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Cellular reaction gene
regulation network for swarm
robots with pattern formation
maneuvering control

Zhenlong Xiao, Xin Wang* and Lin Hong

Department of Mechanical and Automation Engineering, Harbin Institute of Technology, Shenzhen,

China

Self-organized pattern formation enables swarm robots to interact with

local environments to self-organize into intricate structures generated by

gene regulatory network (GRN) control methods without global knowledge.

Previous studies have reported that it is challenging to maintain pattern

formation stability during maneuvering in the environment due to local

morphogenetic reaction rules. Motivated by the mechanism of the GRN

in multi-cellular organisms, we propose a novel cellular reaction gene

regulatory network (CR-GRN) for pattern formation maneuvering control. In

CR-GRN, a cellular reaction network is creatively proposed to depict the

robots, environment, virtual target pattern, and their interaction to generate

emergent swarm behavior in multi-robot systems. A novel di�usion equation

is proposed to simulate the process of morphogen di�usion among cells to

ensure stable adaptive pattern generation. In addition, genes, proteins, and

morphogens are used to define the internal and external states of cells and

form a feedback regulation network. Simulation experiments are conducted to

validate the proposed method. The results show that the CR-GRN can satisfy

the requirements of turning curvature and maintain the robot’s uniformity

based on the proposed algorithm. This proves that robots using the CR-GRN

can cooperate more e�ectively to cope in a complicated environment, and

maintain a stable formation during maneuvering.

KEYWORDS

pattern formation, maneuver control, cellular reaction networks, gene regulation

networks, morphogen di�usion

1. Introduction

In multi-cellular organisms, all metabolic processes occur in a complex feedback-

controlled metabolic network followed by simple central dogma maintaining

homeostasis. The gene regulatory network (GRN) process results in massive complex

patterns adapted to evolving ecological environments, such as bacterial colony structures,

slime mold networks, and zebra skin. In the recently emerging field of multi-robot

systems (MRSs), the principles of the natural GRN were introduced into robotics.
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In robotics, it was found that a single robot cannot solve

many problems with multiple functions. In contrast, swarm

robot technology utilizes a robot swarm composed of low-cost,

low-complexity, and high-redundancy individual robots that

can make these problems more solvable. Inspired by biological

systems, many problems have been solved by using biological

heuristic algorithms, such as pattern formation (Spears et al.,

2004; Sperati et al., 2011; Spears and Spears, 2012; Rubenstein

et al., 2014; Slavkov et al., 2018), objective search (Hayes, 2002;

Kantor et al., 2003; Zhang et al., 2014; Yang et al., 2019),

collective decision-making (Couzin et al., 2005; Amé et al., 2006;

Garnier et al., 2009; Francesca et al., 2012), and unmanned

aerial vehicle formation flight (Chung et al., 2018). In particular,

considerable attention has been paid to adaptive pattern

formation to allow swarm robots to move in a baggy or compact

pattern formation, which is an essential function for performing

a given task. The proposed algorithms, inspired by biology,

for pattern formation are mainly divided into two categories.

The first is the macro-behavior-inspired pattern formation

algorithms, such as the ant colony algorithm (Dorigo and

Gambardella, 1997), artificial bee colony algorithm (Karaboga

and Basturk, 2007), particle swarm optimization (Kennedy

and Obaiahnahatti, 1995), virtual structure (Lewis and Tan,

1997), and potential field (Gazi, 2006). Traditional bio-inspired

algorithms mostly mimic macroscopic creature behaviors or

physical phenomena. The other is multi-cell-mechanic-inspired

pattern formation algorithms. These include the Morphogen

diffusion model, Reaction-diffusion model (Turing, 1952), GRN

model (Jin et al., 2012), and Chemotaxis (Eisenbach, 2004). As

the GRN provides a promising solution for pattern formation,

numerous algorithms based on the GRN principle have been

proposed, such as reaction-diffusion (Slavkov et al., 2018) and

hierarchical GRN (H-GRN) algorithms (Jin et al., 2012).

However, it is not easy to sustain a predefined pattern

when the robots maneuver around the environment (Oh et al.,

2017). In the aforementioned methods, only a few features

were used to create bio-inspired control systems, and others

were dropped, causing these systems to be defective. For

example, morphogen diffusion models, which generate patterns

by morphogen gradients, were not designed for real-time

systems, and it was challenging to maintain the stability of

the pattern. Furthermore, biological systems are different from

robot systems; thus, subtle analogies between organisms and

robots are needed.

In observing natural phenomena, we noticed that the pattern

of organisms produced by morphogens is stable over a long

period (usually for decades). Organisms that grow in a certain

shape usually contain two types of cells, rather than one. One

cell type is a relatively rigid structural cell used to form shape

constraints, such as bones, skin, or dura. The other type of cells

with specific functions is less rigid, and its shape is constrained

by structural cells, such as skeletal muscle, brain, and red blood

cells (Netter and Colacino, 1989). These different types of cells

work together to form a real-time biosystem of cell networks in

which cells “react” with each other by regulating genes.

Based on the aforementioned studies and observations,

we propose an algorithm called the cellular reaction gene

regulatory network (CR-GRN), which mimics the properties of

multiple cell types to maintain a rigid pattern structure. The

CR-GRN consists of three layers: (1) Layer 1 is morphogenetic

diffusion, which is a multi-source static diffusion method based

on the Dirac delta function (Murray, 2002). The diffusion

of morphogens is considered to provide implicit location

information on cell positioning and movement. (2) Layer 2 is

cellular reaction layer, which is used to provide the properties of

multiple cell types to improve adaptive capacity to environment.

(3) Layer 3 is motion control layer, which is a GRN layer driving

the robots to target positions generated by layer 1 and layer 2.

The main contributions of this paper can be listed as follows.

1. A three layers CR-GRN is proposed to maintain the pattern

formation of swarm robots during maneuvering.

2. The algorithm is considered to have stable pattern generation

and maintenance ability, adaptive change ability, and limited

obstacle avoidance ability.

3. The above problems are verified by designing robot

simulations.

The remainder of this paper is organized as follows. In

Section 2, we review related studies in the field of pattern

formation. In Section 3, the details of the CR-GRN are

introduced. Section 4 presents a discussion on the performance

of the CR-GRN and its comparison with that of the H-GRN in

the trapping target task. Finally, the conclusion of the study is

provided in Section 5.

2. Related works

Some bio-inspired methods have been proposed for the

pattern formation of MRSs over the past few decades. In

many research scenarios, robots are arranged in tight or loose

formations, which are considered to be the primary function for

completing corresponding tasks (Oh et al., 2017). A centralized

approach can complete pattern formation in a few exceptional

cases, and it is feasible in controlled environments and small

scenarios. However, centralized approaches cannot guarantee

a swarm’s tolerance for error and fragile communication

capabilities with a complex external environment. To address

these problems, many decentralized formation algorithms have

been proposed. These algorithms can be divided into two

main categories: (1) collective-behavior-based algorithms and

(2) multi-cell-mechanics-based algorithms. In behavior-based

algorithms, the leader-follower model, in which the leader robot

needs to be assigned, was the first to be identified. In this

section, we review the background of these problems from the
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perspective of bio-inspired methods, including behavior-based

and multi-cell-mechanics-based algorithms.

2.1. Collective-behavior-based
algorithms

2.1.1. Leader-follower

A leader-follower framework was established by Alur et al.

(2001), and linear feedback was used to keep followers in

line with the leader’s movement. Panagou and Kumar (2014)

proposed a movement location and control strategy to solve

pattern formation in the presence of visual and communication

constraints in a known obstacle environment. Obtaining the

adaptability of the formation has received much attention in

patternmaintenance. Consolini et al. (2008)moved the followers

in an arc around the leader and maintained their distance. Yang

et al. (2018) proposed a v-shaped formation control method to

imitate the formation of wild geese and conducted a large-scale

simulation experiment using the stage simulation tool, which

showed good expansibility. This type of algorithm depends on

leaders’ existence, and their formation is relatively rigid; thus,

they are difficult to adapt to unknown environments and errors.

2.1.2. Virtual structure models

Virtual structure models were proposed to solve the leader-

follower model’s problem, where their patterns are too simple,

and the robot’s formation is treated as a single entity. The target

position of the robot is distributed in a fixed structure. Oh

et al. proposed a control method for circular formation to track

dynamic targets (Oh et al., 2014). Although the virtual structure

method overcame the leader-follower model’s dependence on

the leader-robot, the two models shared some defects.

2.1.3. Potential field

Another important model is the potential field. Robots are

constrained to a range under virtual attraction and repulsion

using potential field models. Pimenta et al. (2007) imitated the

movement of a fluid in an electrostatic field by repelling the

robot away from obstacles and attracting them to the target.

2.2. Multi-cell-mechanics-based
algorithms

2.2.1. Morphogen di�usion and
reaction-di�usion

An important study is the simulation of artificial life and

mathematical modeling of cellular development (Gierer and

Meinhardt, 1972; Ingham, 1988; Jaeger et al., 2004; Isaeva, 2012;

Sheth et al., 2012). It is fascinating how simple laws generate

complex patterns of organisms. It was found that the formation

of biological patterns depends on changes in the concentration

of morphogens. The study of morphogen diffusion originated

from Turing’s work on morphogenesis in 1952 (Turing, 1952).

Turing elaborated on how morphogens influence biological

patterns by reaction-diffusion. He summarized the reaction-

diffusion problem as the migration and reaction changes of

morphogens in cells.

The diffusion problem developed further after Turing’s

work. The way molecules move in microscopic environments

began to be explored, and it can be defined as the diffusion

process, which is the collection of disordered movement of

single particles. The diffusion problem can be simplified into the

random walk of particles.

There are no coordinate systems in living organisms, where

the cells can locate each other based on the concentration of

morphogens. This feature makes these principles applicable

to pattern formation in MRSs. Earlier studies were based on

simple morphogen diffusion models. For example, Nagpal et al.

(2002) and Kondacs (2003), usingmorphogenesis and geometry,

developed a self-organizing algorithm that can generate 2-

D graphics.

2.2.2. GRN

Among the current pattern formation methods, the GRN

algorithm originating from the Turing reaction-diffusion model

has a significant contribution to the formation problem. In

addition to designing the general controllers of the collective

robot with collective-behavior-based methods, the introduced

cell-inspired control system shows good performance (Guo

et al., 2011). The robots only obtain the neighbors’ information

for the local self-organization method. Slavkov divided the

robots into two local self-organized groups tracking different

morphogen concentrations, U and V, which behave as activators

and inhibitors (Slavkov et al., 2018). Although the algorithm can

generate certain regular shapes, they are generally uncontrollable

by will. Rubenstein et al. (2014) allowed thousands of robots

to form predefined shapes. However, their methods have some

limitations, including but not limited to the following:

• Several “seed robots” are needed to form the coordinate

system.

• There is no interaction with the environment.

• Only a few robots can move at the same time.

Jin tried to solve the target trapping problem with the

GRN method (Jin et al., 2012). Based on the study conducted

by Guo et al. (2011), Jin proposed a H-GRN method with

a two-layer structure, which targets the function of secreting

virtual “morphogen molecules” and describes the gradient

pattern with the Non-uniform Rational B-Splines (NURBS)

model. NURBS is a classical curve description model. Although

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2022.950572
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Xiao et al. 10.3389/fnbot.2022.950572

some improvements have been made in subsequent studies, the

applications are still limited. For instance, the NURBS model is

replaced by the Radial Basis Implicit Function in the work of

Zhang et al. (2018). Some defects of the H-GRN include the

following: (1) The maps need to be maintained and updated

to record gradient changing of morphogens. (2) The pattern

based on the differential equation’s diffusionmodel would be lost

over time.

2.2.3. Chemotaxis

Chemotaxis is a mechanism that directs the movement

of cells, which release chemicals into their surroundings,

and other cells respond by approaching or leaving the

environment (Eisenbach, 2004). Chemotaxis can produce

complex patterns, but could not get an expected shapes (Bai

et al., 2008).

3. Problem statement and
assumptions

The problem involves a group of robots maneuvering in

space and maintaining pattern formation according to the

predefined pattern. The coordinates of each robot form a

predefined pattern in 2D space. The robots need to maintain the

pattern formation adapted to the movement’s environment.

When passing through the obstacle area, the robot formation

should undergo adaptive deformation. Then, the original

formation should be restored as soon as possible. To make

the algorithm more applicable, the following constraints for

multi-robots are formulated:

• The robots can locate the relative position of obstacles and

their companions in the local coordinate system.

• The computing power is relatively low.

FIGURE 1

Morphogen di�usion model. (A) Dynamic di�usion model. There is an initial concentration at the center, and then, it spreads around each

round. (B) Static di�usion model. Three points have an initial concentration (Q1, Q2, and Q3) and distances (L1, L2, and L3) to position (x, y),

where the concentration can be calculated by using the static di�usion model. (C) Di�usion gradient patterns of A and B.
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• The robot has no other obstacle avoidance algorithm, and

the obstacle avoidance ability only depends on the proposed

CR-GRN.

• Every individual robot is treated as a particle in simulation.

• In the process of robots motion, the collision problem

between the robots is not considered. It is assumed

that the robots prevent collisions by additional collision

avoidance strategies.

4. CR-GRN

This article presents a pattern formation algorithm called the

CR-GRN to perform swarmmaneuvering in the environment in

the expected pattern. Each robot has both an independent and

same controller based on the CR-GRN algorithm. According to

the hypothesis, the robot can obtain the relative positions of the

neighbors and obstacles in the local coordinate system within

the perceived range. The proposed CR-GRN consists of three

abstraction layers:

1. Morphogenetic diffusion layer;

2. Cellular reaction layer;

3. Movement control layer.

FIGURE 2

Cellular reaction model. Obstacle cells are obstacles

represented by a group of cells containing gene g1, which is

translated into morphogen m1. Morphogenetic cells, which

contain gene g2 suppressed by m1, represent a predefined

pattern. Robot cells represent the motion control layer

translating morphogen m2, a protein translated by gene g1, into

the NURBS model and guide robots to move to target on

the pattern.

The morphogenetic diffusion layer generates adaptive

patterns by morphogenetic diffusions secreted by different cells.

Inspired by the Dirac-Delta equation, we propose a static

diffusion equation to replace the traditional dynamic diffusion

equation based on Fick’s diffusion law in the morphogenic

diffusion layer. The traditional diffusion equation is limited by

the unstable concentration maps updated by the robots and is

difficult to be applied in practice, as shown in Figure 1A. The

static diffusion equation used in the morphogenetic diffusion

layer can generate stable patterns that do not change over time

and yield repeatable results, as shown in Figure 1B.

The cellular reaction layer provides the reaction mechanism

between objects, which corresponds to the feedback regulation

mechanism of the robot control system. In this layer, the genes

of real and virtual objects represented by cells are regulated

by morphogens secreted by cells at the upper level of the

environment, and synthetic morphogens regulate the next level,

as shown in Figure 2.

In the movement control layer, the modified information of

the position is translated and leads robots to target positions by

feedback control from the gene regulation network.

4.1. Morphogenetic di�usion layer

The diffusion pattern of morphogens depends on the

gradient of its concentration distribution in space. To form a

stable pattern, it is expected that the distribution of morphogen

concentrations will remain in one state. However, it is difficult

to maintain the stability of the distribution as dynamic methods

continue to spread to neighborhoods over time. This defect

made the pattern obtained from the GRN unstable, as shown in

Figure 3A. Moreover, the pattern will fall apart when it moves a

little faster, as shown in Figure 4A. When the speed exceeds 0.57

cm/s, the pattern cannot be maintained stably.

The dynamic method requires concentration maps, which

limit the robot’s range of movement and require more

computing resources to record and update the distribution

changes of morphogens in the environment, as shown in

Figure 1A. Inspired by the Dirac delta function (Murray,

2002), we propose a static distribution method to replace the

differential equation:

C(L) =
Q

2(πDS)1/2
e−L2/(4DS) (1)

Q denotes the intensity of the diffusion source, such as an

obstacle. C(L) denotes the concentration of location (x, y). L

denotes the distance from the point to the diffusion source.

D is the diffusion coefficient. S, treated as a diffusion state, is

the time from the beginning of the diffusion. The morphogen

concentration can be calculated by this equation at any time and

at any location without waiting for the gradual change of the

morphogen. Another problem to be considered in concentration
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FIGURE 3

Stability of morphogen di�usion. In this experiment, the stability of the static di�usion method was compared with that of the dynamic di�usion

method. Each time interval was set at 1 s. (A) Concentration distribution of dynamic di�usion and (B) pattern of dynamic di�usion. (C)

Concentration distribution of static di�usion, and (D) pattern of static di�usion.

diffusion is the multi-source problem, as shown in Figure 1B.

For location (x, y), there are n× diffusion sources. In the case

of single-source diffusion, the concentration of (x, y) is C(x, y).

The sum of the concentrations of (x, y) for multiple sources is

Csum =

n
∑

i=1

Qi

2(πDS)1/2
e−L2i /(4DS) (2)

Here, Qi is the intensity of the ith diffusion source. If L = 0,

the average concentration of diffusion sources is

Coa =
1

n

n
∑

i=1

Qi

2(πDS)1/2
(3)

(x, y) is the coordinate of any point in the local coordinate system

in the environment. Then the actual concentration of (x, y) point

in multi-sources can be defined as

C(x, y) =

{

Csum if Csum < Coa

Coa if Csum ≥ Coa
(4)

This equation implies that the concentration at any point is

Csum, the sum of the concentrations of each diffusion from

different sources, but that the sum concentration does not

exceed the average of the source concentrations. Therefore, the

maximum morphogenetic concentration should be the average

of the concentration of the source of morphogenetic secretion

Coa. The static and dynamic diffusion methods share the same

diffusion gradient pattern, as shown in Figure 1C. As we can see,

the pattern (Figures 3C,D and Figure 4B) formed by the static

diffusion method (Equation 4) is constant from start to end.

4.2. Cellular reaction layer

In the CR-GRN model, we innovatively propose the cellular

reaction layer. Different objects are represented by different cell

types in this layer, such as obstacles represented by obstacle

cells expected patterns represented by morphogenetic cells and

robots represented by robot cells. Each cell has its own gene

and its corresponding morphogen. For example, obstacle cells

have gene g1 and corresponding morphogen m1. Morphogens

secreted by one cell regulate gene activity in another cell,

regulating cellular reactions. For example, morphogen m1

inhibits gene g2 and affects pattern formation. As shown
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FIGURE 4

Pattern generation. It is assumed that morphogen is secreted by points (colored points). And each point moved with velocity (V = 1.35, 1.07,

0.78, 0.57, 0.43 cm/s). Two algorithms were used to extract orange rings as patterns. (A) H-GRN, (B) CR-GRN.

in Figure 3, it is assumed that morphogenetic cells are used

to represent the expected pattern obtained from the image

(Figure 5A). Morphogenetic cells would interact with obstacles

represented by cells to modify the pattern. The expected pattern

is converted from a picture into the NURBS model to determine

the relative positions of the morphogenic cells lined up along it,

as shown in Figure 5B.

Morphogenetic cells that generate morphogens secreted

into the environment are a series of virtual cells arranged

along the expected pattern obtained by binarization and

skeletonization. In addition, 200 points were randomly chosen

in the foreground pixels of a skeletonized image as control

points to build a NURBS model. Here, it is set that each

pattern consists of 50 morphogenetic cells. Because the NURBS

model accepts input parameters from 0 to 1, each cell has a

NURBS parameter value, Ni, Ni = i/cells_num to obtain the

position in the pattern, where i denotes the number of the

cell. It is hypothesized that the morphogenetic cell has gene g2

that synthesizes and secretes the morphogenetic protein, m2.

Morphogen m1 from the environment (obstacle cells) inhibits

the gene g2 and reduces the concentration of m2, as shown in

Figure 2. The morphogen diffusion of obstacle cells is defined

by Equation (4).

Cm1, the concentration of morphogen m1 inside

obstacle cells, is determined by Kg1, the activity factor of

gene g1:

Cm1 = Kg1I1 (5)

Because Kg1 is not affected by any morphogens, the value

of Kg1 is 1. I1 denotes the initial gene activity, g1. For

morphogenetic cells, the secretion of morphogens is affected by

the morphogen concentration of obstacle cells, as follows:

Cm2 = Kg2I2 (6)

Kg2 = 1− Sig(Cm1(T), θ1, k1) (7)

where Cm2(x) denotes the concentration of morphogen m2 in

the morphogenic cells, which is calculated using Equation (4).

Kg2 denotes the activity factor of gene g2. I2 denotes the initial

activity of g2. Sig is the sigmoid equation in which θ and k

are parameters.

Sig(x, z, k) =
1

1+ e−k(x−z)
(8)

4.3. Motion control layer

Robot control cells represent robots, guiding robots to

target in the pattern. A structure of double layers was

designed for the robot control cells (Figure 6). The first layer

is simplified into a single gene, g3, which is a random value

for each robot within 0 to 1. The first layer of cells is the

pattern interpretation layer used to receive morphogens from

morphogenetic cells. The morphogenetic cell position where the

in-cell concentration reaches the threshold can be used as a

control point in “translating” protein Tr. Protein Tr translated
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FIGURE 5

Predefined pattern determined by pictures. (A) Images of di�erent patterns. (B) Each pattern has 50 morphogenetic cells (blue circles) arranged

along the black line, which is translated into the NURBS model, and (C) trajectories of 20 robots arranged in patterned formations.

FIGURE 6

Robot control cells. The two layers represent the pattern

generation and pattern formation. Morphogen m2 is derived

from morphogenetic cells. Protein Tr is regulated by gene g3

and morphogen m2. Both proteins, G and P, are influenced by

protein Tr.

the information into the NURBSmodel for input information in

the second layer.

The second layer of cells adopts the control method

described in this paper (Guo et al., 2011) to guide the robots to

a suitable position in the pattern. The cell structure is shown in

Figure 6.

m2 is the concentration of morphogens secreted by the

morphogenetic cells. The morphogen concentrations in the

morphogenetic cells activate gene g3, defined as list Pmc(i) ∈

{pix, piy}. For n morphogenetic cells, i ∈ {1, n}, the activation

equation is as follows:

g3i =

{

1, Sig(m2, θ2, k2) > δ

0, others
(9)

For each cycle, if g3i = 1, the corresponding morphogenetic

cell is ∈ Pmc. In this equation, the sigmoid formula is used as a

non-linear activation to determine whether gene g3 containing

the sub-genes is activated by input m2. theta2 and k2 are the

parameters of the sigmoid function. Only the activated sub-

genes are viewed as the control points.

Tr represents a protein that contains pattern information

translated fromm2. Tr first sorts Pmc using Algorithm 1, starting

with the nearest morphogenetic cell in a clockwise direction of

mode movement as the first point and searches for the nearest

morphogenetic cell clockwise from the starting point as the next

point, sorting in order.
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FIGURE 7

Case of CR-GRN. (A) Initial state: 20 robots were randomly distributed in the scene. (B) Robots were arranged in the target pattern. (C) The

robots moved with the movement of morphogenetic cells, and the obstacle cells inhibited the activity of morphogenetic cells, which indirectly

a�ected the distribution of robots in the scene.

1: The Y-axis Angle of the line from the center

point to the morphogenetic cell is calculated.

2: Find the cell with the smallest Angle to the

pattern direction as the starting point.

3: The KD-tree model is established.

4: Set the starting point as the center point.

5: The cell closest to the center point is found

by KD-tree as the new center point.

6: Repeat the last step until all the cells are

sorted.

Algorithm 1. Translation algorithm.

The sorted points are taken as control points of the NURBS

model to generate a pattern. The second layer of cells is the

feedback control GRN layer. The first layer receives the updated

morphogen from morphogenetic cells and translates it into the

NURBS pattern, which serves as the second layer’s input. The

second layer is defined as follows:

dGi,x

dt
= −azi,x +mPi,x (10)

dGi,y

dt
= −azi,y +mPi,y (11)

dPi,x

dt
= −cPi,x + rf (zi,z)+ bDi,x (12)

dPi,y

dt
= −cPi,y + rf (zi,z)+ bDi,y (13)

where i = 1, 2, ..., n denotes all robots in the swarm. Protein G

stores the location information, representing the coordinates of

the robot in the local coordinate system, corresponding to GI,x

and GI,y. Protein P represents the internal state of the robots,

with Pi,x and Pi,y. When protein G diffuses into the extracellular

space, its concentration state is expressed as Di. Di denotes

the sum of the vector forces between the current robot and its

neighbors.

Di,x =

Ni
∑

j=1

(Gi,x − Gj,x)
√

(Gi,x − Gj,x)2 + (Gi,y − Gj,y)2
(14)

Di,y =

Ni
∑

j=1

(Gi,y − Gj,y)
√

(Gi,x − Gj,x)2 + (Gi,y − Gj,y)2
(15)

Ni denotes the number of robots in the perceived range of

the ith robot.

f (zi,x) =
1− e−zi,x

1+ e−zi,x
(16)

f (zi,y) =
1− e−zi,y

1+ e−zi,y
(17)

In this equation, zi,x and zi,y are defined as the entrances of

the second layer.

zi,x = (Gi,x − NURBSi,x(u)) (18)

zi,y = (Gi,y − NURBSi,y(u)) (19)

NURBSI,x(u) and NURBSI,y(u) denote the NURBS pattern

translated by the first layer of protein Tr. The NURBS model

accepts the input parameter u, and the coordinates of any point

on the NURBS pattern can be obtained. The value range of u

ranged from 0 to 1.
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5. Results and discussions

A demo is used to demonstrate the basic effects of CR-

GRN, as shown in Figure 7. The performance of the CR-

GRN model was systematically evaluated. First, we compared

the CR-GRN model with the H-GRN model. The CR-GRN

model’s performance was evaluated in the pattern formation

process, movement stability, interaction with obstacles, etc.

In the simulation, each green circle represents a robot,

the blue circle represents morphogenetic cells, and the

red circle represents obstacles. The maximum movement

TABLE 1 Time taken to form a formation.

Pattern names No. of robots

10 36 49

Pattern1 9.696± 0.765 24.892± 2.011 60.676± 15.887

Pattern2 9.428± 1.037 28.296± 2.823 61.784± 9.164

Pattern3 9.552± 0.736 25.072± 2.940 56.248± 15.005

Pattern4 9.524± 0.859 26.240± 2.554 60.600± 12.301

TABLE 2 Mean deviation in forming the pattern formation.

Pattern names No. of robots

10 36 49

Pattern1 0.410± 0.357 1.031± 0.298 1.109± 0.348

Pattern2 0.562± 0.395 1.186± 0.531 1.293± 0.480

Pattern3 0.762± 0.565 1.271± 1.122 1.415± 0.502

Pattern4 0.705± 0.888 1.162± 1.273 1.440± 1.240

Errors 0 0 10.680

speed of the robots was 20 cm/s. Each control cycle

was 0.1.

5.1. Ability of generating pattern
formations

To test the pattern formation performance of our proposed

model, we used a 500 × 500 cm experimental scenario

in which multiple robots worked together to complete the

pattern formation. The robot’s maximum moving speed

was 20 cm/s.

The predefined patterns required were provided by pictures.

After binarization and skeletonization, the skeletonization area

points were extracted, and 200 points were randomly selected as

control points to generate a pattern represented by the NURBS

model. For NURBS to generate a continuous curve along the

sequence of control points, we sort the 200 points by the

KD-tree, with the upper left corner point as the starting and

ending points and the remaining points arranged in order of

distance. Furthermore, the number of morphogenic cells was

set as 50, and each morphogenic cell was assigned a value of 0

to 1, through which coordinates on the corresponding NURBS

pattern were obtained.

A series of target patterns was chosen from simple to

complex, and a total of 10, 36, and 49 robots were used to

produce patterns. Table 1 shows the time spent in forming

the formations for different patterns and different numbers of

robots, and the trend is shown in Figure 5C.

To quantify the pattern formation performance, a series of

simulations were conducted to evaluate the average position

error, that is, the average minimum distance between the robots

and the target pattern. The result is shown in the Table 2. If

the deviation was greater than 10 within 100 s, the robots were

considered to have failed to complete the task, and the error

FIGURE 8

Stability. The Average shortest distance to pattern between robots and pattern are calculated as average deviation. (A) H-GRN and CR-GRN were

compared for the trapping target task. (B) Straight movement and (C) curved movement (V1 = 5 cm/s, R1 = 0.052 rad/s, V2 = 10 cm/s, R2 =

0.087 rad/s, and robot no. = 20) was performed using the CR-GRN.

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2022.950572
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Xiao et al. 10.3389/fnbot.2022.950572

FIGURE 9

E�ect of di�erent speeds on formation. The red box indicates the initial state. When the morphogenetic cells moved forward, the robot followed

the target. The orange arrow indicates the direction of movement of the robot formation. (A) V = 15 cm/s, (B) V = 30 cm/s, (C) V = 45 cm/s.

FIGURE 10

Curve movement. The red box indicates the initial state. The red box indicates the initial state. The orange arrow indicates the direction of

movement of the robot formation. When the morphogenetic cells moved forward, the robot followed the target. (A) V = 5 cm/s, R = 0.052

rad/s, and (B) V = 10 cm/s, R = 0.087 rad/s.
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FIGURE 11

Trajectory with (A) no obstacles, (B) obstacle type 1, (C) obstacle type 2, (D) obstacle type 3, and (E) curved movement (V = 5 cm/s, R = 0.052

rad/s), (F) curved movement (V = 10 cm/s R = 0.087 rad/s). Di�erent color lines are used to represent di�erent robots trajectories.

value was the average number of robots that failed to complete

the task.

5.2. Ability of maintaining pattern

In this section, the robots’ stability to maintain pattern

formation is discussed.For comparison, the H-GRN algorithm

was selected as a reference. The number of robots set in the

simulation experiment is 20. A 500 × 500 cm simulation

scenario is used for multiple robots worked together to complete

the pattern formation. The robot’s maximum moving speed

was 20 cm/s. In addition, for this purpose, the two methods

required the same criteria because the H-GRN was not designed

for the predefined pattern. Both algorithms were set as tasks

for trapping targets. A tested scenario was designed in which

the robots needed to trap a different number of targets. Then,

the average deviations between robots and the expected pattern

were observed. The results are shown in Figure 8A. We calculate

the shortest distance from each robot to the target pattern. It

is assumed that the smaller the average shortest distance, the

better the robot can maintain the pattern formation. We also

calculated the standard deviation of the shortest distance. The

smaller the standard deviation, the fewer outliers. The results

show that the CR-GRN can achieve formation faster than the

H-GRN and maintain formation more easily over time.

5.3. Ability of formation movement in
maneuver

The most critical question in this study is maintaining the

formation in the maneuver. In this section, the algorithm’s

ability to maintain maneuver formation is discussed. The
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FIGURE 12

Obstacle avoidance. (A) Obstacle type 1, (B) Obstacle type 2, and (C) Obstacle type 3.

maintenance of formations is divided into two different

situations. (1) Fast movement and slow movement, (2) straight

movement and curved movement.

The number of robots set in the simulation experiment is

20. A 500 × 1,000 cm simulation scenario is set. The robot’s

maximum moving speed was 20 cm/s. By setting the speed (15,

30, 45 cm/s) at which morphogenetic cells guide the robot’s

movement, we tested the swarm behavior of the robot. The

simulation results are shown in Figure 9, where the movement

states are depicted at three different speeds. We recorded the

robot’s average error at different speeds and at different times,

as shown in Figure 8B. The trajectory recording is presented in

Figure 11A.

We also established a test scheme for curved movement

that changed the morphogenetic cell angle curve. And a larger

experimental scenario (1,000 × 1,000) is used for simulation.

The simulation results are shown in Figure 10. Corresponding

trajectory recording is shown in Figures 11E,F Although the

curve trajectory was complex, the average error exhibited good

formation maintenance, as shown in Figure 8C.

5.4. Adaptability of model to the
environment

This section details how the robots interact with the

environment and the adaptive changes. To cope with this

problem, we made the robots pass through the barrier area and

evaluated the pattern shape change. The surfaces of the obstacles

were separated into obstacle cells. The simulation results are

shown in Figure 12, and the corresponding trajectory changes

are shown in Figures 11B–D.

5.5. Discussion

The simulation results are analyzed and discussed in this

section. First, given the ability of the CR-GRN in generating

pattern of the proposed algorithm, it is shown that the

robots can complete formation in time under the guidance

of morphogens by observing the simulation results. This

method makes the resulting pattern more stable by applying

the proposed static diffusion equation. The algorithm has

high stability and response speed in movement. Whether it

is straight or curved, the movement of morphogenetic cells

can be fast followed by robots without significant deviation

from the target formation. In terms of adaptability, robots

cross obstacles by deforming patterns created by morphogenetic

cells that interact with the environment. The simulation results

show that the algorithm has good pattern formation ability,

high pattern stability, stable formation during maneuvering,

and good interaction with the environment. This algorithm

provides a new and effective solution for pattern formation

maneuver problems.
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6. Conclusion and future directions

In this paper, we propose the CR-GRN to manage maneuver

control of adaptive pattern formation. To maintain stable

patterns in dynamic environments, a static diffusion function is

proposed. Then, the cell reaction network is introduced for the

interaction between the robots and the environment by pattern

construction. Combined with the proposed morphogen static

diffusion equation and the principles of the GRN method, the

cellular reaction network can inspire us to study the GRN from

a new perspective. Some simulation experiments are designed

and conducted to validate the effects of the proposed method,

and the results show good performance in maneuvering pattern

formation. However, the static diffusion equation can calculate

the concentration of morphogens well, and there are some

limitations that cannot be directly applied to the reaction-

diffusion problemwhenmulti-morphogens exist. Extending this

equation to the reaction-diffusion problem will further promote

the study of the morphogenetic algorithm. The introduction of a

cellular reaction network is not only beneficial for solving non-

linear problems but also makes the system more complex. The

movement control layer allows robots to be evenly distributed

in a pattern, which is unfriendly to the scalability of swarm

systems and relies too much on parameter settings. In some

rare cases, robots will be unable to avoid obstacles when the

formation passes through them. And the algorithm does not

provide collision avoidance ability between robots in the process

of motion. Future work can be focused on the scalability and

stability of the swarm by improving the motion control layer.

And the applicability of the algorithm will be further studied,

such as the collision avoidance mechanism between robots

in motion.
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