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Human-in-the-loop (HITL) optimization with metabolic cost feedback has

been proposed to reduce walking e�ort with wearable robotics. This study

investigates if lower limb surface electromyography (EMG) could be an

alternative feedback variable to overcome time-intensivemetabolic cost based

exploration. For application, it should be possible to distinguish conditions

with di�erent walking e�orts based on the EMG. To obtain such EMG data,

a laboratory experiment was designed to elicit changes in the e�ort by loading

and unloading pairs of weights (in total 2, 4, and 8 kg) in three randomized

weight sessions for 13 subjects during treadmill walking. EMG of seven lower

limb muscles was recorded for both limbs. Mean absolute values of each

stride prior to and following weight loading and unloading were used to

determine the detection rate (100% if every loading and unloading is detected

accordingly) for changing between loaded and unloaded conditions. We

assessed the use of multiple consecutive strides and the combination of

muscles to improve the detection rate and estimated the related acquisition

times of diminishing returns. To conclude on possible limitations of EMG

for HITL optimization, EMG drift was evaluated during the Warmup and the

experiment. Detection rates highly increased for the combination of multiple

consecutive strides and the combination of multiple muscles. EMG drift was

largest duringWarmup and at the beginning of eachweight session. The results

suggest using EMG feedback of multiple involved muscles and from at least

10 consecutive strides (5.5 s) to benefit from the increases in detection rate

in HITL optimization. In combination with up to 20 excluded acclimatization

strides, after changing the assistance condition, we advise exploring about

16.5 s of walking to obtain reliable EMG-based feedback. To minimize the

negative impact of EMG drift on the detection rate, at least 6 min of Warmup
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should be performed and breaks during the optimization should be avoided.

Future studies should investigate additional feedback variables based on EMG,

methods to reduce their variability and drift, and should apply the outcomes in

HITL optimization with lower limb wearable robots.

KEYWORDS

EMG, human-in-the-loop, optimization, control, exoskeleton, wearable robotics,

feedback, electromyography

1. Introduction

The human lower limb is required to execute a variety of

movement tasks including locomotion as our most essential

means of transport. Physical and functional limitations due to

age or disease can limit lower limb-related mobility (Grimmer

et al., 2019b). Furthermore, repetitive movement tasks or those

movement tasks with heavy loads, such as lifting or carrying

objects, can physically strain the human lower limbs and lead

to fatigue and related injuries (Cavuoto and Megahed, 2017).

To overcome such mobility limitations and to reduce the

impact of muscle fatigue, powered wearable assistive robotics

such as lower limb prostheses (Windrich et al., 2016) and

lower limb exoskeletons (del Carmen Sanchez-Villamañan et al.,

2019; Pinto-Fernandez et al., 2020) were introduced. A variety

of control concepts have been explored for these wearable

robotics to assist users as much as possible in diverse terrains

(Tucker et al., 2015; Pinto-Fernandez et al., 2020). Assistance

timings and amplitudes were inspired by human biomechanics,

such as joint moments and joint power trajectories (Grimmer

et al., 2019a). While worldwide efforts have led to significant

improvements in user assistance, many assistive device concepts

have only been able to demonstrate minor benefits for the task

of interest (Sawicki et al., 2020). One major reason for this is

that conventional assistance control concepts are based on a

certain generalized logic, and even though when hand-tuned by

an expert, the majority of cases will have sub-optimal assistance

timings and amplitudes.

To achieve optimal assistance, the assistance target variable,

a metric that reflects performance, and its intended direction

of change must first be defined. It also must be possible to

measure the target variable while using the wearable device.

Target variables could be related to user effort, gait symmetry

(e.g., assisting with unilateral gait disorders), or biological

peak loads (e.g., avoiding a maximum joint angle, moment,

or power). Combinations of multiple and weighted target

variables are possible. When the target variable is known,

it is incorporated into a method known as human-in-the-

loop (HITL) optimization (Koller et al., 2016; Zhang et al.,

2017). With this method, the assistance timing and amplitude

are stepwise-optimized online with the help of a feedback

loop and with the aim of determining optimal individual

assistance settings.

While this concept is quite promising, it currently suffers

from some limitations. An approach must be developed to

avoid having every movement task and variation require its

own optimization (Han et al., 2021). For example, locomotion

may require optimization for the bandwidth of gaits, terrain

slopes, and speeds. Another major limitation is related to the

feasibility of measuring the target variable. While it is difficult

to measure or estimate target variables such as the biological

moment or power, other variables are not practical for use

in daily life. For example, using metabolic cost as a variable

would require a mask to measure the human gas exchange.

Furthermore, measuring metabolic cost has a limiting time

constraint as it required 2 min of walking to obtain a reliable

feedback variable for one assistance pattern (Zhang et al., 2017;

Ding et al., 2018). Therefore, only 30 assistance patterns per

hour could be explored and this could limit higher dimensional

parameterizations (Ding et al., 2018).

Next to the metabolic cost, another option to estimate the

user effort is heart rate. While this is easy to measure in daily life,

its primary disadvantage is that not only the heart rate but also

the stroke volume (which can not be measured easily), define

the blood flow and, thus, the oxygen and energy supply to the

human body (Higginbotham et al., 1986). As the behavior of the

stroke volume is not linear with respect to oxygen consumption,

the feasibility of measuring small changes in human effort could

be limited.

A third option to determine human effort is to use the

measured muscle activity (electromyography, EMG) of the

involved muscles. EMG has been shown to increase with

increased effort in both dynamic conditions, due to walking

speed increase, and static conditions, due to muscle force

increase against a fixed element (Onishi et al., 2000; Hof et al.,

2002; Kuriki et al., 2012). Non-invasive surface electrodes can

be used to acquire the required signal from lower limb muscles.

A variety of robotic applications have used EMG as a control

source (Singh et al., 2012; Rodríguez-Tapia et al., 2020). In

a single case study, surface EMG signals showed promising

results when used as a feedback variable in HITL optimization

(Zhang et al., 2017). In Han et al. (2021), surface EMG was
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also proposed as a way to increase the number of testable

parameter sets per hour. A trial duration of 1 min was used

for EMG-based optimization, which doubles the number of

testable variable sets per hour compared to using metabolic cost

as a feedback variable. Without providing any explanation, the

authors stated that even 40 s could be enough (Han et al., 2021)

per iteration.

In this article, we aim to further investigate the fundamentals

of using EMGwithinHITL optimization for lower limbwearable

robotics such as prostheses and exoskeletons. Instead of using

a wearable robot with all of its difficulties for the required

perturbation, a laboratory experiment was designed to elicit

changes in the human effort by picking up or releasing weight

by the subjects during walking at a fixed speed on a treadmill.

After picking up a weight, we expect, as previously seen

by Browning et al. (2007), an increase in EMG amplitudes

for the involved muscles to compensate for the additional

walking effort. In contrast, after releasing the weight, reductions

in EMG amplitudes should be seen while walking. If it is

possible to distinguish between the loaded and unloaded walking

conditions with a high detection rate (100% if every loading and

unloading is detected accordingly), it should also be possible to

use EMG for HITL optimization.

This study had the following objectives: (A) To be able to

compare the loaded and unloaded EMG data, we first aimed

to exclude the data from the transition phase between steady-

state loaded and unloaded walking conditions. (B) To determine

if multiple consecutive strides can improve the detection rate

in between the conditions of loaded and unloaded walking

compared to a single stride. (C) To determine if a combination

of muscles can help distinguish the loaded and unloaded

walking. (D) To investigate EMG drift over long periods of time

for the same weight conditions as this could limit condition

comparisons within HITL optimization.

(A) When changing the assistance pattern of a lower limb

wearable robot, users must first react to the sudden perturbation

due to a change in the assistance pattern and then restore a stable

and steady gait. We believe that the transition phase should be

excluded from the data comparison within HITL optimization,

as in most cases, the user’s muscle response will differ from a

steady gait. This study is not designed to evaluate exactly how

many strides are required for the transition. However, we aim

to exclude the transition strides from the following analyses. We

believe that a couple of strides should be sufficient to return to a

steady gait with constant levels of EMG and EMG variability.

(B) For HITL optimization, it is of interest to be able to

identify differences in the user response between assistance

patterns, in our case based on the human effort determined

by EMG. A change in human effort during gait is typically

determined by the net metabolic cost (Sawicki et al., 2020) where

maximum achieved reductions reach approximately 20% for

autonomous exoskeletons (Lim et al., 2019) and 50% for tethered

systems (Bryan et al., 2021). However, an increase in metabolic

cost of 1.1–2% has been found from adding 1 kg of mass to

the waist (Browning et al., 2007; Silder et al., 2013), though it

is also difficult to distinguish such small changes in metabolic

cost. In Browning et al. (2007), while a small increase in the

net metabolic cost was found, no significant difference could be

identified when adding 4 kg at the waist during walking, though

significant differences were seen when 8 kg was added. We

assume this to be attributed to metabolic cost signal variability.

Also, EMG was found to have stride-to-stride variability (intra)

and subject variability (inter), where either variability could be

due to the biological variability of the central nervous system and

the residual noise (Baratta et al., 1998).

Due to the expected EMG variability and based on the

findings of the net metabolic cost of Browning et al. (2007),

we decided to increase the subject weight by 2, 4, and 8 kg

to investigate if it is possible to distinguish lower limb EMG

of loaded and unloaded conditions. The detection rates were

calculated. We hypothesize that it is possible to distinguish

between loaded and unloaded conditions based on the mean

average value of the EMG. Furthermore, due to EMG variability,

higher detection rates should be achieved by comparing

EMG data from multiple consecutive strides. Required data

acquisition times to determine the detection rate point of

diminishing returns for HITL optimization were estimated.

(C) When exploring assistance patterns with lower limb

wearable robots the resulting effects on the lower limb muscles

are unknown. While some muscles might be assisted, others

could require increased effort to compensate for overshooting

joint biomechanics or the resistance of the wearable device.

Thus, it seems prudent to not only look at involved agonists but

to also include antagonists for HITL optimization. Furthermore,

as the function of the lower limb joints is closely coupled and

dependent on each other, we expect a change in the function of

one lower limb joint to induce additional changes in other lower

limb joints and muscles and both limbs. For example, when

assisting the hip with an exoskeleton the EMG of the soleus and

gastrocnemiusmuscles changed andwhen assisting the ankle the

EMG of the vastus and rectus femoris muscles changed (Franks

et al., 2021). We hypothesize that higher detection rates for

loading and unloading should be achieved by the combination

of EMG data from multiple muscles.

(D) If changes in EMG amplitude due to signal drift are

larger than the changes in amplitude due to the change in

walking effort, this could limit the use of EMG within HITL

optimization. Thus, knowing the drift will help to specify how

to possibly use EMG for HITL optimization. Based on reported

changes in EMG due to sweat, temperature, adaptations in

walking biomechanics, and other reasons (Vøllestad, 1997; Day,

2002; Stewart et al., 2003; Abdoli-Eramaki et al., 2012; Meyer

et al., 2019; Barsotti et al., 2020; Eken et al., 2020), we hypothesize

that such drift exists with largest amplitudes during theWarmup

and that reductions in amplitude occur over the course of

the experiment.
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FIGURE 1

Subject on the treadmill while walking with one vinyl-coated dumbbell in each hand (red). The plate in front of the treadmill on the handrail is

used to pick up or release the weights. Seven sensor units including EMG and gyroscopes were placed on the skin of each leg (green). One

sensor unit was used only as a gyroscope and placed on each weight.

2. Materials and methods

2.1. Subject information

This study recorded and analyzed the EMG of the lower

limbs of 13 subjects (27 ± 5 yrs, 1.82 ± 0.07m, 81 ±
11 kg) during treadmill walking (Figure 1). Based on the verbal

confirmation, all subjects were free of gait-related impairments.

The study protocol was approved by the institutional review

board of the Technical University of Darmstadt, Germany. All

subjects provided written informed consent in accordance with

the Declaration of Helsinki.

2.2. Experimental setup

Lower limb EMG data was recorded at 1,926Hz for seven

muscles of each limb including the rectus femoris (RCF), vastus

lateralis (VAS), glutaeus maximus (GLM), biceps femoris (BCF),

tibialis anterior (TIB), soleus (SOL), and gastrocnemius lateralis

(GAS). The wireless EMG sensors (Trigno Avanti, Delsys,

Natick, MA, US) were placed based on the recommendations

of SENIAM (seniam.org). In preparation for sensor fixation,

hair was removed from the skin and the skin was cleaned

with alcohol. To reduce the chance of loosening due to sensor

movement and sweating, sensors were additionally affixed with

adhesive non-woven fabric tape (Rudavlies). Each EMG sensor

also included a 3D gyroscope (148Hz). Gyroscopes of the TIB,

GAS, and SOL were used to identify individual strides for each

limb (Figure 2). One 3D gyroscope was also affixed to each

of the vinyl-coated dumbbells to identify the timing of either

picking up or releasing the weights. The study was carried

out on a treadmill (ADAL-WR, HEF Tecmachine, Andrezieux

Boutheon, France).

2.3. Experimental protocol

The study consisted of four main experimental sessions with

each lasting 14 min. During each session, treadmill walking
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FIGURE 2

Overview of the data processing from the extracted signals to the use of the computed variables in the figures.
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FIGURE 3

Experimental session structure for each weight session with 10 transitions to each loaded and unloaded walking (A), stride selection for the

transition reference (B) and the transition analysis (C), and the stride selection for the condition reference (D) and the condition analysis (E).

Following Warmup session 1, sessions 2–4 included 21 intervals of alternating the loaded and unloaded conditions. For the 20 weight

transitions, we first performed a transition analysis to identify and remove the transition strides, and then a condition analysis to evaluate the

usability of the EMG from steady gait strides for HITL optimization.

(with sportive shoes) was performed at a constant speed

of 1.3m/s, which is the preferred walking speed for adults

(Grimmer et al., 2019b). The first session was always considered

to be a Warmup session, in which data was only used in the

drift analysis.

Three weight sessions were performed in a balanced and

randomized order, where subjects had to carry a 1, 2, or 4 kg

weight in each hand, resulting in a total carried mass of 2,

4, and 8 kg for each of the weight sessions, respectively. After

starting walking without holding any weights, every 40 s (during

walking) subjects were instructed by an acoustic metronome to

either pick up or release one pair of weights from/to a plate in

front of the treadmill located at the height of the navel. In total,

21 intervals of 40 s were performed over 14 min, including 10

repetitions for each pick up and release of the weights, in each of

the three weight sessions (Figure 3A). Subjects were instructed
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FIGURE 4

Example for the combined signal of the angular velocity during walking. The combined signal is the sum of the two axes, which include the

movement in the sagittal plane, of the gyroscopes, integrated into the GAS (organe), SOL (red), and TIB (green) sensors. The combined signal

was used for the detection of the heel strike to separate individual strides. The heel strike detection starts at an angular velocity of –550 °/s and

identifies the following passing of zero, which is used as a heel strike event.

to always walk within arm’s reach of the plate to maintain a

constant position on the treadmill.

2.4. Data processing

The EMG and gyroscope data were exported to Matlab

(Mathworks, Natick, MA, US) for further processing (Figure 2).

Gyroscope data was interpolated to match the frequency of the

EMG. Based on the individual signal timestamp from the Trigno

Avanti data export, EMG and gyroscope data were synchronized.

2.4.1. Gyroscope-weight transition
identification

A method was required to detect the timing of the

weight transition, as trial-to-trial variation was expected during

transitions after hearing the metronome. A gyroscope was

therefore affixed to each weight to record the angular velocity

of the weights in three axes. The sum of the absolute value from

all three axes was determined. In addition, this sum was filtered

with a moving average having a sliding window of half of the

EMG frequency. Following this, the sum of the left and right

angular velocities was totaled. If the weights are not moving,

the combined signal is nearly zero. When walking, the summed

gyroscope signal is above 150◦/s with larger peaks when picking

up or releasing the weight. If a threshold of 40◦/s is passed (in

either direction), the corresponding left and right strides are

considered to be transition strides.

2.4.2. Gyroscope-stride identification

The stride identification (heel strike to heel strike of the

same limb) is required to separate the EMG data of individual

strides. This was accomplished based on the zero crossings of

the lower limb segment angular velocities (Grimmer et al., 2016).

In contrast to Grimmer et al. (2016) where a single gyroscope

on the shank was used, a combined angular velocity signal of

the sagittal plane of the TIB, GAS and SOL 3D gyroscopes was

used (Figure 4). Due to the placement on the muscles, none of

the three gyroscope axes of the TIB, GAS, and SOL sensors were

perfectly aligned with the sagittal plane. The combined angular

velocity was calculated as the sum of the two primarily involved

axes of each sensor that recorded the angular velocity in the

sagittal plane. As the EMG sensors with gyroscopes were not

placed on rigid elements, we believe that the combination of

the signals is more resistant to signal noise (e.g., oscillating soft

tissue). Prior to identification, the combined signal data were

low-pass filtered (zero-lag, 20Hz, second-order Butterworth).

As it was not required for our analysis, no adaptation was
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performed to account for the offset of zero crossings and the

real heel strike. The stride time was calculated by subtracting the

timestamp of the previous heel strike from the subsequent heel

strike of the same limb.

2.4.3. EMG-basic processing

For all EMG signals, the offset was removed by subtracting

the trial mean. Next, the EMG data was bandpass filtered (zero-

lag, 40–450Hz, fourth-order Butterworth) and rectified. Only

for the time-normalized EMG over one stride and its differences

between the loaded and unloaded conditions (Figure 5) were

EMG signals additionally low-pass filtered (zero-lag, 6 Hz,

second-order Butterworth).

As we realized that several EMG signals showed clear

measurement artifacts, four strategies were applied to remove

them. It should be noted that all strides that partially contained

artifacts remained within the dataset to avoid temporal

displacements but were excluded (replaced by NaN in Matlab)

from each of the analyses.

First, phases with distinct changes in the EMG signal (e.g.,

to nearly zero signal or multiple times the previous signal)

that happened within the 14min sessions and that lasted for

longer periods (shortest 12 s, on average 360 s) were completely

excluded. For each subject, on average 5 of 14 muscles showed at

least at one point during the four sessions a phase with a distinct

change. With this method, about 6.5% of the data were excluded

in total.

Second, distinct EMG peaks including 1 s prior to and

following the peaks were excluded. Distinct peaks hadmore than

three times the signal amplitude compared to the regular EMG

peaks (mean peak height over the session) during walking. On

average, about one error peak occurred per muscle within each

14min session.

Third, next to distinct long-term and short-term changes

in amplitudes, artifacts with similar amplitudes as the expected

EMG signals, but with changes in duration or frequency of

occurrence, were identified. To reduce the number of such

artifacts, we explored different low cutoff frequencies for the

bandpass filter. Typically the use of 10–20Hz is reported

(Rodríguez-Tapia et al., 2020) although maximum values of

30Hz have been used in applications (Rodríguez-Tapia et al.,

2020). Based on visual observation of the influence on the

artifacts, we applied a low cutoff frequency of 40Hz.

Fourth, after applying the first three strategies to exclude

artifacts, the EMG signals for each stride were extracted based on

the gyroscope data and time-normalized to represent the EMG

of each stride by 1,000 frames. In addition, the mean absolute

value (MAV, also known as average rectified value or ARV) of the

EMG for each stride was determined, as this is our main variable

for the EMG analyses.

The MAV was also used to exclude artifacts with similar

amplitudes but prolonged time durations. Strides with MAVs

that were five times above the SD of the mean MAV for each

individual muscle, subject, and session were excluded (663

excluded out of a total of 5.56 x 105, or approximately 0.1%).

Following this, the identified timing from the weight

transition analysis was used to separate the EMG data for the

loaded and unloaded conditions for the 21 intervals.

After removing artifacts, amplitude normalization was

performed for the time-normalized EMG for the 14 individual

muscles by determining the mean of the time-normalized EMG

from the first unloaded interval from the first weight session

(Figure 3, interval 1 in A). Based on the outcomes of the

transition analyses (described later), we did not include the first

(positive offset) and the last seven strides (negative offset) for

each limb of the 40 s interval. An amplitude normalization factor

was determined, which, when multiplied by the subject’s time-

normalized mean EMG of the first interval, sets the maximum

value during the stride to 100%. As a final step, all individual

time-normalized EMG curves (from all sessions and intervals)

were multiplied by the subject- and muscle-specific amplitude

normalization factor (13 subjects with 14 muscles results in 182

individual normalization factors).

2.4.4. EMG-gait cycle analysis

To analyze the EMG changes during the gait cycle of

walking (Figure 5), subject means of the time-normalized EMG

trajectories for the left and right limbs were determined. Data

from the left and right limbs were then averaged. Subject

means were then combined to determine the grand means for

each muscle and weight condition. The corresponding inter-

subject SD was calculated. To determine the differences in EMG

between loaded and unloaded conditions, the subject means of

the unloaded EMG were subtracted from the loaded EMG for

each subject, weight, and muscle individually. Following this,

grand means for the weights and muscles were determined.

2.4.5. EMG-transition analysis

A transition analysis was performed to determine the

number of transition strides (negative and positive offsets)

that should not be considered for the loaded and unloaded

conditions during the EMG data comparison. For this analysis,

the grand mean of the MAVs (MAVstride) and the grand mean

of the intra-subject SD of the MAVs (MAVstridestd) were used.

After normalization of the MAVs with a reference (Figure 3,

green strides in B), MAVstrideand MAVstridestdwere determined

for 110 strides (54 strides prior to transition, 2 transition strides,

and 54 post transition strides, Figure 3C).

The normalization with the reference was performed

separately for the 110 MAVs of each subject, each of the 14

muscles, each of the 10 pick up and 10 release transitions, and

each weight. MAVs were normalized to set the mean of all

includedMAVs of the analyzed reference strides (Figure 3, green
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FIGURE 5

The Grand mean of the EMG for all muscles [(A), left and right limbs combined] and EMG di�erence between the loaded and unloaded

conditions (B) for 2, 4, and 8 kg. The grand mean is the mean of all subjects, strides, and intervals of the unloaded conditions from all three

experimental sessions after the Warmup. Hundred percent represents the subjects’ individual muscle maximum necessary for unloaded walking

on average within the first interval of the first session after the Warmup. The gray shaded area indicates the inter-subject SD. Di�erences (B)

between the loaded and unloaded conditions were determined based on the means (all intervals) of each condition for the same session. To

note, due to a low signal-to-noise ratio some muscles [(A), e.g., GLM] have a larger o�set from zero, which does not necessarily indicate

activation.

strides in B) before the transition of interest to 100% (Figure 6A).

All but the seven positive and seven negative offset strides (14 in

total for both limbs) were included as reference strides (Figure 3,

orange strides in B). It should be noted that the offset of seven

strides per limb is based on the outcome of the transition analysis

and was used in turn to improve the results.
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FIGURE 6

(A) The Grand mean of the MAVs (MAVstride) and (B) grand mean of the intra-subject standard deviation (MAVstridestd) for the transitions from the

loaded to the unloaded condition (dashed) and the unloaded to loaded condition (solid) for the total carried mass of 2, 4, and 8 kg. The curves

include data for all 5 muscles, both limbs (right, left), all 13 subjects, and all 10 transitions performed for each weight. The transition strides were

defined by the movement of both weights. The follow-up condition is always presented relative to the previous condition, which is defined to

have a mean of 100% (not including o�set and transition strides). The positive (14 strides) and negative o�sets (14 strides) were defined by visual

observation of these curves.

Following this, the mean of the MAVs (over the 110 strides)

of both the 10 pick up and the 10 release transitions were

determined (for each weight, subject, and muscle). These means

were used to determine the mean of all muscles (for each

weight and subject). As a final step, these means were used to

determine the MAVstride based on all subject means (for each

weight). Due to the normalization to the reference of 100%,

the post-transition value of MAVstride shows the relative change

in EMG amplitude compared to the previous weight condition

(e.g., 105% after the transition indicates an increase by 5%).

The individual intra-subject SD was determined for the same

110 strides of each subject based on the 10 transitions to each

weight condition for each of the three weights. The mean of this

individual intra-subject SD was then determined for all muscles,

and the grandmeanMAVstridestd was then determined by taking

the mean of all subjects.

2.4.6. EMG-condition analysis

After excluding the positive and negative offset and

transition strides (transition process), the condition analysis was

performed. The condition analysis includes up to 40 strides prior

to and up to 40 strides post the transition process. The strides

are indicated with n, where n ∈ [−40,−1] corresponds to the

prior transition strides, and n ∈ [1, 40] corresponds to the post

transition strides.

In the condition analysis, the MAVs were used to analyze

whether it is possible to distinguish an increase or decrease

in EMG after reaching steady walking following transitions

between loaded and unloaded conditions. In contrast to the

transition analysis, where each stride following the transition

was compared separately to the whole reference condition prior

to the transition, here the mean of the MAVn of i consecutive

strides (left and right combined), where i ∈ [1, 40] is investigated

for both the reference prior and the comparison condition post

the transition. MAVn denotes the muscle MAV of the nth stride.

Then the mean of the i strides prior to the transition MAVi,prio

is defined as

MAVi,prio =
1

i

−1
∑

n=−i

MAVn. (1)

The mean of the i strides post to the transition MAVi,post is

defined as

MAVi,post =
1

i

i
∑

n=1

MAVn. (2)

The consecutive prior (reference) and post (comparison)

transition strides always start close to the transition of interest.

For example, for the case of the 10 stride combination (i = 10,

five left and five right consecutive strides) the mean of the last 10

strides before the transition of interest (MAV10,prio, reference

condition, Figure 3D) and the mean of the first 10 strides after
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this transition (MAV10,post, comparison condition, Figure 3E)

are compared. The comparisons were separately performed for

each subject, for each of the seven muscles from the combined

data for the left and right limbs, and each weight. For each

comparison, the MAVs of the included strides were normalized

to achieve a mean of 100% for the MAVi,prio (for each limb

separately). In the case of picking up the weight, an increase

in muscle activity would be expected, which would result in

a normalized MAVi,post of larger than 100%. In the case of

releasing the weight, the opposite would be expected to occur.

At this stage, a data structure exists, which contains 13

subjects, each with three different weights, and each containing

seven muscles (left and right combined). Each muscle contains

a matrix with 20 x 40 values that includes the MAVi,post for 20

transitions (10 pick up, 10 release) and the stride combinations

for one to 40 strides.

A decision must be made regarding which of the seven

muscles or which combination of muscles should be analyzed.

We decided to analyze all possible 127 muscle combinations

including either one (7 possible combinations), two (21), three

(35), four (35), five (21), six (7), or seven (1) muscles. For

combinations of muscles, the means of all values of MAVi,post

from the included muscles were determined. For example, for

a combination of two muscles where one had a MAVi,post of

103% and the other of 107%, the combined mean MAVi,post

would be 105%.

Based on 10 transitions and 13 subjects for each the pick

up and the release of weight, in the best case without any

exclusions due to the artifact removal, the total number of

evaluated transitionsK equals 130. Let k ∈ [1,K] indicate the kth

measurements. Following this, from all subjects and transitions,

we counted the number of changes where the change of muscle

activity occurred in the expected direction (Ek).

Then MAVi,prio,k and MAVi,post,k denote the prior and post

transition MAVs of the kth measurement.

For a pick up of weight

Ek =
{

1 , if MAVi,prio,k < MAVi,post,k

0 , otherwise
(3)

is 1 if the MAVi,post of the kth transition increases as

expected, and 0 if it unexpectedly decreases also while picking

up a load. In case of releasing of weight

Ek =
{

1 , if MAVi,prio,k > MAVi,post,k

0 , otherwise
(4)

is 1 if the MAVi,post of the kth transition decreases as

expected, and 0 if it unexpectedly increases also while releasing

a load. Then

KE =
K

∑

k=1

Ek (5)

is the number of transitions that behave as expected for each

pick up and release. The detection rate is defined as

DR =
KE

K
. (6)

and is calculated for all 127 muscle combinations and the

three weights.

As we can not present the results for all 127 muscle

combinations for both transitions and for each MAVi,post we

focused our detailed analysis on specific questions.

To identify differences in the pick up and the release

behavior for DR, the grand mean (including all subjects and

transitions) of all 127 muscle combinations was determined for

each transition case (pick up and release) separately (Figure 7).

Additionally, a combined (mean) grandmean of the pick up and

release condition was determined. Based on the 40-s intervals,

we also performed this procedure for the Warmup where no

weight was picked up or released (indicated as periodic analysis)

to identify how EMG drift influences DR.

To investigate whether the identification of the weight

change can be improved by increasing the number of involved

muscles (Figure 8), we calculated grand means (including all

subjects and transitions) of DR (for i involved strides after

the transition) based on the number of involved muscles. For

example, in the case of two-muscle combinations, the mean of

21 combinations was determined. For this analysis, the values

for the pick up and release were combined (mean).

To identify the best and worst possible DR and the associated

muscle combination, the combinations with the highest (Best)

and lowest (Worst) grand mean (including all subjects and

transitions) of all DR for i involved strides were determined

(Figure 9). To show the variability in between subjects, DR of

the individual 13 subjects for the muscle combined with the

highest grand mean is shown with respect to i involved strides

in Figure 10. For both analysis, the values for the pick up and

release are combined (mean).

To better understand the reason behind the changes in

the detection rate with an increased number of muscles and

strides, the grand mean of the intra-subject STD MAVi,std of

the MAVi,post was determined. To obtain the MAVi,std, for each

subject and each muscle the STD of the MAVi,post of both the 10

pick up and 10 release transitions were determined. Following

this, the STD was averaged over all muscles and then over

all subjects. For the results presented in Figure 11, the mean

of all respective muscle combinations (including one to seven

muscles) for the MAVi,std was determined.

2.4.7. EMG-drift analysis

To identify how the MAV drifts over time during walking

(Figure 12), instead of analyzing the three weights, the analysis

was performed based on the temporal order of the four

experimental sessions. For each of the four sessions and each
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FIGURE 7

Detection rate (DR) of the periodic analysis (Warmup, 0 kg) and the actual (2, 4, and 8 kg) changes in e�ort for picking up (red) and releasing

(blue) the weight, and the combined value (green). Thick solid lines indicate the mean of the respective 127 individuals (dashed lines) muscle

combinations. While the Warmup only contains unloaded steady walking, for the periodic analysis, a combination of up to 40 strides was

included based on the timing of the 21 intervals (40 s each) to show the e�ect of EMG drift on the DR for a change in walking e�ort.

FIGURE 8

Detection rate with respect to the number of involved muscles from the 127 possible muscle combinations analyzed. Each graph includes 40

strides in alternating order from the left (20 strides) and right (20 strides) limbs. For example, the dark green curve is the mean of the seven

individual muscle analyses, and the light green is the mean of the 21 possible two-muscles combinations. Furthermore, all combinations with 3

(yellow, 35 combinations), 4 (red, 35 combinations), 5 (purple, 21 combinations), 6 (blue, 7 combinations), and 7 (cyan, 1 combinations) involved

muscles were analyzed.

intervals a grand mean session interval MAV (MAVint) was

separately determined from the loaded and unloaded conditions.

To compute MAVint, all but the positive and negative offset

MAVs and the two transition MAVs were averaged for each

interval and all subjects. Similar to the normalization approach

explained previously, these values were normalized to be 100%

for the first interval (unloaded) of the first session afterWarmup.

These values were then used and averaged over all 14 muscles

to determine MAVintand the related SD between the muscles

MAVintstd.

3. Results

3.1. Gait cycle analysis

When walking for approximately 40 s at 1.3m/s for each

interval, subjects took an average of 65 strides for the left and

right limbs combined. Stride time did not change considerably

for the different weights and conditions (Table 1).

With unloaded walking, we found EMG values (Figure 5A)

to be comparable to other published data (Hof et al., 2002;
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FIGURE 9

Detection rates for the total carried mass of 2, 4, and 8 kg for the best muscle combination (red), the seven muscle combinations (blue), the

average of all combinations (green), and the worst combination (yellow). Each graph includes 40 strides in alternating order from the left (20

strides) and right (20 strides) limbs.

FIGURE 10

Individual detection rates for the 13 subjects (each color represents one subject) for the total carried mass of 2, 4, and 8 kg for the best muscle

combination, which includes the VAS, SOL, GAS, and GLM for the 2 kg and 4 kg conditions and the VAS, SOL, GAS, RCF, and TIB for the 8 kg

condition. Each graph includes 40 strides in alternating order from the left (20 strides) and right (20 strides) limbs.

Den Otter et al., 2004). Clear increases in muscle activity

between the loaded conditions and the unloaded conditions

were identified for all muscles except for BCF (Figure 5B).

The peak increases occur during phases of typical peak muscle

activity in unloaded walking, they scale with carried weight,

and they reach the highest values for the weight of 8 kg

(increase of up to 17%, Figure 5B). Mean EMG increases (based

on strides 16–55 of MAVstride) of 2.1, 4.4, and 9.5% were

found when picking up the weight, and –2.4, –4.3, and –8.4%

were found when releasing the weight for 2, 4, and 8 kg,

respectively (Figure 6A).

The average grand mean of the intra-subject SD

MAVstridestd of the EMG was found to be (based on strides

16 to 55) 12.1, 12.3, and 13.5% for picking up, and 11.3,

11.1, and 11.1% when releasing the weight of 2, 4, and 8 kg,

respectively (Figure 6B).

3.2. Transition analysis

To exclude the strides of the transitions from the EMG

comparison of the loaded and unloaded conditions, the
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FIGURE 11

The Grand mean of the intra-subject SD (MAVi,std) of the e�ort level (MAVstride) of the comparison condition (above or below the reference of

100%, depending on the condition). The MAVi,std is shown with respect to the number of involved muscles from the 127 possible muscle

combinations analyzed. Each graph includes 40 strides in alternating order from the left (20 strides) and right (20 strides) limbs. For example, the

dark green curve is the mean of the seven individual muscle analyses, and the light green is the mean of the 21 possible two-muscle

combinations. Furthermore, all combinations with 3 (yellow, 35 comb.), 4 (red, 35 comb.), 5 (purple, 21 comb.), 6 (blue, 7 comb.), and 7 (cyan, 1

comb.) involved muscles were analyzed.

FIGURE 12

Grand mean interval MAV (MAVint) for the loaded (red) and unloaded (black) condition in the order they were performed during the experiment,

which included four sessions beginning with the Warmup followed by the three weight sessions in randomized order. The data includes the

strides of all subjects and muscles of both limbs without transition and o�set strides. The data was normalized to the MAVint of the first interval

of session 2. The standard deviation of the 14 muscles of the unloaded data MAVintstd is indicated in dark gray. Average break times in between

sessions were determined and indicated by the gray areas in between sessions. A clear negative drift of the MAVint was found over time.
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TABLE 1 Stride time [s] for the Warmup and the di�erent weights and

their loaded and unloaded conditions.

Condition Warmup 2 kg 4 kg 8 kg

Loaded – 1.10± 0.04 1.10± 0.05 1.10± 0.05

Unloaded 1.09± 0.05 1.09± 0.05 1.10± 0.05 1.09± 0.05

transition strides and the enclosing offset strides with non-

steady-state gait were identified. Based on visual inspection of

MAVstride and MAVstridestd (Figure 6), we found 14 negative

offset strides, followed by the two transition strides (left and

right) and 14 positive offset strides.

3.3. Condition analysis

When analyzing the grand mean of DR for the pick up and

release conditions (Figure 7), we found that when picking up a

weight DR increases faster and settles earlier (especially for 2 kg)

with an increased number of involved strides compared to when

releasing a weight. Additionally, in the periodic analysis without

a weight change during the Warmup, DR increases slightly for

the release and decreases slightly for the pick up condition.

When analyzing DR of all possible 127 combinations

of the involved seven muscles, we found that combinations

that include more muscles provide, on average, a higher

detection rate for the change in walking effort when comparing

the loaded and unloaded conditions (Figure 8). Furthermore,

we found that using mean EMG values of multiple strides

for the reference (before transition) and the comparison

condition (after transition) helps to increase the detection rate

(Figures 8, 9).

On average, the use of seven muscles of both limbs, instead

of just one, improved DR by 12, 17.4, and 10.2% for the 2, 4, and

8 kg conditions, respectively (Figure 8).

The muscle combinations with the highest DR (Figure 9) for

each weight always included the VAS, SOL, and GAS muscles.

The GLM was also included for the 2 and 4 kg conditions, and

the RCF and TIB were also included for the 8 kg condition. For

each weight, the worst combination includes only the BCF.

The corresponding highest DR after one stride were 62.7,

72.3, and 84.6%, after ten strides 77.7, 92.3, and 98.5% and

after 40 strides 86.5, 97.7, and 99.2% for the 2, 4, and 8 kg

conditions, respectively.

Individual subject data (for the combination of muscles

found to result in the highest DR for the overall population)

reveals a minimum DR of 50% for a single subject after 10

strides, 65% for two subjects after 20 strides, and 70% for two

subjects after 40 strides (Figure 10).

The grand mean of the intra-subject SD (MAVi,std) was

found to decrease greatly with an increased number of

combined strides and increased number of muscles for all

weights (Figure 11).

3.4. Drift analysis

When analyzing the grand mean interval MAV (MAVint)

during the course of the whole experiment for the loaded and

unloaded conditions, we found a clear negative drift (Figure 12).

Drift rates were largest at the beginning of each session and

generally became smaller as the session went on. From session

1 to session 4 MAVint changed from 116% at the beginning of

session 1 (Warmup), to 100% at the beginning of session 2, and

to 88% at the end of session 4. Similar drift was found for the

loaded condition where MAVint dropped with respect to the

unloaded condition from 106% at the beginning of session 2 to

91% at the end of session 4.

4. Discussion

4.1. Transition analysis

When changing the weight condition, subjects require a

certain number of strides to acclimatize to the new pattern. So

far, it is unknown to what extent the EMG of these transition

strides can be used for HITL optimization. We decided to

exclude these strides from our analysis because, when changing

weight, the MAVs of the transition strides were larger and had a

larger intra-subject STD compared to the previous and following

steady walking strides. Based on visual observation, 30 strides of

both limbs combined were excluded, including 14 strides prior

to the defined transition strides, one transition stride for each

limb, and 14 strides following the transition strides. While being

very conservative with our exclusion procedure, excluding 30

strides was slightly more than expected.

However, we believe that transitions between assistance

patterns for lower limb robotics can be realized in fewer strides,

as for our scenario the subjects had to additionally accomplish

the tasks of picking up or the release of weight. Furthermore,

we could not perfectly identify the beginning of the transition

to synchronize all transitions based on the first transition stride,

as the selected event for the transition identification (weight

movement) was within the process. As the acoustic metronome

was not perfectly synchronized with the EMG and subjects

reacted at different times after hearing the metronome, we did

not use the metronome as the event to evaluate the duration

of the transition. Additionally, as it was not the main focus of

our study, we decided to use one duration for all conditions

even though the negative or positive offset could be reduced for

individual subjects, amount of weight, the pick up condition, or

the release conditions.
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Literature shows that transitions where the environment

forces a transition, such as a transfer from level walking to

stair ambulation, are realized within three strides (Grimmer

et al., 2020). Three strides are also required to return to a

steady gait after stumbling perturbations (Cordero et al., 2003).

We can imagine that more than three strides are necessary to

optimize muscle behavior for an unknown assistance pattern.

In Yokoyama et al. (2018), the adaptation process for a change

in speed of a single belt of a split-belt treadmill was explored.

In addition to an immediate response to the new belt speed,

variables were found that showed further changes over the next

5 min. While the instantaneous adaptation was attributed to

reactive control, the longer adaptation process was attributed

to predictive control. Long-term adaptation (training) effects

were also demonstrated when performing training with an

exoskeleton over longer periods of time and over multiple days

and sessions (Koller et al., 2015; Panizzolo et al., 2019).

Based on previous findings and our results, we believe that

it should be sufficient to exclude between 3 and 20 strides to

capture the main biomechanical adaptation to a new assistance

pattern, which translates to removing a maximum of 11 s of

data for each transition. However, the subsequent strides of

the removed strides will never represent the same walking

biomechanics and level of effort as when acclimatizing to

the new assistance pattern for several minutes over multiple

sessions. It is unclear to what extent this adaptation influences

the quality of HITL optimization.

4.2. Condition analysis-multiple
consecutive strides

The combination of the same number of consecutive

reference and comparison strides (MAVs) was, as expected,

highly beneficial for DR, where the largest increases were found

for the first few added strides. For the best muscle combination,

increases of 15 and 20% were found when averaging over 10

strides while 30 strides simply improvedDR by another 9 and 5%

for the 2 kg and 4 kg conditions, respectively. The DR with 8 kg

weight settled to nearly 100% after 10 strides. Thus, based on our

study, we would advise using at least 10 strides (about 5.5 s) for

HITL optimization. Similar values were identified in Shiavi et al.

(1998). However, our minimum weight was 2 kg and there will

likely be a lower DR for conditions that result in a lower change

in human effort. In addition, we found that individual subject

data could be insufficient to distinguish between conditions with

different walking efforts after 10 strides (Figure 10). Therefore,

it may make sense to perform a rough search for assistance

patterns within the solution space with 10 strides and then to

increase the sensitivity with the help of an increased number

of strides. As DR for the 2 kg condition did not settle after 40

strides, it may also make sense to include the strides beyond 40.

4.3. Condition analysis-multiple muscles

As expected, with an increased number of included

muscles DR increased. For all three weights, the seven-muscle

combination was close to the best achieved performance

(Figure 9). Our data also revealed that combinations of

fewer muscles can achieve maximum or close to maximum

performance. For example, for the 4 kg weight, the combination

of VAS, GLM, SOL, and GAS achieved the highest detection rate.

However, as there is a variety of possible manipulation

scenarios for lower limb robotics including the hip, knee, and

ankle, or combinations of these joints, it will be a challenge to

select those muscles that are primarily affected. For example,

when assisting the hip also the EMG of the SOL and GAS

changed (Franks et al., 2021). In addition, perturbing the lower

limb could also lead to increased demands to maintain a

stable gait by lower limb placement, trunk movements, or arm

movements (Hill and Nantel, 2019). While one EMG signal may

decrease others could increase, and this makes it challenging

to predict the overall outcome of the movement effort. In our

data, the BCF showed almost no increases in activity for the

increased weight levels (Figure 5B). Even a negative effect was

identified in the late swing. As a result, the only BCF muscle

condition performed the worst when detecting the transition

between the loaded and unloaded conditions (Figure 9). Thus,

we would recommend involving as many muscles as possible

for scenarios where the effect on the EMG is unknown. In

known scenarios, the number of involved EMG signals could be

reduced to the ones with the highest impact (Han et al., 2021).

In addition, it has to be investigated how using an exoskeleton

impacts the EMG and effort to stabilize gait with lower limb,

trunk, or arm movements. For extreme experimental scenarios

in running (without exoskeleton), it was found that without

arm swing net metabolic cost increased by 7.6%, and with

external lateral waist stabilization net metabolic cost decreased

by 12.3% (Arellano and Kram, 2012).

The reasoning for the benefits of multiple
muscles and strides

We found that a major reason for the positive effect on

detection rates is the reduced variability of the MAVs when

averaging over a larger number of strides and/or larger number

of muscles for both the reference and the comparison condition.

The variability was found to decrease for an increased number

of strides and muscles (Figures 8, 11).

Assuming the single-stride MAVs of the EMG are normally

distributed with SD σ (for consecutive strides or multiple

muscles), the sample mean will also be normally distributed

with the SD. The sample SD σ√
n
decreases with increasing the

number of samples n. Hence, by increasing n (the number of
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strides or muscles) the distribution of the estimator will be

more narrow and the distinction between loaded and unloaded

conditions will improve. However, with every increase of n,

for either strides or muscles, the level of DR improvement

decreases (Figure 8). For muscles, the improvements are small

beyond five muscles, and for strides, the improvements are small

beyond ten strides for the 8 kg condition and 20 strides for the

2 kg condition.

These findings suggest that the reduction in EMG variability

due to biological and non-biological sources is key to improving

the usability of HITL optimization. Thus, future studies should

explore methods to reduce EMG variability. In addition, other

time and frequency domain EMG features (Nazmi et al., 2016)

could be explored on their variability and suitability for HITL

optimization. For example, the root mean square (RMS) was

already used in some works performing EMG-based HITL

optimization (Zhang et al., 2017; Han et al., 2021).

4.4. Drift analysis

We found that the MAVint of the EMG has a negative drift

over time (Figure 12). As expected, the drift was largest during

the Warmup and was reduced within the following sessions.

Furthermore, breaks from walking seem to remove part of the

drift but lead to larger drift rates after starting the following

session. Our study provides no clear answer for the origin of the

drift but we believe it is a mixture of several sources.

When looking at individual muscle data, especially at the

beginning of the Warmup, the EMG showed much larger

amplitudes compared to the following sessions. We believe that

these are artifacts due to the sensor and skin movements, which

are reduced later in the experiment as sweating improves the

conductivity between the sensor and the skin (Day, 2002).

While sweating initially helps to attain a stable signal, even

at low intensity levels sweat can accumulate and become a

confounding factor (Abdoli-Eramaki et al., 2012). Sweating was

found to decrease EMG amplitudes for a maximum voluntary

contraction by almost 50% for sweat layers of 0.2 mm (Abdoli-

Eramaki et al., 2012). The authors assume that a decrease in

skin resistance leads to an increase in skin conductivity between

the electrodes of the sensor, which causes a short circuit for the

signal. Sweat ion concentrations also seem to influence EMG

(Takagi et al., 1962).

Skin temperatures have also been found to affect EMG

amplitudes. Winkel and Jørgensen (1991) found that with

ambient temperatures of 14 and 30◦ C, the skin temperature

of the investigated muscles was found to be 21.7 and 32.9◦ C,
respectively, and this was found to reduce the EMG amplitude

by 50% for the higher temperature. Our experiments were

performed at a comfortable room temperature, though we

neither checked nor controlled for the room temperature within

our measurements (about 70min). No temperature changes

were noted by either the subjects or the experimental team.

However, as was previously found (Fröhlich et al., 2015),

increases in skin temperature during the Warmup could explain

the identified reductions in MAVint.

In addition to skin temperature, changes in the muscle

temperature due to a Warmup (Stewart et al., 2003) can result

in an internal optimization of muscle use, and this can lead

to higher muscle force and power output with a reduction in

muscle activity.

Temperature changes in the measurement system could be

also a possible source of EMG changes (Takagi et al., 1962).

However, as the EMG system was running for at least 30 min in

advance of the experiments we do not expect considerable effects

on our results.

Fatigue could be also a reason for the observed EMG

drift (Barsotti et al., 2020; Eken et al., 2020). However, study

outcomes on the relationship between fatigue level and EMG are

ambiguous (Mizrahi et al., 1997; de Oliveira et al., 2017; Eken

et al., 2020) and the sources for the identified changes in EMG

(Eken et al., 2020) are unknown (Vøllestad, 1997) and may not

necessarily be fatigue related.

Based on the outcomes of this study, we would recommend

performing at least 6 min of Warmup before starting the

HITL optimization with the MAV of the EMG as feedback,

which is a similar duration as that recommended for stable

biomechanical performance (Meyer et al., 2019). If EMG-

based variables other than the MAV are used, we recommend

also assessing them for similar drift. Furthermore, based on

our findings, we recommend avoiding breaks to avoid large

changes in the MAVs after the breaks. We also recommend only

comparing the EMGoutcomes from temporally adjacent or even

consecutive assistance patterns rather than comparing outcomes

from the beginning of an optimization to outcomes from the

latest patterns during protocols lasting up to 1 h.

4.5. Methodological considerations

4.5.1. Artifact removal

We used four methods to remove artifacts from the EMG

data. Distinct long-term changes in amplitudes, distinct peaks,

and low frequency artifacts leading to large MAVs were

removed. We believe that all but the first method can easily be

applied online. For the first method, a reference for an artifact-

free EMG of each subject in combination with certain thresholds

would be required for online use. To investigate the overall

effect of the artifact removal, we also performed our analysis

without using the four removal methods (lower cutoff frequency

of the bandpass filter typically set to 10Hz). The detection rate

(Figure 9) and its STD (Figure 11) were impacted in a slight

negative fashion. For the best combination, the detection rates

dropped after 10 strides to 77.3, 90.8, and 96.9%, and after 40

strides to 80.4, 95, and 97.7% for 2, 4, and 8 kg, respectively.
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In contrast, without the artifact removal, the drift of MAVint

over the whole experiment increased and covered a range from

134% at the beginning of theWarmup to 82% within session 4, a

range of 52%, compared to 28% when using the artifact removal.

Without artifact removal, the STD of MAVint doubled.

One possible source of the artifacts could be the weight (14 g)

of the new generation of mobile EMG sensors, which include

additional electronics (e.g., IMU, battery). Human wobbling

masses of the thigh and shank were found to move within 3–

55Hz following the impact during heel-toe running (Schmitt

and Günther, 2011). We can imagine that these frequencies are

also reflected in the noise of the EMG signal.

While the EMG artifact removal had only a minor positive

effect on the detection rate, we would still recommend its use as

implementation is easily possible online for most of the methods

we have implemented.

4.5.2. The lower cuto� frequency of the
bandpass filter

One curiosity was explored within our evaluation. We

suspected that lower cutoff frequencies of the bandpass filter

above 10–20Hz would considerably change the means of the

EMG data (Figure 5). However, after normalizing the signals

to the maximum activity within a stride (100%), the changes

for the shape and amplitude were minor. Testing lower cutoff

frequencies of the bandpass filter up to 320Hz primarily resulted

in the removal of small peaks with high STDs, and the STDs

were also reduced in general. With 320Hz the detection rate

remained similar to the results when using 40Hz (after 10

strides 76.9, 88.1, and 96.5%, after 40 strides 90.4, 97.3, and

99.6% for 2, 4, and 8 kg, respectively) while the long-term drift

was largely removed. After an initial reduction during the first

4 min of walking, for each of the sessions 2–4, MAVint of the

unloaded condition remained at about 92% (at 320Hz). As drift

occurs at low frequencies, this can be minimized using such

a filtering approach. While the drift reduction did not further

improve the detection rates, it would improve the ability for

HITL comparisons of early and late assistance patterns over

1 h of optimization. As we found no other reference for the

explored behavior, we would recommend assessing whether a

similar EMG behavior exists for other data sets as well.

We decided to select and mainly publish results with the

40Hz lower cutoff frequency for the bandpass filter, as this

covers most of the identified improvements due to the artifact

and drift removal.

5. Conclusion

This study explored the mean absolute values (MAV)

of lower limb EMG during walking during loaded and

unloaded conditions, with the aim of using the MAVs for

HITL optimization. We found that transition strides between

the loaded and unloaded conditions have increased MAV

amplitudes compared to the previous and following steady-

state conditions, which could cause a misinterpretation of the

condition comparison in HITL optimization. As we aimed to

compare steady gait conditions, we excluded 30 transition strides

from each analyzed transition. However, based on literature and

visual observation of the individual conditions, the exclusion

of 3–20 strides seems sufficient for transition scenarios when

changing assistance patterns in lower limb wearable robots.

Further, we found it is worthwhile to combine the MAVs

of multiple strides for both the reference condition and the

comparison to improve the detection rates for changes in EMG.

Based on our findings we recommend using the mean MAV

of at least 10 strides. To increase sensitivity, 40 strides or

more can be beneficial. Thus, based on the 20 strides for the

transition and the 10 strides for the observation, we recommend

approximately 16.5 s in total as the time window per observation

for HITL optimization. This is less than half of that mentioned

by Han et al. (2021) and would allow for nearly seven times

the number of testable parameter sets compared to using the

metabolic cost (Zhang et al., 2017; Ding et al., 2018). Next, if

possible, it is worthwhile to include multiple lower limb muscles

as they can additionally improve the detection rate. The use of

multiple strides and multiple muscles benefits from the same

mathematical behavior, that being an increase in the precision

of the compared values in combination with a decrease in the

SD for the reference and the comparison condition. We found

that the reduction of the SD is a key element to improve the

detection rates. Additionally, while the effects on the overall

study were low, we would recommend excluding EMG signal

artifacts including distinct long-term changes with deficient

data, strides with unreasonable short peaks, and strides with

unreasonably large MAVs.

This study also explored the drift of the MAVs over the

course of the whole experiment.We found that a large drift exists

within theWarmup and after the breaks. We would recommend

performing at least 6 min of Warmup to reduce the effect of

drift and avoid breaks within the HITL optimization. The lower

cutoff frequency of the bandpass filter turned out to be a great

modulator to eliminate artifacts as well as the MAV long-term

drift. Without eliminating the drift, we would not recommend

comparing the absolute values of the early MAVs to MAVs in

later stages of a HITL experiment as the change in the MAV due

to drift is larger than the change in the MAV when transitioning

from unloaded walking to loaded walking with our largest load

evaluated of 8 kg.
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