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By considering the different-level time-varying physical limits in joint space, a refined

self-motion control scheme via Zhang neurodynamics equivalency (SMCSvZ) of

redundant robot manipulators is proposed, analyzed, and investigated in this manuscript.

The SMCSvZ is reformulated as a quadratic program with an equation constraint and a

unified bound inequation constraint, which meets the self-motion requirements including

the end effector keeping immobile and the initial joint-angle velocities being zero.

Simulative verifications based on a six-degrees-of-freedom planar redundant manipulator

substantiate the efficacy, accuracy, and superiority of the proposed control scheme,

additionally by comparing it with two previous self-motion control schemes. Besides,

simulative verifications based on a PUMA560 manipulator are carried out to further verify

the availability and correctness of the SMCSvZ.

Keywords: self-motion control scheme, zero initial joint-angle velocities, time-varying physical limits, Zhang

neurodynamics equivalency, redundant robot manipulators, quadratic program

1. INTRODUCTION

Redundant robot manipulators refer to such kind of manipulators whose degrees of freedom (DoF)
are more than the minimum number of DoF needed to perform specific end-effector tasks (Zhang
et al., 2018; Liao et al., 2019; Zhou et al., 2019; Chen et al., 2020; Xiao et al., 2020; Zhao et al., 2020;
Jin et al., 2021). Therefore, they have the capability to meet additional requirements, e.g., satisfying
physical limits, avoiding obstacles, and avoiding singularity configurations. In the practical
application, the redundant robot manipulator needs to adjust its configuration in some peculiar
situations. For instance, the repetitive motion of the redundant robot manipulator is planned
but joint-angle drift may happen. Similarly, the end-effector task may not be completed because
of operating space limitations or manipulator physical limitations. Adjusting the manipulator
configuration from one state to another state is essential and important for redundant robot
manipulators (Jin et al., 2020). Thereinto, the self-motion of redundant robot manipulators is
to adjust the manipulator configuration from the initial state to final state keeping the end
effector immobile at its current position or orientation (Li and Zhang, 2012; Zhang et al., 2021a).
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The self-motion could result in better manipulator performance
such as manipulability improvement (Jin et al., 2021), end-
effector task completeness, and singularity configuration
avoidance (Pardi et al., 2020).

In recent years, many self-motion control schemes (SMCSs)
or self-motion control approaches have been developed (Zhang
et al., 2009, 2016, 2021a; Li and Zhang, 2012; Zhang and
Xiao, 2012; Gong et al., 2019). For instance, a self-motion
scheme in form of a quadratic program (QP) was presented in
Zhang et al. (2009) and Liao et al. (2021), which was verified
on the functionally redundant robot manipulator PUMA560
considering joint-angle limits and joint-angle-velocity limits.
With singularities discussed, Zhang and Xiao (2012) proposed
a QP-based self-motion scheme for manipulators compared
with the pseudoinverse method and substantiated that the
proposed scheme was effective on three kinds of manipulators.
To eliminate the abrupt increase in joint velocity at the beginning
of the self-motion task execution, Li and Zhang (2012) put
forward a zero-initial-velocity self-motion scheme and verified
its feasibility on a 6-DoF planar manipulator. Besides, in order
to achieve high efficient self-motion tasks, Zhang et al. (2021a)
put forth a varying-gain neural self-motion approach.

In many previous studies, researchers developed QP-based
SMCSs considering time-invariant physical limits. However,
some redundant manipulators are inherently subject to varying
physical limits (Li and Zhang, 2012). Besides, in the engineering
field, with the passage of time and mechanical wear, the
physical limits may change with time, i.e., they are time-
varying. Considering this case, we establish a refined SMCS
for the redundant manipulators via the equivalency method in
this article.

Zhang neurodynamics equivalency (ZNDE) inspired by Ma
equivalency (Ma, 1996; Ma et al., 1996), is actually a class of
practice-accepted approximation, which is derived from Zhang
neurodynamics (Chen and Zhang, 2018; Qin et al., 2021).
Some schemes of complex systems via the ZNDE approach
were efficiently simplified (Guo et al., 2013; Qiu et al., 2016,
2018). Minimum-velocity-norm schemes of redundant robot
manipulators at two different layers were established by Guo
et al. (2013), and the equivalent relationship between two
manipulator control schemes was also developed via the Zhang
neurodynamics method. Zhang et al. (2020b) substantiated that
the schemes of redundant robot manipulators formulated by the
ZNDE approach were more robust. Zhang et al. (2020a) tried
to solve complex inequality-related problems through the ZNDE
approach. Besides, Zhang et al. (2021b) proposed a cyclic motion
control scheme at the acceleration layer for manipulator systems
via the ZNDE approach.

In this article, a refined self-motion control scheme via the
ZNDE approach (named SMCSvZ) in form of standard QP
is proposed to solve self-motion problems. With the time-
varying physical limits considered and zero initial joint-angle
velocities ensured, the proposed SMCSvZ is developed, proved,
and obtained by the ZNDE theorem and the corresponding
corollary. The simulation experiments based on two different
robot manipulators are designed and carried out to substantiate
the correctness and superiority of the proposed scheme by

comparing the previous SMCSs. The remainder of this article
consists of five sections. In Section 2, the requirements of self-
motion problems are presented first. Then, by analyzing and
comparing the two previous SMCSs, the refined SMCSvZ is
proposed via the ZNDE approach. In Section 3, the derivation
process of the SMCSvZ is provided, and the feasibility and
availability of the SMCSvZ are analyzed theoretically. In Section
4, the SMCSvZ composed of performance index, equivalent
equation constraint, and bounded inequality constraint is
presented in form of standard QP formulation, and its
corresponding neural network solver is also shown. In Section 5,
the simulation experiments based on a 6-DoF planarmanipulator
are carried out, and the simulation results substantiate the
efficacy and superiority of the SMCSvZ.Moreover, the simulation
experiments based on a PUMA560 manipulator are also carried
out to further verify the availability and correctness of the
SMCSvZ. Finally, we conclude the paper in Section 6. The main
contributions of the current study are presented as follows.

1. To better meet self-motion requirements, a refined self-
motion control scheme of redundant robot manipulators is
proposed with time-varying physical limits and zero initial
joint-angle velocities considered.

2. The theorem and corollary of the ZNDE approach are
proposed and theoretically proved, through which the
refined SMCSvZ is obtained. Then, the SMCSvZ is
applied to redundant manipulators to effectively realize
the self-motion task.

3. By comparing the SMCSvZ with the two previous SMCSs,
the simulation experiments based on a 6-DoF planar
redundant manipulator and a PUMA560 manipulator are
carried out with physical limits fully satisfied, which
verifies the availability, effectiveness, and superiority of the
proposed SMCSvZ.

2. PRELIMINARY, PROBLEM, AND
SCHEMES

The forward-kinematics equation of redundant robot
manipulators is written as r = ̥(2), where r ∈ Rm denotes
the end-effector actual position with 2 ∈ Rn denoting the
joint-angle vector and ̥(·) being a differentiable nonlinear
function. Furthermore, the inverse-kinematics equation about
relationship between the derivative of end-effector position
vector ṙ ∈ Rm and the derivative of joint-angle-velocity vector
2̇ ∈ Rn is written as

J(2)2̇ = ṙ,

where J(2) = ∂̥(2)/∂2 ∈ Rm×n is the Jacobian matrix.
In essence, the self-motion task of the redundant robot

manipulator is to utilize the redundant DoF of themanipulator to
adjust its configuration in joint space with the end effector being
immobile. For guaranteeing the end effector is immobile, the self-
motion task can be completed with the given joint angles being in
the motion region. If the given joint angles are out of the motion
region, the redundant robot manipulators also try to adjust the

Frontiers in Neurorobotics | www.frontiersin.org 2 August 2022 | Volume 16 | Article 945346

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tang and Zhang SMCSvZ via ZNDE

configuration to a suitable state. As a result, the manipulators
become more flexible after the self-motion task. To execute the
self-motion task, the SMCS of redundant robot manipulators
needs to meet the following requirements, which constitute the
problem formulation. 1© Robot manipulators adjust joint angles
2(0) to given joint angles 2g that are suitable joint angles
within the workspace of redundant robots (Akli, 2021). 2© Robot
manipulators try to keep the end effector immobile during the
process of self motion. 3© The initial velocities of the joint
angles equal zero. 4© The final velocities of the joint angles
equal zero. 5© Time-varying physical limits (including joint-
angle layer and joint-angle-velocity layer limits) of redundant
robot manipulators are all satisfied. Accordingly, we depict those
requirements as

2(t) → 2g, (1)

̥(2(t)) → ̥(2(0)), (2)

2̇(0) = 0, (3)

2̇(tend) = 0, with tend ∈ [0, tf] (4)

l−0 (t) ≤ 2(t) ≤ l+0 (t), (5)

l−1 (t) ≤ 2̇(t) ≤ l+1 (t), (6)

where 2(t) ∈ Rn and 2̇(t) ∈ Rn denote the joint-angle vector
and joint-angle-velocity vector, respectively;2g is the given joint-
angle vector; 2(0) is the initial joint-angle vector; 2̇(t) denotes
the derivative of 2(t) with time instant t ∈ [0, tf] and tf denoting
last instant time of the self-motion duration; 2̇(0) denotes 2̇(t)
with t = 0; 2̇(tend) denotes 2̇(t) with tend being the end time
of the self-motion task. In addition, l−0 (t) and l+0 (t) represent the
time-varying joint-angle lower limit and upper limit, respectively;
l−1 (t) and l+1 (t) represent the joint-angle-velocity lower limit and
upper limit, respectively. The traditional SMCS at the joint-angle-
velocity layer is formulated in Zhang et al. (2009) as

minimize ‖2̇(t)+ q(t)‖22/2, (7)

subject to J(2(t))2̇(t) = 0, (8)
1l− ≤ 2̇(t) ≤ 1l+, (9)

with q(t) = µ(2(t)− 2g), (10)
1l− = max{κ(l−0 − 2(t)), l−1 }, (11)
1l+ = min{κ(l+0 − 2(t)), l+1 }, (12)

where symbol ‖ · ‖2 denotes the two-norm of the vector, and
the time-varying vector q(t) ∈ Rn is defined according to the
self-motion task. The design parameters µ > 0 ∈ R and κ >

0 ∈ R are used to scale the magnitude of the manipulators. The
“max” and “min” functions are used to obtain the maximum and
minimum values of elements in the vector, respectively. The other
parameters are the same as those of the requirements (1)–(6). We
name the scheme (7)–(12) as SMCS-1 in this article.

As a further research of Zhang et al. (2009), a zero-initial-
velocity self-motion scheme for redundant robot manipulators is

proposed in Li and Zhang (2012) as shown below:

minimize ‖2̇(t)+ q(t)‖22/2, (13)

subject to J(2(t))2̇(t) = 0, (14)
2l− ≤ 2̇(t) ≤ 2l+, (15)

with q(t) = µ(2(t)− 2g), (16)
2l− = max{κ(l−0 − 2(t)), sin(π t/(2tf))l

−
1 }, (17)

2l+ = min{κ(l+0 − 2(t)), sin(π t/(2tf))l
+
1 }, (18)

where the physical limits (2l+ and 2l−) are partly different from
1l± presented in (17) and (18), which ensure 2̇(0) = 0. The
other parameters are the same as those of SMCS-1. The scheme
(13)–(18) is named SMCS-2 in this article.

However, equation limits (8) in SMCS-1 and (14) in SMCS-
2 are difficult to realize in practice. Different from SMCS-1
and SMCS-2, with comprehensive consideration of continuously
and differentially time-varying physical limits, zeroing initial
joint-angle velocities, and dynamically keeping the end-effector
position immobile, we propose a refined SMCSvZ for redundant
robot manipulators in this article, which is formulated as

minimize ‖2̇(t)+ q(t)‖22/2, (19)

subject to J(2(t))2̇(t) = −µ1(̥(2(t))−̥(2(0))), (20)
3l− ≤ 2̇ ≤ 3l+, (21)

with q(t) = µ2t(2(t)− 2g), (22)
3l−(t) = max{l̇−0 (t)+ κ(l−0 (t)− 2(t)), l−1 (t)}, (23)
3l+(t) = max{l̇+0 (t)+ κ(l+0 (t)− 2(t)), l+1 (t)}, (24)

where the positive design parameters µ1,µ2, and κ are used to
scale the magnitude of the manipulators. In addition, l−0 (t), l

+
0 (t),

l−1 (t), and l+1 (t) are the same as those of SMCS-1; l̇−0 (t) and l̇+0 (t)
represent the derivatives of l−0 (t) and l+0 (t), respectively.

3. SMCSvZ DERIVATION AND ANALYSIS

In this section, the performance index, the equation constraint,
and the unified bound inequation constraint in the QP-based
SMCSvZ are deduced via the ZNDE approach. The theorem and
corollary are given and proved for the analysis of the SMCSvZ.

3.1. Equation Constraint via ZNDE
In this subsection, the equivalence analyses of equations in
SMCSvZ are carried out. To be specific, (19), (20), and (22) in
SMCSvZ are derived and analyzed theoretically.

To ensure that initial joint-angle velocities are zero, physical
limits (2l±) in SMCS-2 are different from 1l± in SMCS-1, and one
part of 2l± is obtained through multiplying sin(π t/(2tf)) by

1l±.
These changes realize 2̇(0) = 0 but reduce the feasible region
of 2̇(t). That is when the physical limits verge, 2̇(t) change to
avoid exceeding the physical limits, but they can only change
slowly and thus make the task spend more time. In SMCSvZ, we
define (22) instead of (10) because the Equation (22) can better
meet the requirements of self-motion tasks and it is practically
and mathematically equivalent to Equation (10), which is proved
via the following ZNDE-EEV theorem.
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Theorem 1. (ZNDE-EEV theorem)With differentiable ǫ(t) ∈ Rn,
the zero vector 0 ∈ Rn, sufficiently large positive design parameter
µ ≫ 0 and time instant t ≫ 0,

ǫ̇(t) = −µtǫ(t) (25)

is practically mathematically equivalent (i.e., ZNDE equivalent) to

ǫ(t) = 0. (26)

Proof: The Equation (25) is a differential equation with ǫ̇(t)
denoting d(ǫ(t))/dt. The analytical solution of (25) is ǫ(t) =

ǫ(0) exp(−µt2/2) with ǫ(0) denoting the initial value of ǫ(t) and
µ denoting a large positive design parameter.

With t → ∞, ǫ(t) = ǫ(0) exp(−µt2/2) → 0 instantaneously.
That is, each element of ǫ(t) quickly decreases to a tiny value that
is considered to be zero in practical application, or ǫ(t) = 0 with
t large enough. Therefore, (25) is ZNDE equivalent to (26) with
µ ≫ 0 and t ≫ 0. The proof, thus, ends. �

To settle the self-motion problem of redundant robot
manipulators, we combine the self-motion requirement (1) and
define an error function as ǫ(t) = 2(t)−2g. Then, according to
Theorem 1, one gets that

ǫ̇(t) = 2̇(t) = −µt(2(t)− 2g) (27)

is ZNDE equivalent to 2(t) − 2g = 0. From (27), one can get
the following. First, the performance index at the velocity layer
can be expressed as ‖2̇(t) + µt(2(t) − 2g)‖

2
2/2, i.e., q(t) =

µt(2(t) − 2g), which corresponds to (19) and (22) in SMCSvZ.
Second, the self-motion task ends when the value of2(tend)−2g

equals 0 with tend ∈ [0, tf]. That is when the final velocities
of joint angles 2̇(tend) verge or equal 0, the self-motion task is
considered to be over. Finally, when t = 0, the initial joint-angles
velocity vector 2̇(0) equals 0. The above analyses show that (22)
in SMCSvZ obtained by the ZNDE better meets the requirements
(1), (3), and (4) of the self-motion task.

In addition, the self-motion requirement (2) is formulated
as J(2(t))2̇(t) = 0 in SMCS-1 and SMCS-2, which is difficult
to guarantee in practice. Hence, we handle the problem by
transforming this constraint to (20) in SMCSvZ via the ZNDE
approach, which is illustrated clearly by the following lemma
(Zhang et al., 2021b).

Lemma 1. With differentiable ǫ(t) ∈ Rn, the zero vector 0 ∈ Rn,
sufficiently large positive design parameter µ≫ 0 and time instant
t≫0, ǫ̇(t) = −µǫ(t) is practically mathematically equivalent (i.e.,
ZNDE equivalent) to ǫ(t) = 0.

To meet the self-motion requirement (2), the error function
is defined as ǫ(t) = ̥(2(t)) − ̥(2(0)). By Lemma 1, we
get that the equation J(2)2̇(t) = −µ(̥(2(t)) − ̥(2(0))) is
ZNDE equivalent to (8) in SMCS-1 and (14) in SMCS-2, which is
just equation constraint (20) in SMCSvZ. Meanwhile, equivalent
equation constraint (20) in SMCSvZ dynamically keeps the end
effector nearest to its initial position.

3.2. Inequation Constraint via ZNDE
In this subsection, we are to unify two-layer inequation
constraints into one equivalent bound inequation constraint
through the inequation type of the ZNDE that is described in the
following lemma (Zhang et al., 2021b).

Lemma 2. With differentiable ǫ(t) ∈ Rn, sufficiently large positive
design parameter ρ ≫ 0 and time instant t ≫ 0, in a ZND
manner, ǫ̇(t) ≤ −ρǫ(t) is practically mathematically equivalent
(i.e., ZNDE equivalent) to ǫ(t) ≤ 0.

According to Lemma 2, the following corollary at the velocity
layer is acquired.

Corollary 1. Assume that vector 2(t) and its time-varying
physical limits l±0 (t) are continuously differentiable. l̇

−
0 (t) and l̇

+
0 (t)

represent the derivatives of l−0 (t) and l+0 (t), respectively. With
design parameter ρ ≫ 0 and time t ≫ 0, in a ZND manner,

l̇−0 (t)− ρ(2(t)− l−0 (t)) ≤ 2̇(t) ≤ l̇+0 (t)− ρ(2(t)− l+0 (t)) (28)

is practically mathematically equivalent (i.e., ZNDE equivalent) to

l−0 (t) ≤ 2(t) ≤ l+0 (t). (29)

Proof: By defining the function ǫ(t) = 2(t) − l+0 (t) ≤ 0

according the left part of (29), one gets ǫ̇(t) = 2̇(t) − l̇+0 (t) ≤

−ρ(2(t)− l+0 (t)), which is ZNDE equivalent to 2(t) ≤ l+0 (t) via
Lemma 2. Then, 2̇(t) ≤ l̇+0 (t)− ρ(2(t)− l+0 (t)) is obtained.

Similarly, by defining the function ǫ(t) = l−0 (t) − 2(t) ≤ 0

according the right part of (29), one gets ǫ̇(t) = l̇−0 (t) − 2̇(t) ≤
−ρ(l−0 (t) − 2(t)), which is ZNDE equivalent to l−0 (t) ≤ 2(t)
via Lemma 2. Then, l̇−0 (t) + ρ(l−0 (t) − 2(t)) ≤ 2̇(t) is obtained.
Combined with the above results, the corollary is proved. �

From the above corollary, (28) is ZNDE equivalent to the
self-motion requirement (5). By combining (28) and the self-
motion requirement (6), the unified equivalent bound inequation
constraint (21) in SMCSvZ is obtained.

4. QP FORMULATION AND PROJECTION
NEURAL NETWORK (PNN) SOLVER

By using the ZNDE approach, the QP-based SMCSvZ is obtained
to control the redundant robot manipulators for realizing the
self-motion task, which is handled by a projection neural network
(PNN) solver.

4.1. Standard QP Formulation
On the basis of Theorem 1, Lemma 1, and Corollary 1,
the SMCSvZ with time-varying physical limits satisfied is
reformulated as a standard QP at the velocity layer as follows.

minimize
1

2
ϒT(t)A(t)ϒ(t)+ pT(t)ϒ(t), (30)

subject to B(t)ϒ(t) = b(t), (31)

l−(t) ≤ ϒ(t) ≤ l+(t), (32)

with l−(t) = max{l̇−0 (t)+ κ(l−0 (t)− 2(t)), l−1 (t)}, (33)

l+(t) = min{l̇+0 (t)+ κ(l+0 (t)− 2(t)), l+1 (t)}, (34)
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FIGURE 1 | Synthesized results of the planar manipulator using SMCSvZ with time-varying physical limits satisfied in case A. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of initial and final manipulator positions. (E) Profiles of the planar manipulator. (F) Profiles of

end-effector position errors.

where ϒ(t) = 2̇(t); A(t) = In denotes an n × n identity
matrix; B(t) = J(2(t)); p(t) = µ1t(2(t) − 2(0));
b(t) = −µ2(̥(2(t)) − ̥(2(0))) with µ1 and µ2

presenting the design parameters. Moreover, l+(t)
and l−(t) are the physical upper and lower limits of
synthesized time-varying unified layer, respectively. l−0 (t),
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FIGURE 2 | Synthesized results of the planar manipulator using SMCS-1 with time-varying physical limits satisfied in case A. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of end-effector position errors.

l+0 (t), l−1 (t), l+0 (t), l̇−0 (t), and l̇+0 (t) are the same as above
SMCSvZ (19)–(24).

4.2. PNN Solver
To solve the QP-based SMCSvZ (30)–(34) in real time, we use a
PNN solver to obtain the solution ϒ(t) in this subsection, which
is developed in the following lemma (Xia et al., 2020).

Lemma 3. With γ ∈ R+ adjusting the convergence rate and large
enough ς , the PNN solver for SMCSvZ is developed as

u̇(t) = γ
(

In+m +MT(t)
)(

P�(u(t)− (M(t)u(t)+ h(t)))− u(t)
)

,

(35)

where u(t) = [ϒ(t);̟ ] ∈ Rn+m and h(t) = [p(t);−b(t)] ∈

Rn+m in MATLAB manner (Mathews and Fink, 2004).
Meanwhile, In+m denotes a (n + m) × (n + m) identity matrix,
and ̟ ∈ Rm is the dual decision vector defined corresponding to
(31). Besides,

M(t) =

[

A(t) −BT(t)
B(t) Om

]

∈ R
(n+m)×(n+m),

u−(t) =

[

l−(t)
−ς1v

]

∈ R
n+m, and u+(t) =

[

l+(t)
ς1v

]

∈ R
n+m,

in which Om denotes an m × m zero matrix and
1v = [1, · · · , 1]T ∈ Rm.

5. SIMULATIONS AND COMPARISONS

In this section, the simulation experiments are conducted
based on two different redundant robot manipulators,
which include a 6-DoF planar manipulator and a PUMA560
manipulator. Thereinto, the PUMA560 manipulator works in
three-dimensional space.

5.1. Simulations Based on 6-DoF Planar
Manipulator
In the ensuing simulations, the initial joint
states of the planar manipulator are set as

[0.628, 1.047,−1.570, 1.570,−0.785, 1.047]T rad with superscript
T denoting the transposition of the vector, and the given joint
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FIGURE 3 | Synthesized results of the planar manipulator using SMCS-2 with time-varying physical limits satisfied in case A. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of end-effector position errors.

FIGURE 4 | Synthesized results of the planar manipulator using SMCS-1 with time-varying physical limits unsatisfied in case B. (A) Profiles of joint angles. (B) Profiles

of joint-angle velocities.
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FIGURE 5 | Synthesized results of the planar manipulator using SMCS-2 with time-varying physical limits verged in case B. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of end-effector position errors.

states are set as [1.574, 0.129,−0.947, 1.091,−1.928, 1.067]T rad.
The task time-interval is set as [0, 3] s.

5.1.1. Case A: Loose Physical Limits
First, the simulation experiments are conducted with all physical
limits satisfied. The joint-angle limits and joint-angle-velocity
limits are time-varying, and the limits region are set loose.
Specifically, each element in l−0 (t) is set as −3 + 0.25sin2(t) rad,
and each element in l+0 (t) is set as 3 − 0.25sin2(2t) rad. Each
element in l−1 (t) is set as −3 + 0.25sin2(2t) rad/s, and each
element in l+1 (t) is set as 3−0.25sin2(2t) rad/s. The corresponding
parameters are set as γ = 104, ς = 106, and µ1 = µ2 = 3.

By PNN solver, the simulation results synthesized by the
planar manipulator using the SMCSvZ are generated and
presented in Figure 1. The curves of joint angles with the time-
varying physical limits satisfied are presented in Figure 1A. As
seen from Figure 1B, joint-angle velocities also satisfy their time-
varying physical limits, the initial joint-angle velocities vector
2̇(0) equals 0, and the time for 2̇(t) converging to zero is near

to 2 s. That is, all physical limits are satisfied in the process
of the self-motion task. Each joint angle as well as joint-angle
velocity is not out of physical limits and does not need to be
adjusted. Besides, Figure 1C depicts the value of e2 (joint-angle
error vector e2 = 2(t) − 2g with e2i being the elements of
e2 (i = 1, 2, · · · , 6) and t ∈ [0, tf]), and the curves show that
the joint angles gradually approach the given joint angles from
initial ones over time. In addition, Figure 1F depicts end-effector
position errors, which shows that the end effector keeps immobile
in the practice. In specific, the maximal position error of the

end effector is 1 × 10−4 m, and the position errors (i.e., eX and

eY) are near zero after 2 s. As seen in Figures 1D,E, the joint

angles are adjusted then gradually approach the given ones from
initial joint angles, and the planar manipulator completes the
task successfully.

The simulation experiments based on the planar manipulator

using SMCS-1 are carried out and the simulation results are

depicted in Figure 2. The curves of joint angles with time-varying
physical limits satisfied are shown in Figure 2A. However, the
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FIGURE 6 | Synthesized results of the planar manipulator using SMCSvZ with time-varying physical limits verged in case B. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of end-effector position errors.

initial joint-angle velocities vector 2(0) does not equal zero as
presented in Figure 2B, one of which is close to time-varying
physical limits of joint-angle velocities. In this case, the time
for 2̇(t) converging to zero is before 2 s. The curves shown in
Figure 2C indicate that each element of e2 converges to zero
within 2 s, which also means the joint angles approach given
joint angles within 2 s. As seen in Figure 2D, the maximal
position error of the end effector is 1.5 × 10−4 m. Nevertheless,
the position errors converge to some stable values but are not
near zero. The joint angles also reach the given ones from
initial joint angles, and the planar manipulator completes the
task successfully. Due to similarity and space limitations, the
corresponding pictures are omitted in the article, and the same
is done in the following part.

The simulation results synthesized by SMCS-2 are shown in
Figure 3. Thereinto, Figure 3A presents the curves of joint angles
with time-varying physical limits satisfied. From Figure 3B,
one obtains the initial velocities of the joint angles equal
to zero with the time-varying physical limits satisfied, and
the time for 2̇(t) converging to zero is after 2 s, which

is fractionally longer than those shown in Figures 1B, 2B.
The curves shown in Figure 3C indicate that each element
of e2 converges to zero after 2 s, which also means the
joint angles approach the given joint angles after 2 s. Besides,
Figure 3D depicts that the maximal position error of the end
effector is 2 × 10−4 m with the position errors stabilized
after 1.5 s.

The above three experiment results in Figures 1–3 show that
when physical limits are all satisfied, the planar manipulator
using SMCS-1 completes the task fastest but it does not have the
zero initial velocities. On the premise that the values of initial
velocities equal zero, compared with the planar manipulator
using SMCS-2, the planarmanipulator using SMCSvZ has a faster
convergence speed and higher accuracy.

5.1.2. Case B: Stringent Physical Limits
Another simulation experiment based on the planar manipulator
using SMCSvZ, SMCS-1, and SMCS-2 is carried out when the
region of joint-angle physical limits is not large enough. The
joint-angle lower limit l−0 is set as[ξ , ξ , ξ , ξ , ξ , ξ ]T rad, where
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TABLE 1 | Values of e synthesized by SMCS-1, SMCS-2, and SMCSvZ in case A and case B with e = 2(tf )− 2g.

Joint-angle
1 2 3 4 5 6

ae1 × 10−3 ae∗

1 × 10−2 ae2 × 10−2 ae∗

2 × 10−1 aez × 10−3 ae∗

z × 10−3

21 0.4035277546 0.5782355172 0.0015447915 0.0565260232 0.2921514678 0.5103526402

22 0.3129608608 −0.0545327541 0.0818730936 −0.0038875074 0.3244167469 0.1505453049

23 −0.5012693542 −0.8850811496 −0.1953758157 −0.1167433302 0.3180588608 −0.2854495128

24 0.1551459332 −0.3796040427 0.1295147141 −0.0181627340 0.2767581164 −0.1041636237

25 −0.5392726233 0.8367928486 −0.0282762806 0.0922359849 0.1932659195 −0.3721375789

26 0.2316018914 −0.0482526950 0.1809797644 0.0281766251 0.1004131585 −0.0027968302

ae1, e2, and ez are obtained in case A, and e∗1, e
∗
2, and e∗z are obtained in case B with subscripts 1, 2, and z representing SMCS-1, SMCS-2, and SMCSvZ, respectively.

TABLE 2 | Relation between position-error order and parameter γ in simulations based on planar manipulator using different control schemes in case A and case B.

Order 10−6 Order 10−5 Order 10−4 Order 10−3

SMCSvZ Case A γ = 108, 107, 106 γ = 105 γ = 104 γ = 103

Case B γ = 108, 107, 106, 105 γ = 104 γ = 103 γ = 102

SMCS-1 Case A γ = 107 γ = 108, 106, 105 γ = 104 γ = 103

Case B γ = 107 γ = 108, 106, 105 γ = 104 γ = 103

SMCS-2 Case A – γ = 108, 107, 106, 105 γ = 104 γ = 103

Case B γ = 106 γ = 108, 107, 105 γ = 104 γ = 103

ξ = −2.1 + 0.25sin2(t). The other parameters are set the same
as the above situation.

The simulation experiments based on the planar manipulator
using SMCS-1 are carried out and the results are shown in
Figure 4. As seen from Figure 4A, the curve of 25 exceeds the
curve of time-varying lower physical limit, which means that
physical limits are not satisfied and the manipulator may be
damaged. The curves of the joint-angle velocities in Figure 4B

present that themanipulator has adjusted, but it still cannot avoid
the joint angle exceeding the physical limits.

In comparison, Figure 5 depicts the simulation results
synthesized by SMCS-2. To be specific, the manipulator
effectively adjusts 25 to avoid exceeding the curve of the joint-
angle physical limits, which means that the planar manipulator
continues the self-motion task without mechanical damage in
Figure 5A. As the allowable ranges of joint-angle velocities may
be narrowed, the joint angles are adjusted slowly. The time for
2̇(t) converging to zero is near 3 s as depicted in Figure 5B. It
takes nearly 3 s for the planar manipulator to adjust the joint
angles to the given ones as depicted in Figure 5C. The maximal
position error of the end effector depicted in Figure 5D is 1.5 ×
10−4 mwith the position errors converging to some stable values.

In addition to that, Figure 6 depicts the simulation results
synthesized by SMCSvZ. As seen in Figure 6A, each element of
2 satisfies the joint-angle physical limits in the process of the
self-motion task. When 25 is verging on its lower physical limit,
the manipulator adjusts the joint-angle velocities, and thus the
joint angles are correspondingly adjusted to avoid exceeding the
physical limits. The time for 2̇(t) converging to zero is near
2.5 s as depicted in Figure 6B, which is less than one spent by
the planar manipulator using SMCS-2. In addition, the curves
shown in Figure 6C indicate that each element of e2 converges to

zero within 2.5 s. The maximal position error of the end effector
depicted in Figure 6D is 6× 10−4 m.

5.1.3. More Simulation Results
In this subsection, some other simulation results synthesized by
the planar manipulator in case A and case B are presented. In
Table 1, the data in columns 1, 3, and 5 are the values of e2
obtained by the planar manipulator using SMCS-1, SMCS-2, and
SMCSvZ in case A, respectively. Thereinto, the maximal errors of
joint angles produced by SMCSvZ and SMCS-1 are of the order
of 10−3 m, while it is of the order of 10−2 m that produced by
SMCS-2. In addition, the data in columns 2, 4, and 6 in Table 1

are the error values of e2 obtained in case B. The maximal error
of joint angles produced by SMCSvZ is of the order of 10−3 m,
while it is of the order of 10−2 mwhen produced by SMCS-1, and
it is of the order of 10−1 m when produced by SMCS-2. In this
respect, the SMCSvZ is better than the other two schemes.

Generally, the parameters in the simulations influence the
simulation results. For example, the position errors of the end
effector reflect whether the end effector keeps motionless or
not. As shown in Figures 1F, 2D, 3D, 5D, 6D, the maximal
position errors are mostly of the order of 10−4 m when
the parameter γ is set as 104 in case A and case B, which
meet the practical requirements. If one desires to change the
precision of position error, the value of γ can be changed as
Table 2 shown. For example, if γ is set as 105, the 6-DoF
planar manipulator using SMCSvZ completes the self-motion,
and the maximal position errors are of the order of 10−6 m.
Furthermore, to improve the precision of position error, we can
also change the value of µ2. The simulation experiments are
conducted based on the planar manipulator using SMCSvZ with
different values of µ2 in case B, and the different results of

Frontiers in Neurorobotics | www.frontiersin.org 10 August 2022 | Volume 16 | Article 945346

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tang and Zhang SMCSvZ via ZNDE

FIGURE 7 | End-effector position errors of planar manipulator using SMCSvZ with time-varying physical limits verged in Case B. (A) With µ2 = 1. (B) With µ2 = 10.

(C) With µ2 = 100. (D) With µ2 = 1, 000.

position errors are displayed in Figure 7. As seen in Figure 7A,
when µ2 is set as 1, the position error of the end effector
does not converge within the duration of the task. When µ2

is set as 10, the maximal position error of the end effector

depicted in Figure 7B is 4 × 10−4 m and its convergence

time is shortened. The position errors depicted in Figures 7C,D

are of the orders of 10−5 m and 10−6 m, respectively. The

design parameters can be set as appropriate values according to
actual requirements.

In summary, with the desired precision and the physical limits

satisfied, the planar manipulator using SMCSvZ completes the

self-motion task more effectively and efficiently compared with
the ones using SMCS-1 and SMCS-2.

5.2. Simulations Based on PUMA560
Manipulator
To further verify the efficiency of the proposed SMCSvZ, we
conduct more simulation experiments based on the PUMA560
manipulator using SMCSvZ, SMCS-1, and SMCS-2.

The task time-interval of all simulation experiments is
also set as [0, 3] s. The initial joint angles are set as

[0,−π/4, 0,π/2,−π/4, 0]T rad, and the given joint angles are
set as [0.1723,−0.9099, 0.122, 0, 0.0067, 0]T rad. Specifically, each
element in l−0 (t) is set as −3 + 0.25sin2(t) rad, and each element
in l+0 (t) is set as 3 − 0.25sin2(2t) rad. Each element in l+1 (t) is
set as 3 − 0.25sin2(2t) rad/s, and each element in l−1 (t) is set as
−3 + 0.25sin2(2t) rad/s. The parameter γ = 1 × 105, and other
parameters are set the same as above situation.

The simulation experiment based on the PUMA560
manipulator using SMCSvZ with the time-varying physical
limits satisfied is done, and the results are displayed in Figure 8.
The curves of joint angles are presented in Figure 8A. As seen in
Figure 8B, the initial velocities of the joint angles equal zero, and
the values of 2̇(t) converge to zero before 2 s. Besides, Figure 8C
shows that the values of e2 also converge to zero before 2 s.
In addition, Figure 8F depicts that the maximal position error
of the end effector is 6 × 10−6 m, and the values of position
errors (i.e., eX, eY, and eZ) are close to zero over time. As seen
in Figures 8D,E, the joint angles reach the given ones from
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FIGURE 8 | Synthesized results of the PUMA560 manipulator using SMCSvZ with time-varying physical limits satisfied. (A) Profiles of joint angles. (B) Profiles of

joint-angle velocities. (C) Profiles of joint-angle errors. (D) Profiles of initial and final manipulator positions. (E) Profiles of the planar manipulator. (F) Profiles of

end-effector position errors.

initial joint angles, and the PUMA560 manipulator completes
the task successfully.

When the joint-angle lower limit l−0 is set as [ξ , ξ , ξ , ξ , ξ , ξ ]T

rad with ξ = −1.15 + 0.25sin2(t), the simulation results

synthesized by the PUMA560 manipulator using the SMCSvZ
are shown in Figure 9. As seen in Figure 9A, the self-motion
task is completed in 3 s. Apparently, the curve of 22 verges
on the curve of the limit, and all physical limits are satisfied
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FIGURE 9 | Synthesized results of PUMA560 manipulator using SMCSvZ with time-varying physical limits verged. (A) Profiles of joint angles. (B) Profiles of joint-angle

velocities. (C) Profiles of joint-angle errors. (D) Profiles of end-effector position errors.

in task durations. In Figure 9B, the self-motion requirement
2̇(0) = 0 is satisfied, and 2̇(t) converges to 0 over time. In
Figure 9C, the values of e2 increasingly verge on 0. The maximal
position error of the end effector is 3× 10−4 m, and the values of
position errors change slightly but converge to zero over time in
Figure 9D, which indicates that the end effector also dynamically
keeps immobile.

The simulation results synthesized by the PUMA560
manipulator using the SMCS-1 or SMCS-2 are similar to the
results of the planar manipulator, which are omitted. To sum
up, the PUMA560 manipulator using SMCSvZ can better meet
the self-motion requirements, satisfy the time-varying physical
limits, and complete the self-motion task efficiently.

6. CONCLUSION

We have proposed a refined QP-based self-motion control
scheme of redundant robot manipulators with time-varying
joint limits and zero initial joint-angle velocities satisfied via

the ZNDE approach in the paper. The proposed scheme has
been composed of a ZNDE equation constraint and a bound
ZNDE inequation constraint. Compared with two previous
SMCSs, we have theoretically analyzed the proposed SMCSvZ
that well meets the self-motion requirements, then applied
it to control the redundant robot manipulators for the self-
motion task. The simulation experiments have been conducted
based on the 6-DoF planar manipulator in two different cases.
By comparing with the simulation results produced by the
redundant robot manipulators using SMCS-1, SMCS-2, and
SMCSvZ, the proposed SMCSvZ has shown its effectiveness,
superiority, and practicability. Besides, the simulation results
produced by the PUMA560 manipulator using SMCSvZ in two
different cases have been obtained, and they have also verified
the feasibility and correctness of the SMCSvZ. Based on ZNDE,
more kinds of time-varying problems would be simplified and
solved in future studies. Besides, the scheme established in the
article is continuous-time and is not convenient for hardware
implementation, and thus, the design and development of a
discrete-time scheme could be one future research direction.
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