress in the areas of robotic

control (Lillicrap et al., 2015; Levine et al., 2016), and the

ability to master challenging games (Mnih et al., 2015; Silver

et al., 2016). To facilitate advancement in the field, numerous

reinforcement learning frameworks have been developed to

address scalable training (Caspi et al., 2017; Guadarrama et al.,

2018; Schaarschmidt et al., 2018), reproducibility (Loon et al.,

2019), robotics interoperability (Fan et al., 2018), lifelong

learning (Fendley et al., 2022), ease of prototyping (Abel, 2019;

Stooke and Abbeel, 2019; D’Eramo et al., 2020). Despite these

advancements, these works are designed for the single-agent

setting.

Our aim is to help enable RL research for the class

of applications that involve multiple teams of agents where

each team may have unique learning strategies and where

agents within a given team may have localized views of

the environment. Distributed multi-agent applications may be

thought of as analogous to “system of systems” applications from

a systems engineering perspective where collections (teams) of

goal-oriented systems (agents) collaborate to achieve shared

objectives. These attributes may arise, for example, in smart city

applications where automated traffic control systems interact

with fleets of automated vehicles (Shalev-Shwartz et al., 2016)

or in defense applications (Cai et al., 2013) where heterogeneous

autonomous systems interact across time and space to achieve

high-level mission objectives. Applications such as these often

include cooperation or competition (Busoniu et al., 2008) among

heterogeneous teams of agents as defining features.

Progress in the area of multi-agent reinforcement learning

has been made through the development of novel algorithms

(Lowe et al., 2017; Rashid et al., 2018; Son et al., 2019)

and frameworks to support distributed training of multi-

agent policies (Zheng et al., 2017; Juliani et al., 2018; Liang

et al., 2018). While these multi-agent focused frameworks

make significant contributions to the field, these frameworks

are designed to train with a single learning algorithm.

Reinforcement learning algorithms have unique strengths and

properties that make them ideal for different scenarios. Some

of these properties include sample efficiency (Mnih et al.,

2013; Haarnoja et al., 2018), shared value functions (Lowe

et al., 2017), intrinsic curiosity (Haarnoja et al., 2018). A

single learning algorithm may not be ideal for training

the policies of all agents in a complex environment. For

example, in environments where agents operate at different

timescales, the agent interacting with the environment at

the slowest timescale will collect the least experience. In

these cases, sample efficient learning algorithms may be

needed (Mnih et al., 2013; Haarnoja et al., 2018). For

agents that rapidly interact with the environment, on-policy

algorithms may achieve a desired level of average reward

FIGURE 1

Simultaneous multi-agent multi-strategy policy learning. The

figure illustrates an example multi-agent setting where the

policies of individual agents are learned simultaneously with

di�erent learning strategies.

more quickly (Schulman et al., 2017). In the following section,

we describe how our contributions address this important

limitation.

3. Introduction to the AI arena

In this work, we introduce the AI Arena: a scalable

framework with flexible abstractions for distributed multi-

agent reinforcement learning. A key contribution of the

AI Arena framework is the introduction of abstractions

to flexibly associate agents with policies and policies with

learning algorithms or heuristics. Figure 1 illustrates an example

environment with flexible associations between agents, policies,

and learning algorithms. The framework naturally distributes

experience gathering over multiple nodes and routes those

experiences to the associated learning algorithms to update

policies.

3.1. Multiagent environments

One primary goal of the AI Arena interface is to encourage

environments in which a variety of agents may coexist and learn

together. This should encompass everything from collaboration

among identical entities to competition among several dissimilar

groups. To that end, other properties of the environment are also

converted to lists, such as action spaces or observation spaces.

This allows for a variety of agent types to coexist in a single

environment. For example, one learning entity may be making

discrete decisions about image state data, while another entity in

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2022.932671
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Rivera et al. 10.3389/fnbot.2022.932671

FIGURE 2

Possible worker configurations. Policy workers may be attached in environment entities in any desired combination. (A) Three entities are

assigned to three independent policies that are learning separately and may have workers attached to other environments. (B) Entities are each

attached to workers of the same policy, such that some of the agents contributing to the policy are coexisting in the same environment. (C)

Entities are all attached to the same policy worker, which takes all of their data into account in a multiagent manner, possibly one of many

workers for a distributed multiagent algorithm.

FIGURE 3

TanksWorld Multi-Agent Environment for AI Safety Research. These images illustrate di�erent views of the Tanksworld environment (Left) is a

birds-eye rendering of the environment, (Center) is an agent’s-view rendering, and (Right) is the state representation actually provided as

observations to the RL algorithm.

the same environment may expect continuous actions based on

a vectorized state space.

An implication of this multi-entity setup is that all entities,

as well as their actions, observations, and rewards, are occurring

in lock-step at the same rate. Each step, the environment

expects decisions corresponding to all entities, and will return

information to all of them about the consequences of those

decisions. While this may seem limiting at first, it is better to

think of this as supporting the most extreme case of multi-agent

interaction: all entities can be involved in a single frame of the

environment. It is fairly straightforward to embed special cases

within this framework: an entity which has exited an episode

early can send and receive null values, or an entity with a lower

interaction frequency can easily on every Nth observation and

repeat actions until that observation occurs. The global “done”

signal is especially useful for simulations and games in which

there is a common or mutually exclusive objective, as is often

the case.

3.2. Multiple learning policies

A further goal of the AI Arena interface is to enable complex

distributed training architectures in which many policies may

be training simultaneously in shared environments. The policies

may be several instances of the same algorithm or be entirely

separate approaches to learning. The inclusion of many entities

in a single environment breaks from a typical training paradigm

of one policy-worker thread corresponding to one agent in

one environment. Rather, it is up to the user of this interface

to distribute the many entities in an environment (or across

many environments in the distributed case) to as many agents

as desired. For example, an environment with N agents may

function as N workers to a single distributed algorithm, or on

the other extreme, single workers to N distinct policies. They

may also be grouped such that M agents are in fact controlled

by a single instance of a multi-agent policy (Figure 2). In other

words, the agency of a given entity is at the discretion of the user.

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2022.932671
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Rivera et al. 10.3389/fnbot.2022.932671

FIGURE 4

Pseudo-code and process diagram for the TanksWorld training scheme. The training scheme was used by both the static and dynamic

curriculum. (Left) Pseudo-code of the training scheme against multiple policies. “ppo” refers to a PPO (Schulman et al., 2017) policy that is being

trained, while the other policies refer to custom frozen policies. (Right) The resulting processes and their organization. Four environments are

created, each housing 10 entities. The agents in the competition are depicted as nodes and colored based on the policies that they follow. All

blue tanks are contributing to a single policy.

maxsteps ← 4000000 ;

maxbatches ← maxsteps /32 ;

p← 0;

batch ← 0;

while batch ≤max batches do

if batch mod 20833 == 0 then

p← p+ .05 ;

Set penality for safety violations ← p;

end

Collect batch;

Train on batch;

batch← batch+ 1;

end

Algorithm 1. Dynamic training curriculum.

maxsteps ← 4000000 ;

maxbatches ← maxsteps /32 ;

Set the penalty for safety violations to .3 ;

batch ← 0;

while batch ≤max batches do

Collect batch;

Train on batch ;

batch← batch+ 1;

end

Algorithm 2. Static training curriculum.

FIGURE 5

Pseudo-code for the dynamic vs. static training curriculum. The dynamic curriculum increased penalties for safety violations from 0 to 0.3 in

increments of 0.05 distributed evenly over four million steps. The static curriculum keeps the penalty of safety violations at 0.3 throughout

training. The safety violation parameter sets the penalty for damage or death caused by an ally to another ally or neutral entity.

While this is a potentially powerful paradigm, it can be complex

to implement. Additional details about interfaces, architecture,

capabilities are described in Appendix.

4. Results and discussion

In this section, we highlight results that illustrate some

of the key features of the AI Arena. Our experiments were

designed to (i) test the importance of curriculum design on agent

performance in the Tanksworld environment, and (ii) measure

learned cooperation among several multi-agent paradigms in a

cooperative navigation environment. For each experiment, we

describe the environment, experiment design, and results.

4.1. The impact of curriculum design in
the Tanksworld environment

A curriculum is anything that results in non-stationarity

over the course of training (Bengio et al., 2009). A lot has

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2022.932671
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Rivera et al. 10.3389/fnbot.2022.932671

FIGURE 6

Round-based curriculum training organized with the AI Arena (brown). Successive rounds of training increased the di�culty by slowing

introducing safety penalties over three rounds of training with penalty weights (0, 0.05, 0.1, 0.15, 0.20, 0.25, 0.3). The baseline (green) starts with

the penalty threshold of 0.3. The result illustrates the value of successive rounds of curriculum training for teams of tanks in the AI Safety

Challenge domain.

been written about the challenges of non-stationarity in multi-

agent environments (Gronauer and Diepold, 2022). In this

experiment, we explored the potential benefits.

4.1.1. Environment

Illustrated in Figure 3, TanksWorld (Rivera et al., 2020)

is a competitive 5 vs. 5 environment that challenges teams

of agents to simultaneously win against the opposing team,

cooperate with diverse teammates, and cope with uncertainty in

the environment. The reward structure is a linear combination

of rewards from enemy kills and damage and penalties for

allied and collateral kills and damage. Additional details on the

Tanksworld environment and reward structure can be found in

the manuscript (Rivera et al., 2020).

4.1.2. Experiment design

The experiment compares reinforcement learning training

against multiple opponents simultaneously with and without

curriculum training. As shown in Figure 4, we train a policy

with PPO (Schulman et al., 2017) against four different opponent

policies (i.e., static, random, aggressive, and passive policies).

The training scheme also illustrates the expressiveness of the

abstractions in the AI Arena for multi-agent training. The policy

weights for the aggressive and passive policies were pretrained

with to saturation via PPO and frozen. Curriculum training

was used to slowly introducing penalties for safety violations.

The curriculum was composed of increasing penalties for safety

violations from 0 to .3 in increments of 0.05 distributed evenly

over four million steps. We compared the curriculum training

approach to a baseline approach without a curriculum that sets

the penalty for safety violations at 0.3. The difference between

the static and dynamic curriculum training is illustrated by

the algorithms in Figure 5. This means that the final reward

configuration for both the static and dynamic curriculum cases

were the same. We recorded average episodic reward over the

number of steps in the environment.

4.1.3. Results

The results of the comparison are shown in Figure 6. The

non-curriculum baseline reaches at plateau at just below 0,

while the curriculum-based approach achieves a higher overall

combined episodic reward which is a combinedmetric including

both safety and performance. The early penalties for safety

violations in the static curriculum inhibited exploration leading

to a sub-optimal policy.

4.2. Learned cooperation with
multi-agent soft actor critic

In this experiment, we aimed to better understand the effect

of different multi-agent training paradigms using soft actor critic

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2022.932671
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Rivera et al. 10.3389/fnbot.2022.932671

FIGURE 7

Cooperative navigation environment and behavior. The Cooperative Navigation environment has three targets (black squares) and three agents

(circles). The agents must coordinate to cover all targets. (Left) Illustration of environment and potential solution. (Right) Traces of the testing

behavior from the learned MASAC policies. The actions were reduced in magnitude to create slow paths to the targets. Some targets appear as

outlines, showing that the agent happened to start on or near that target. The traces are interesting in that they show clear coordination but

occasionally sub-optimal pairings of entities and targets. If the actions were not reduced, such that the entities reached the targets in only a

handful of steps, these sub-optimalities would have little consequence on score.

FIGURE 8

Training curves for MASAC and comparisons. (Left) Entity assignments for the three approaches: Truly multiagent policy (MASAC), treating each

entity as an SAC worker, and grouping all entities into a single agent. In all cases, the assignment was duplicated over several environments for

distributed training. (Right) The corresponding training curves for each approach. MASAC was the only successful algorithm, making slow and

deliberate progress for roughly 18 million steps before leveling o�.

(SAC) (Haarnoja et al., 2018) on the emergence of cooperation.

We evaluated cooperation using the cooperative navigation

environment from MADDPG (Lowe et al., 2017). In the next

section, we describe the environment in more detail.

4.2.1. Environment

The cooperative navigation environment is illustrated in

Figure 7. In the environment there are 3 agents that can move

in 2D space and must navigate to cover three targets. Targets

provide a reward of +1 if they are occupied, so the optimal

behavior is to have each entity travel to a unique target, such

that all targets are occupied. There is no penalty for colliding

with other agents. The environment runs for 300 steps, so the

maximum theoretical score is 900 (all entities starting directly

on a target and staying there for the duration, for 300× 3 = 900

points).

4.2.2. Experiment design

We trained and compared three paradigms for multi-agent

policy learning with SAC (Haarnoja et al., 2018) including (i)

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2022.932671
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Rivera et al. 10.3389/fnbot.2022.932671

agents are controlled by individual SAC policies that share

experience, (ii) a single SAC policy that controls all three

agents, and a multi-agent variant of SAC (MASAC). These

paradigms are illustrated in Figure 8 (left). Our implementation

of Multi-agent Soft Actor Critic (MASAC) is a direct extension

of soft actor critic (Haarnoja et al., 2018) to the multi-

agent domain using the common critic framework initially

described by MADDPG (Lowe et al., 2017). MASAC ran

on eight environments (eight workers, each controlling three

entities), SAC ran on six environments (18 workers, three

per environment) and the combined entity SAC ran on eight

environments (eight workers, each controlling three entities as

one agent). All three approaches collected and trained using 20

M steps of experience.

4.2.3. Results

As seen in Figure 8, our agents converge to a cooperative set

of behaviors that clear 800 points on average, which is nearly

optimal. The agents move quite quickly in this environment, but

we have slowed them down in testing to create visualizations of

their movements in Figure 7. While they do not always attempt

to reach the nearest target, they have coordinated in such a

way that all the targets become occupied. Crucially, they do

not communicate during testing, so it is only through training

with the common critic that they have learned complementary

policies that can deploy independently while still working

together.

The policy for individual control of converged at a low

average reward as seen in Figure 8. Treating the agents as

separate workers for SAC does not properly assign rewards to the

agents, since all three agents are collectively rewarded based on

target occupancy, and therefore the distributed SAC approach is

not able to solve the credit-assignment problem among multiple

workers. Similarly, the single SAC agent controlling all three

entities converged at a low level of average reward. Treating all

three entities as a single agent may suffer from a similar problem

in that any rewards that are experienced do not reflect credit for

the action taken but rather a subset of the action taken.

5. Conclusions

In this work, we introduced the AI Arena: a scalable

framework with flexible abstractions for distributed multi-agent

reinforcement learning. Our aim is to help enable RL research

for the class of applications that involve multiple teams of

agents where each team may have unique learning strategies

and where agents within a given team may have localized

views of the environment. Our experiment in the Tanksworld

environment illustrated the importance of curriculum design,

and our experiment with cooperative navigation highlighted

the importance of multi-agent algorithms for the emergence of

cooperative behavior.

Data availability statement

The raw data supporting the conclusions of this article will

be made available by the authors, without undue reservation.

Author contributions

CR and ES jointly wrote the manuscript, produced the

figures, ran the experiments, and developed the code. AL

provided crucial guidance. All authors reviewed the manuscript.

All authors contributed to the article and approved the

submitted version.

Acknowledgments

The authors would like to thank I-Jeng Wang and

Christopher Ratto for technical and manuscript reviews.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fnbot.2022.932671/full#supplementary-material

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2022.932671
https://www.frontiersin.org/articles/10.3389/fnbot.2022.932671/full#supplementary-material
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Rivera et al. 10.3389/fnbot.2022.932671

References

Abel, D. (2019). “Simple_rl: reproducible reinforcement learning in python,” in
RML@ ICLR (New Orleans, LA).

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). “Curriculum
learning,” in Proceedings of the 26th Annual International Conference on Machine
Learning (New York, NY), 41–48. doi: 10.1145/1553374.1553380

Brown, N., and Sandholm, T. (2019). Superhuman ai for multiplayer poker.
Science 365, 885–890. doi: 10.1126/science.aay2400

Busoniu, L., Babuska, R., and De Schutter, B. (2008). A comprehensive survey
of multiagent reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C 38,
156–172. doi: 10.1109/TSMCC.2007.913919

Cai, Y., Yang, S. X., and Xu, X. (2013). “A combined hierarchical reinforcement
learning based approach for multi-robot cooperative target searching in
complex unknown environments,” in 2013 IEEE Symposium on Adaptive
Dynamic Programming and Reinforcement Learning (ADPRL) (Singapore), 52–59.
doi: 10.1109/ADPRL.2013.6614989

Caspi, I., Leibovich, G., Novik, G., and Endrawis, S. (2017). Reinforcement
Learning Coach. doi: 10.5281/zenodo.1134899

D’Eramo, C., Tateo, D., Bonarini, A., Restelli, M., and Peters, J. (2020).
Mushroomrl: simplifying reinforcement learning research. arXiv preprint
arXiv:2001.01102. doi: 10.48550/arXiv.2001.01102

Fan, L., Zhu, Y., Zhu, J., Liu, Z., Zeng, O., Gupta, A., et al. (2018). “Surreal: open-
source reinforcement learning framework and robot manipulation benchmark,” in
Conference on Robot Learning (Zürich), 767–782.

Fendley, N., Costello, C., Nguyen, E., Perrotta, G., and Lowman, C. (2022).
Continual reinforcement learning with tella. arXiv preprint arXiv:2208.04287.
doi: 10.48550/arXiv.2208.04287

Gronauer, S., and Diepold, K. (2022). Multi-agent deep reinforcement learning:
a survey. Artif. Intell. Rev. 55, 895–943. doi: 10.1007/s10462-021-09996-w

Guadarrama, S., Korattikara, A., Ramirez, O., Castro, P., Holly, E., Fishman,
S., et al. (2018). TF-Agents: A Library for Reinforcement Learning in Tensorflow.
Available online at: https://github.com/tensorflow/agents

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., et al. (2018).
Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905.
doi: 10.48550/arXiv.1812.05905

Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M., et al. (2018).
Unity: a general platform for intelligent agents. arXiv preprint arXiv:1809.02627.
doi: 10.48550/arXiv.1809.02627

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end
training of deep visuomotor policies. J. Mach. Learn. Res. 17, 1334–1373.
doi: 10.48550/arXiv.1504.00702

Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., et al.
(2018). “Rllib: abstractions for distributed reinforcement learning,” in International
Conference on Machine Learning (Stockholm), 3053–3062.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al.
(2015). Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971.

Loon, K. W., Graesser, L., and Cvitkovic, M. (2019). SLM lab: a comprehensive
benchmark and modular software framework for reproducible deep reinforcement
learning. arXiv preprint arXiv:1912.12482. doi: 10.48550/arXiv.1912.12482

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O. and Mordatch, I.,
(2017). “Multi-agent actor-critic for mixed cooperativecompetitive environments,”
in Advances in Neural Information Processing Systems (Long Beach, CA), 30.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., et al. (2013). Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602. doi: 10.48550/arXiv.1312.5602

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et
al. (2015). Human-level control through deep reinforcement learning. Nature 518,
529–533. doi: 10.1038/nature14236

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., and
Whiteson, S. (2018). “Qmix: monotonic value function factorisation for deep
multi-agent reinforcement learning,” in International Conference on Machine
Learning (Stockholm), 4295–4304.

Rivera, C. G., Lyons, O., Summitt, A., Fatima, A., Pak, J., Shao, W., et al. (2020).
Tanksworld: a multi-agent environment for AI safety research. arXiv preprint
arXiv:2002.11174. doi: 10.48550/arXiv.2002.11174

Schaarschmidt, M., Mika, S., Fricke, K., and Yoneki, E. (2018). Rlgraph:
modular computation graphs for deep reinforcement learning. arXiv preprint
arXiv:1810.09028. doi: 10.48550/arXiv.1808.07903

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O.
(2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.
doi: 10.48550/arXiv.1707.06347

Shalev-Shwartz, S., Shammah, S., and Shashua, A. (2016). Safe, multi-agent,
reinforcement learning for autonomous driving. arXiv preprint arXiv:1610.03295.
doi: 10.48550/arXiv.1610.03295

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,
et al. (2016). Mastering the game of go with deep neural networks and tree search.
Nature 529, 484–489. doi: 10.1038/nature16961

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi, Y. (2019).
“QTRAN: learning to factorize with transformation for cooperative multi-agent
reinforcement learning,” in International Conference on Machine Learning (Long
Beach, CA), 5887–5896.

Stooke, A., and Abbeel, P. (2019). rlpyt: A research code base for
deep reinforcement learning in pytorch. arXiv preprint arXiv:1909.01500.
doi: 10.48550/arXiv.1909.01500

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
Cambridge, MA: A Bradford Book.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung,
J., et al. (2019). Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature 575, 350–354. doi: 10.1038/s41586-019-1724-z

Zheng, L., Yang, J., Cai, H., Zhang, W., Wang, J., and Yu, Y. (2017).
MAGENT: a many-agent reinforcement learning platform for artificial
collective intelligence. arXiv preprint arXiv:1712.00600. doi: 10.1609/aaai.v32i1.
11371

Frontiers inNeurorobotics 08 frontiersin.org

https://doi.org/10.3389/fnbot.2022.932671
https://doi.org/10.1145/1553374.1553380
https://doi.org/10.1126/science.aay2400
https://doi.org/10.1109/TSMCC.2007.913919
https://doi.org/10.1109/ADPRL.2013.6614989
https://doi.org/10.5281/zenodo.1134899
https://doi.org/10.48550/arXiv.2001.01102
https://doi.org/10.48550/arXiv.2208.04287
https://doi.org/10.1007/s10462-021-09996-w
https://github.com/tensorflow/agents
https://doi.org/10.48550/arXiv.1812.05905
https://doi.org/10.48550/arXiv.1809.02627
https://doi.org/10.48550/arXiv.1504.00702
https://doi.org/10.48550/arXiv.1912.12482
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1038/nature14236
https://doi.org/10.48550/arXiv.2002.11174
https://doi.org/10.48550/arXiv.1808.07903
https://doi.org/10.48550/arXiv.1707.06347
https://doi.org/10.48550/arXiv.1610.03295
https://doi.org/10.1038/nature16961
https://doi.org/10.48550/arXiv.1909.01500
https://doi.org/10.1038/s41586-019-1724-z
https://doi.org/10.1609/aaai.v32i1.11371
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org

	Learning multi-agent cooperation
	1. Introduction
	2. Related work
	3. Introduction to the AI arena
	3.1. Multiagent environments
	3.2. Multiple learning policies

	4. Results and discussion
	4.1. The impact of curriculum design in the Tanksworld environment
	4.1.1. Environment
	4.1.2. Experiment design
	4.1.3. Results

	4.2. Learned cooperation with multi-agent soft actor critic
	4.2.1. Environment
	4.2.2. Experiment design
	4.2.3. Results


	5. Conclusions
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


