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Ship recognition using synthetic aperture radar (SAR) images has important

applications in the military and civilian fields. Aiming at the problems of

the many model parameters and high-energy losses in the traditional deep

learning methods for the target recognition in the SAR images, this study has

proposed a high-e�ciency and low-energy ship recognition strategy based on

the spiking neural network (SNN) in the SAR images. First, the visual attention

mechanism is used to extract the visual saliency map from the SAR image, and

then the Poisson encoder is used to encode it into a spike train, which can

suppress the background noise while retaining the visual saliency feature of the

SAR image. Besides, an SNN model integrating the time-series information is

constructed by combining the leaked and integrated firing spiking neuronswith

the convolutional neural network (CNN), which can use the firing frequency

of the spiking neurons to realize the ship recognition in SAR images. Finally,

to solve the problem that SNN model is di�cult to train, the arctangent

function is used as the surrogate gradient function of the spike emission

function during the backpropagation. Hence, applying this backpropagation

method to the training process can optimize the SNNmodel. The experimental

results show the following: (1) the proposed strategy can more accurately

recognize the ship in the SAR image, and the F1 score can reach 98.55%,

which has a better recognition performance than the other traditional deep

learning methods; (2) the proposed strategy has the least amount of model

parameters (only 3.11MB), which is far less than the model parameters of the

other traditional deep learning methods; (3) the proposed strategy has fewer

operations (only 17.97M) and can reach 1/30 time of operands of the other

traditional deep learning methods, which shows the high e�ciency of the

proposed strategy using the spike emission signals; (4) the proposed strategy

has the energy loss of 1.38 × 10−6J, which can achieve the low energy

advantage of nearly three orders of the magnitude compared to the other

traditional deep learning methods, indicating that the proposed strategy has

a significant energy e�ciency.
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ship target recognition, synthetic aperture radar (SAR), SAR image, spiking neural
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Introduction

Synthetic aperture radar (SAR) is a high-resolution

microwave imaging and detection system (Xie et al., 2016,

2017, 2020; Zhang et al., 2022), which has the advantage of

all-weather, all-day, and harsh environment work; thus, it can

observe the land and ocean in real time for a long time (López-

Randulfe et al., 2021; Yu et al., 2022). In recent years, related

technology research on ship identification using SAR images has

received great attention in the field of marine remote sensing

(Lang et al., 2022; Wang et al., 2022). However, the traditional

SAR target recognition methods mainly rely on artificially

designed features, which are susceptible to complex background

interferences and have shortcomings, such as poor recognition

accuracy, low recognition efficiency, and weak generalization

ability. The deep learning method represented by the neural

network can learn the image features independently without

relying on the manual design. It has the characteristics of a high

degree of automation and strong recognition capability, which

has made breakthroughs in the task of target recognition in SAR

images (Song et al., 2022; Yang and Lang, 2022).

With the continuous development of the deep learning

technology, the computing power of the model has been

greatly improved, but it also faces a key question regarding

the computational cost and energy consumption involved in

the neural network. According to a recent study published

by the University of Massachusetts (Strubell et al., 2019), the

training process of the deep learning models is expensive, and

this problem will become more and more serious when the

computing power of the model increases. The increase in the

energy consumption in artificial intelligence (AI) computing

costs is first attributed to the emergence of the increasingly

complex AI models. In 2018, the natural language processing

model, BERT released by Google has reached 300 million

parameters (Devlin et al., 2019). In 2020, the latest GPT-

3 model released by the OpenAI researchers has 175 billion

parameters (Brown et al., 2020). In 2021, Google has launched

the larger language model, Switch Transformer with 1.6 trillion

parameters (Fedus et al., 2021). Although the design of the

artificial neural network (ANN) is inspired by the human

brain and has been widely borrowed from neuroscience, it is

fundamentally different from the biological neural networks

and cannot completely imitate the operation mechanism of the

neurons in the brain; therefore, the efficiency is far from being

comparable to that of the human brain.

Although the traditional ANN has made breakthroughs in

many tasks, such as recognition, detection, and segmentation

(Zhu et al., 2021), the energy-consumption problem has limited

its wider deployment and application. To solve this problem, the

third generation ANN called the spiking neural network (SNN)

was proposed. The SNN based on the brain-like computing

framework uses the spiking neurons as the basic computing

unit and transmits the information through sparse spike trains,

which is called a new generation of green AI technology

with lower energy consumption. The SNN was first proposed

by Maass (1997), inspired by the operating mechanism of

the biological neurons. The main core idea is to use the

spike trains and spike functions to simulate the process of

information encoding and information transmission between

the biological neurons. The SNN can more accurately imitate

the information expression and the processing ability of the

human brain, which is a brain-like computing model with high

biological plasticity, event-driven characteristics, and low energy

consumption (Roy et al., 2019). Based on the cognitive level

of the human brain and the related theories of neuroscience,

the SNN constructs the spiking neurons through the biological

visual system and biological neuron computing mechanism. It

has the characteristics of being closer to biological reality, so it

can better simulate the complex system of the biological brain,

and it is a new generation of more efficient and intelligent

AI systems.

At present, research on the SNN mainly focuses on the field

of computer vision based on optical images. Fang et al. (2021a)

have proposed a spiking neuron-based residual network to solve

the image classification problems by adding the SNN neuron

layers between the traditional residual units. Cui et al. (2012)

have proposed linear coding and non-linear coding methods

based on the time-to-first-spike coding strategy, which converts

the gray value of the image pixels into discrete spike trains

for image segmentation. Kim et al. (2019) applied the deep

SNN to the field of target detection for the first time, and

then proposed a detection model based on the SNN (Spiking-

YOLO). This method provides a faster and more accurate

message passing between the neurons by using the techniques,

such as channel-wise normalization and signed neurons with

unbalanced thresholds, which can achieve better convergence

and lower energy consumption than the ANNmodels.

To solve the problems of many model parameters and high

energy consumption in the traditional neural network for the

SAR target recognition, this study extends the SNN to the ship

recognition in SAR images. First, we have to find how to encode

the SAR image into the time-correlated spike train, i.e., how

to convert the pixels in SAR images into a spike train that

the SNN can understand. Then, it is necessary to build an

SNN model that can effectively extract the features from SAR

images. Finally, considering the difficulty of the training caused

by the discrete characteristics of the SNN and the spatiotemporal

correlation, an effective learning algorithm is needed to be

designed for the training. In view of the above problems, this

study focuses on the SNN coding, model construction, and

training, and proposes a high-efficiency and low-energy ship

recognition strategy based on the SNN in SAR images, which

is called the SpikingSAR. Section Spike encoder based on visual

attention mechanism presents the spike encoder based on the
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visual attention mechanism, and an SNN model integrating the

time-series information is constructed in Section SpikingSAR

model. In Section SpikingSAR model, the arctangent function is

used as the surrogate gradient function, and the corresponding

loss function is designed. The experimental results are shown

in Section Experiment and discussion. A conclusion is given in

Section Conclusion.

Ship recognition strategy

In this study, a high-efficiency and low-energy ship

recognition strategy based on the SNN in the SAR images

has been proposed, whose model framework is shown in

Figure 1. First, the visual attention mechanism is used to extract

the visual saliency map from the SAR image, and then the

Poisson encoder is used to encode it into a spike train, which

can suppress the background noise while retaining the visual

saliency feature of the SAR image. Besides, an SNN model

integrating the time-series information has been constructed

by combining the leaked and integrated firing spiking neurons

with the convolutional neural network (CNN), which can use

the firing frequency of the spiking neurons to realize the ship

recognition in the SAR image. Finally, to solve the problem that

the SNN model is difficult to train, the arctangent function has

been used as the gradient replacement function of the spike

emission function during the backpropagation to calculate the

gradient, and thus applying this backpropagation algorithm

to the training process can further optimize the SNN model.

The ship recognition results in the real SAR images show that

the proposed strategy can achieve better performance than

the traditional recognition methods and achieve comparable

or even better performance than the CNN methods, which

can accurately identify the ship in the complex SAR images.

In addition, the proposed strategy uses discrete spike trains

to transmit the information, which has fewer parameters and

lower energy consumption compared with the traditional deep

learning methods, so it is helpful for deployment on the small

terminal components.

Spike encoder based on visual attention
mechanism

The SNN uses the spike as the basic information

transmission unit, and the input is the spike train to represent

the encoding of the specific input data. Given that the image data

are mostly continuous and static real-valued values, it is difficult

to represent the discrete time-correlated spike trains; thus, the

additional encoding of the input is required. A commonly used

method of encoding still image data is the rate-based encoding,

which converts the input image into a mapping of spikes at

each time step. Given a simulation duration T, a sequence of

Poisson spikes is sampled from each pixel according to a suitable

distribution, with a spike emission probability proportional to

the pixel grayscale intensity. This coding method can not only

preserve the integrity of the input image but also can binarize

the data in the time domain. This has received high attention

and wide application in many fields (Fang et al., 2021a; Fedus

et al., 2021).

Provided that the gray value of the input image is between

0 and 1, the pixel value distribution of the SAR image is quite

different from that of the optical image, and it is difficult to

obtain an effective spike train by directly performing the rate-

based spike coding method. In addition, due to the special

natural environment at the sea (such as the sea fog, etc.) and

various types of noise in the SAR images, certain preprocessing

is required to filter and identify a large amount of interference

information, and the ship in the SAR image can be accurately

obtained only after removing the noise information. The

traditional method first filters the image to reduce the influence

of the noise on the SAR image. However, the filtering will lead

to the widening of the image edge and the loss of the positioning

information of the edge, which may easily miss to detect smaller

ships (Zhang and Hu, 2017). Considering that the concerned

ship only occupies a small part of the SAR image, and most

of the areas are marine backgrounds, if the more concerned

areas in the SAR image can be pre-selected and then re-encoded

according to the importance of each area, it will help to improve

the accuracy rate of the model of the detection model, which

accelerates the convergence rate of themodel during the training

process. Therefore, this study proposes a spike encoder based

on the visual attention mechanism (Li et al., 2016), which can

preferentially focus on the salient regions with the obvious

visual features in the SAR image, and ignore the background

clutter noise, thereby reducing the identification range of the

small ships.

Visual attention model

The visual attention mechanism is an unsupervised image

processing method that does not need to rely on the prior

knowledge or cognitive assumptions of the images, which

can prioritize the target area of interest. Compared with the

traditional methods based on image statistical modeling, the

visual attention method has a faster running speed and stronger

robustness. In this study, the visual attention mechanism model

is applied to the SAR images, focusing on the brightness

information and orientation information in the SAR images.

The structure of the visual attention model is shown in Figure 2.

(1) Brightness information extraction. Given an input image

J, the Gaussian pyramid is first used to extract the brightness

feature map with a resolution of two, and an eight-level down-

sampling process is realized in which the scale of the SAR

image is gradually decreased in the horizontal and vertical

directions. The brightness feature map of each image layer is
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FIGURE 1

Model framework of the proposed SpikingSAR algorithm.

FIGURE 2

Visual attention model architecture.

I(k), where k∈[0,8] represents different levels in the Gaussian

pyramid structure of the images. There is a strong correlation

between the adjacent pixels in the image at the texture and gray

level. If a pixel is more different from the surrounding pixels,

it is easier to attract the visual attention and becomes a visually

salient point. Thus, the center-peripheral difference method is

introduced to further process the feature maps of the different

scale resolutions to obtain the attention information. Define

⊖ as the central peripheral difference operator; therefore, the

extraction of the brightness feature maps is to scale the feature

maps of the different levels to the same scale and then perform

the pixel-by-pixel subtraction, which is given by:

I(c, s) = |I(c)⊖ I(s)| (1)

where, c ∈ {2,3,4}, s = c+δ, and δ ∈{3,4}. The different levels

of the attention information are obtained by performing the

central-peripheral difference operation on the feature map.

(2) Orientation information extraction. The process of

orientation information extraction is similar to that of

brightness information extraction. First, the Gaussian pyramid is

used to down-sample the input image at the eight levels to obtain

a multi-scale feature map, and then further orientation feature

extraction is performed. Gabor filter is an effective method to

extract the local features of the image space. In this paper, the

two-dimensional Gabor filter is used to extract the orientation

channel feature information of the images, which is given by:

G(x, y) =
1

2πσxσy
exp

[

−π

(

(x− x0)
2

σ 2
x

+
(y− y0)

2

σ 2
y

)]

exp
[

i
(

ξ0x+ υ0y
)]

(2)

where, (x0, y0) is the coordinate position of the target center in

the image, (ξ0, υ0) is the optimal spatial frequency of the filter

in the frequency domain, and i is the imaginary unit. σ 2
x is the

variance of the Gaussian function in the x axis direction, σ 2
y is

the variance of the Gaussian function in the y axis direction,

and σ 2
x and σ 2

y determine the size of the acceptable region of

the Gabor filter kernel. The orientation feature extraction is

performed on the feature map of each level in the Gaussian

pyramid, which can obtain the orientation feature maps of

the different scales O(k), where k∈[0,8] represents the different

levels in the image Gaussian pyramid structure. Then, the

attention information of the orientation feature is extracted by

using the center-periphery difference method, which is:

O(c, s, θ) = |O(c, θ)⊖ O(s, θ)| (3)
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where θ is the four directions of the Gabor filter, θ ∈{0◦, 45◦,

90◦, 135◦}.

(3) Globally enhanced merging. Through the above feature

extraction, a series of brightness feature maps and orientation

feature maps of the different scales are obtained. Since the

detection and recognition of the targets in SAR images usually

lack the target prior information, and the visual attention

method is an unsupervised method, this study adopts the global

enhanced merging strategy to fuse the attention information

of the brightness and orientation feature maps to obtain

the visual saliency map. The globally enhanced merging is a

feature information merging strategy that does not require the

target prior information, which can effectively enhance the

saliency peak region in the feature map, thereby removing the

background clutter. The method mainly consists of three steps.

First, normalize the feature map to [0, N], N ∈[0, 255] limits the

normalization range. Second, calculate the global maximum M

and local average m−. Finally, multiply the weight (M–m−)2 for

each feature graph. If N represents the global enhanced merging

process, the merging process of the brightness channel saliency

map fused with the central peripheral difference operator is

given by:

I =

4
∑

c=2

c+4
∑

s=c+3

N(I(c, s)) (4)

Similarly, the merging process of the orientation channel

saliency maps is expressed as:

O =
∑

θ∈0◦,45◦,90◦,135◦

N





4
∑

c=2

c+4
∑

s=c+3

N(O(c, s, θ))



 (5)

Finally, according to the work proposed by Li et al. (2016),

the global merging strategy is applied to the Equations (4) and

(5) to obtain a visual saliency map S; thus, the merging process

is expressed as:

S =
1

2
(N(I)+ N(O)) (6)

Due to the normalization operation adopted by this strategy,

the final visual saliency map S ∈ [0,1] meets the preconditions

for the spike coding in this study. In addition, due to the larger

gray value of the region withmore prominent visual features, the

corresponding encoded spike train in this region has a greater

probability of transmitting the spike information.

Poisson encoder

In the SNN, the encoder mainly converts the continuous

real-valued signal of the input into a discrete spike train with

time information and preserves most of the information of the

data as much as possible. In this study, a rate-based Poisson

encoder is used, which can encode the input real-value data

into the spikes whose firing number distribution conforms

to the Poisson process and is widely used in the spike train

estimation and neural network background noise simulation. In

the rate-based Poisson coding, for the input x ∈[0,1], within one

simulation step, the probability of the spike emission is set as

p = x, then the sampling process of the Poisson coding can be

given by:

x̂ =



















1 if x > p

0 otherwise

subject to p ∈ U(0, 1) (7)

where U (0, 1) is a uniform distribution. Considering the time

correlation of the spike trains, this study additionally introduces

the simulation duration variable T and applies the Poisson

coding process at each time step to convert the input of the

static pixel data into the mapping of the spike train on each time

step. As shown in Figure 3, each pixel generates T spike trains

within T time steps, and the emission probability of the spike is

proportional to the size of the pixel value.

SpikingSAR model

The time-driven SNN is a network with Markov properties,

and the output at the current moment is only related to

the output at the previous moment and the current state of

neuron membrane voltage. The input of the SNN is the voltage

increment at the current moment, which represents the charging

process of the neuron potential. The output value is a discrete

value of 0 or 1, which represents whether the spike is fired or

not and is the discharge process of the neuron potential. The

neurons have a refractory period for a short time after firing;

that is, they do not respond to the external input signals. To

simulate this process, a reset process was additionally introduced

after the neuron is fired and the voltage was reset to keep

the neuron in a resting state. Therefore, a typical SNN neuron

can be described by three processes of charging, discharging,

and resetting.

Leaky integrate-and-fire neuron model

The leaky integrate-and-fire (LIF) model (Gerstner

et al., 2014) is an improvement on the integrated firing

spiking neuron model. The LIF model takes into account

another physiological factor: the cell membrane is not

a perfect capacitor, and the charge slowly leaks through

the cell membrane over time, allowing the membrane

voltage to return to its resting potential. The LIF model

Frontiers inNeurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2022.970832
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Xie et al. 10.3389/fnbot.2022.970832

FIGURE 3

Schematic diagram of Poisson encoding process.

regards the electrical properties of the cell membrane

as a parallel combination of resistance and capacitance.

Compared with the integrated firing model, the LIF model

has better biological reliability and biological accuracy,

which can more accurately describe the state changes of

the neurons.

For the LIF neurons, it can be described by a

differential equation:

C
dV(t)

dt
= −

1

R

(

V(t − 1)− Vreset
)

+ I(t) (8)

where, V(t) is the membrane voltage of the neuron at the time

t, R is the membrane resistance, C is the capacitance, Vreset is

the resting voltage or equilibrium voltage of the neuron, and I(t)

represents the input current at the t time. The neurons are often

biologically simulated using the discrete forms. To ensure the

availability of the SNNmodel calculation, a discrete form is used

to approximate the differential expression, which is given by:

τ (V (t) − V (t − 1)) = − (V (t − 1) − Vreset ) + X (t) (9)

where, τ = RC is the membrane time constant andX(t)= I(t)R

is the external input at the t time. Therefore, the charging

equation corresponding to the LIF model is:

f (V(t − 1),X(t)) = V(t − 1)+
1

τ
(−(V(t − 1)− Vreset)+ X(t))

(10)

where, f is the state update function of the neuron charging

moment. The discharge process of the LIF model is similar to

that of the integrated firingmodel.When the charge accumulates

to a certain level, that is, when the membrane voltage reaches the

threshold Vth, the neuron fires the spikes. The spike emission

can be described by the Heaviside step function, which is

given by:

2(x) =



















1 if x > 0

0 otherwise

(11)

The reset process of the LIF model occurs after the firing of

the spike, which consumes the previously accumulated charge of

the neuron, so there is a momentary decrease in the membrane

potential. In general, there are two types of the hard reset and

soft reset:

V(t) =



















Vreset Hard

V(t)− Vreset Soft

(12)

Considering that when the membrane potential does not

reach the threshold, the neuron does not emit the spikes and the

potential remains unchanged, so the spike reset process of the

LIF model is given by:

g(H(t), S(t),Vreset) = H(t)(1− S(t)+ VresetS(t)) (13)

where, g is the reset function after the spike is fired, H(t) is the

hidden state of the neuron at the t time, and S(t) is the spike

firing state of the neuron.

Backbone network

The charging process of the spiking neurons requires

receiving an exogenous input X(t), accumulating the charges
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such that the membrane voltage reaches a threshold for firing

the spikes. The widely used ANN is very suitable for simulating

a continuous signal input, so this study combines it with the

spiking neuron model as the backbone network for the image

recognition. The process of simulating the input voltage of the

neuron j using the ANN can be expressed by:

Xl(t)j =
∑

i
wl
ijs

l−1
i + blj (14)

where, sl−1
i is the input spike train of the (l−1)-th layer, wl

ij

and blj are the weights and biases of the l-th layer, respectively,

and Xl(t)j is the input voltage of the l-th layer. The widely

used ANNs are mainly the CNN and fully connected networks

(FCN), both of which can be used as the models for simulating

the input voltage of the SNN. Given that the input spike

train is encoded by the visual saliency map of the SAR

image, the use of the CNN is more able to capture the local

spatial information of the input and has the advantages of

the less parameters, and then a full connection is introduced

at the end of the CNN layer, which can integrate the feature

information extracted by the convolution layer to classify the

image. Thus, the CNN and FCN are alternately stacked with the

LIF spiking neurons as the backbone network of the proposed

SNN model.

In addition, the ANN is often combined with the batch

normalization layers, dropout layers, pooling layers, and

activation function layers. The batch normalization layer can

normalize the input data of each layer without losing the

important information as much as possible, so that the data

distribution is relatively stable, and the learning speed of the

model is accelerated. The batch-normalized data conforms to

a standard Gaussian distribution and is usually located in the

non-gradient saturation region of the activation function, thus

avoiding the vanishing gradient problem. The dropout layer

can randomly drop the neurons with a certain probability,

thereby reducing the interaction between the nodes in the

hidden layer of the model and avoiding the model overfitting.

The role of the pooling layer is to down-sample the feature

map and to gradually reduce the size of the feature space,

which can avoid the high computational complexity of the

network and enhance the spatial invariance of the network.

Commonly used pooling methods are the average pooling and

max pooling. The existing research shows that using the max

pooling in the SNN loses the effective information (Cheng

et al., 2020), so average pooling is widely used. However,

Fang et al. (2021b) believed that the max pooling is consistent

with the temporal information processing capability of the

SNN, which can improve the SNN ability to fit the time

series data while reducing the computational cost of the next-

layer network.

Therefore, this study adopts the spike max pooling method

as an improved pooling layer, as shown in Figure 4. Unlike the

average pooling which transmits the information to the next

layer of the neurons evenly, the spike max pooling introduces

a “winner takes all” mechanism, where in each time step,

only the most active neurons in the pooling window can

communicate with the neurons in the next layer, and other

neurons in the pooling window are ignored. The spike max

pooling layer can dynamically adjust the connections between

the neurons to improve the neuron capability to emit the spikes,

thereby enhancing the SNN ability to fit the time series data.

In addition, the output of the spike max pooling layer is still

the binary data, which can maintain the discreteness of the

spike train compared to the average pooling of output floating

point numbers and use logical operations instead of matrix

multiplication operations, thereby improving the operation

speed and reduce the energy consumption. The most important

feature of the ANN is that it can approximate the non-linear

functions arbitrarily, and this feature largely benefits from the

existence of the non-linear activation functions. Different from

the traditional ANN, due to the existence of the Heaviside step

spike emission function, the SNN that introduces the spiking

neuron itself has a non-linear nature. Thus, the activation

layer can be directly replaced by the spiking neuron, and the

activation function is replaced by the spike emission function,

which further simplifies the computational complexity of the

SNN model.

The backbone network used in this paper is shown in

Figure 5. The network structure draws on the model of the

traditional CNN, combining the convolutional layer, batch

normalization layer, pooling layer, dropout layer, and the final

FCN. The input of the network is the encoded spike signal,

and the output is the firing spike of each neuron in T

time steps.

Model training

The activation functions used by the traditional ANN are the

differentiable activation functions, such as the ReLU, Sigmoid,

and Tanh functions. However, the spiking emission function

2(x) of the SNN is usually non-differentiable, which makes

it impossible to use gradient descent and backpropagation

algorithms for the training optimization even though the SNN

is structurally very similar to the ANN.

This study adopts the method of training with the surrogate

gradients by approximating the spike function with a gate

function σ (x) which is very similar in the form to 2(x) but

differentiable, and then computes the approximate surrogate

gradient for the SNN to update. The surrogate gradient methods

have been shown to be very effective in training SNN, and the

models trained with this method can achieve the comparable

performance to ANNs on many tasks Fang et al. (2021b). The

core idea of the surrogate gradient method is: (1) in the forward

propagation, the spike emission function 2(x) is still used as

the gating function to activate the spiking neuron and fire
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FIGURE 4

Schematic diagram of the spike max pooling. (A,B) In each time step, only the most active neurons in the pooling window can communicate

with the neurons in the next layer. (C,D)When two or more neurons fire the spikes at the same time, one of the neurons is randomly selected for

the messaging.

FIGURE 5

Structure diagram of the backbone network.

the spike when the voltage reaches the threshold; (2) in the

backpropagation, the surrogate function is used to calculate the

approximate gradient, and the surrogate gradient is used to

optimize the update of the network.

A common surrogate function is the smoothed Sigmoid

function σ (αx) = (1+exp(–αx))−1, where α is a smooth

factor. The factor can control the smoothness of the function.

The larger the value of α, the smoother is the function, and

thus the more approximate is the spike emission function

2(x). However, it is easier to explode the gradient when

it is close to the origin and disappears when it is far

away from the origin, making the network more difficult to

train. Correspondingly, the gradient of the Sigmoid function

calculated during the backpropagation is σ (αx)
′
= α · σ (αx) ·

(1 – σ (αx)).

However, the Sigmoid function cannot fit the Heaviside

step spike emission function well, and when α is large,

the Sigmoid function is prone to saturation at both

ends, causing the problem of the gradient disappearance

and increasing the difficulty of the network training. To
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FIGURE 6

Comparison of the surrogate gradient function and Heaviside step function 2(x) for the di�erent values of α. (A) Smoothed Sigmoid function, (B)

Smoothed Arctan function.

solve the above problems, this study proposes to use the

smoothed arc tangent function (Arctan) as the gradient

replacement function during the model training. In the

forward propagation, the computation of the smoothed

Arctan is:

σ (x) =
1

π
arctan

(π

2
αx
)

+
1

2
(15)

During the backpropagation, the gradient of the smoothed

Arctan function is computed as:

σ ′(x) =
α

2
(

1+
(

π
2 αx

)2
) (16)

Figures 6A,B, respectively, show the comparison of two

different surrogate gradient functions with the Heaviside step

spike emission function 2(x) at different α values. It can be

found that the Arctan function is more similar to the Heaviside

step function in form, and as the value of α increases, the

gradient disappears less easily than the Sigmoid function.

To train an SNN with the backpropagation method, an

appropriate loss function needs to be designed. Provided that

the number of the categories of the SAR image is C, the output

spike train is O=[ot,i] ∈ RC×T, and the corresponding category

matrix is Y = [yt,i] ∈ RC×T. If the true label of an image is l,

then the neuron whose final output represents the class l should

have the highest level of the excitation (i.e., fire the most spikes),

and the rest of the neurons should remain inhibited (i.e., fire

fewer spikes). Therefore, this study adopts the mean square

error function as the loss function for the model training. The

definition of this loss function can be defined by:

L(O,Y) =
1

T

T−1
∑

t=0

1

C

C−1
∑

i=0

(Ot,i − yt,i)
2 (17)

where, yt,i is 1 if only if i = l, and the rest are zero. When

the model training converges, the recognition and prediction

category lp of the input image is the category represented by

the neuron with the largest number of firing the spikes, which

is given by:

lp = argmax
i

1

T

T−1
∑

t=0

Ot,i (18)

Experiment and discussion

Experimental setting

To better verify the correctness and effectiveness of the

proposed method, this study uses the real SAR ship datasets

for the experiment, i.e., the SAR-Dataset. The SAR-Dataset

is a dataset for ship recognition and detection published by

Schwegmann et al. (2016). It is constructed from 22 images

collected by the Sentinel-1 satellite and 3 images collected

by the RADARSAT-2 satellite, containing a total of 42 dual-

polarization and 4 single–polarization radiometric calibration

images. The dataset covers ∼80% of the exclusive economic

zone in South Africa, which includes the multiple high-vessel

density port scenarios. After the analysis and processing,

the dataset contains three types of image samples, includes

the ships, ship-like images (false alarm images), and ocean

background images. Among them, the ship category is a

positive sample, while the rest of the categories are used as
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FIGURE 7

Nine examples of the three types of sub-images in the SAR-Dataset. (A) Ship images; (B) Ship-like images; (C) Ocean background images.

the negative sample images. The dataset has the same number

of the samples for each category, which contains 1,596 SAR

images of the size 75 × 75. Moreover, the sample distribution

of the SAR-Dataset is balanced, which is conducive to the

model training and evaluation. Figure 7 shows nine examples

of the three types of the sub-images (ship images, ship-like

images, and ocean background images) in the SAR-Dataset.

It is seen that the ship-like images are very similar to the

ship images, which undoubtedly poses a huge challenge to the

recognition model.

To fully verify the effectiveness of the proposed method,

this study uses two types of methods for comparison, including

the traditional recognition method and the deep learning

recognition method. The traditional recognition methods

mainly include logistic regression (LR) (Bootkrajang and Kabán,

2012), K-nearest neighbors (KNN) (Mucherino et al., 2009),

support vector machine (SVM) (Hearst et al., 1998), and

decision tree (DT) (Fürnkranz, 2010) algorithm. The deep

learning recognition methods are represented by the second-

generation ANNs, mainly including the AlexNet (Krizhevsky

et al., 2012), GoogleNet (Szegedy et al., 2015), MobileNet

(Howard et al., 2017), DenseNet (Huang et al., 2017), and

ResNet (He et al., 2016). Among them, the ResNet adopts

the ResNet-18, ResNet-34, and ResNet-50 models with the

different layers.

To better evaluate the model effect in different methods, this

study uses the precision, recall, and F1-score as the evaluation

metrics, where F1-score can be defined by precision and

recall. The recognition result for the target category i can be

expressed by:

Precisioni =
TP

TP + FP
(19)

Recalli =
TP

TP + FN
(20)

F1i = 2×
Precisioni × Re calli

Precisioni + Re calli
(21)

where, TP represents the number of positive samples that are

correctly recognized, FP represents the number of negative

sample that is misrecognized as the positive sample, and FN

represents the number of positive sample that is misrecognized

as the negative sample. Considering the imbalance of the various

targets in the SAR-Dataset, to measure the performance of the

model more accurately, this study uses the weighted average

of the ship recognition results of each category as the final
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performance of themodel. Therefore, the weighted result of each

category can be expressed by:

Precision =
∑

i

Ni

N
Precisioni (22)

Recall =
∑

i

Ni

N
Recalli (23)

F1 =
∑

i

Ni

N
F1i (24)

where, Ni is the number of target samples with category i and N

is the sample size of the entire dataset.

This SAR-Dataset dataset has been divided as follows: 75%

is the training set, 25% is the test set, and 20% is divided

from the training set as the validation set. The training set is

used to train the model, the validation set is used to adjust

the model parameters and select the optimal weight of the

model, and the test set is used to test the performance of the

model. The validation and test sets are not visible during the

model training. For the traditional recognition method, the

principal component analysis (PCA) method is used to reduce

the dimension of the input SAR image, and the image features

are extracted as the input to predict the category, where the

feature dimension is set to 80. For the neural network model,

Adam is used as an optimizer for the training, where the training

batch size is 32, the learning rate is 0.001, the weight decay is set

to 0.0001, and the loss function is the cross-entropy loss. A total

of 100 rounds of training are performed, and the optimal weight

of the model is saved according to the results on the validation

set. For the proposed method in this study, the membrane time

constant τ is set to 2, the simulation duration T is set to 12,

the loss function is the mean square error function, and the rest

of the settings are consistent with the neural network model

in the comparison method. The experimental hardware adopts

a computer with the CPU as the Intel i9-9900X, GPU as the

NVIDIARTX 2080 Ti, and the operating system is Ubuntu18.04.

For the traditional method, it is implemented using the Scikit-

learn (Swami and Jain, 2013) framework. For the neural network

model, it is implemented using the PyTorch (Paszke et al.,

2019) deep learning framework, and CUDA10.1 is used for the

acceleration during the training and testing.

Experimental results and analysis

Ship recognition results

Table 1 shows the ship recognition result of the different

models on the SAR-Dataset. The results are presented in the

form of percentages (%), and the recognition results with

the best performance in each indicator are shown in bold. It

can be observed the accuracy, recall, and F1 scores of each

model are relatively similar; thus the three indicators can well-

measure the ship recognition performance of the models. From

the perspective of three indicators, the traditional recognition

methods are not as good as the neural network method based

on deep learning, and the F1 score of the best performing KNN

algorithm is only 92.5%. This is because the traditional target

recognitionmethod has the problem of the weak adaptive ability.

If the SAR image to be recognized has large defects or other

external noise interference, the model cannot obtain the ideal

recognition result. However, the SAR images usually have a lot

of noise, and only using the surface features of the SAR images

(such as the PCA features) cannot fully extract the information

contained in the SAR images, which leads to being easily

affected by the background clutter or coherent speckle noise. On

the contrary, the deep learning-based neural network methods

extract the SAR image features through the convolution layer

and uses the gradient descent algorithm for the iterative training

optimization, so it canmore accurately recognize the ships in the

SAR image, and the noise in the SAR image can be avoided to a

certain extent through the adaptive learning of the convolution

kernel weight. According to the experimental result based on the

SAR-Dataset, the effectiveness of the CNN for the SAR image

recognition has been fully demonstrated.

For the different CNN models, there are also great

differences in their performance. The early CNN like the

AlexNet has performed poorly, with the F1 scores of only

92.68%. This is due to the shallow number of the model layers,

which cannot extract well the high-level features in the images;

thus, it is easily affected by the SAR image noise. Compared

with AlexNet, the GoogleNet network deepens the network

depth and improves the recognition performance. However,

the CNN is prone to the problem of gradient disappearance

when the number of the model layers is deepened, which makes

the model difficult to train. Thus, the DenseNet, ResNet, and

MobileNet alleviate the problem of gradient disappearance by

introducing the residual structure, which can achieve better

recognition performance. In addition, it can also be found that

with the deepening of the number of the layers of the ResNet, the

recognition effect of the model has declined to a certain extent.

The above experiment results show that a certain depth of the

neural network can better extract the SAR image features and

reduce the noise interference. However, when the number of the

model layers is greatly deepened, since the SAR images do not

have the rich features compared to the optical images, the deeper

network structures may lead to poor model performance.

The proposed SpikingSAR model adopts a combination

architecture of the CNN and SNN networks. To reduce the

complexity of the model and avoid the problems caused by

the deep network, it adopts a shallow structure design, which

can achieve the best ship recognition performance based on

the SAR-Dataset with an F1 score of 95.58%. The results in

Table 1 fully demonstrate the effectiveness of the proposed

SpikingSAR method. All evaluation indicators outperform the

traditional ship recognition methods, and in most cases achieve

the comparable or even better results than the CNNmethods.
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TABLE 1 Ship recognition results of di�erent models.

Methods Models Precision (%) Recall (%) F1 (%)

Traditional recognition method LR (Bootkrajang and Kabán, 2012) 92.67 92.65 92.58

KNN (Mucherino et al., 2009) 92.50 92.49 92.50

SVM (Hearst et al., 1998) 88.13 87.37 87.75

DT (Fürnkranz, 2010) 89.34 89.39 89.36

Deep learning recognition method AlexNet (Krizhevsky et al., 2012) 92.67 92.73 92.68

GoogleNet (Szegedy et al., 2015) 94.44 94.49 94.46

MobileNet (Howard et al., 2017) 94.81 94.82 94.80

DenseNet (Huang et al., 2017) 95.14 95.15 95.15

ResNet-18 (He et al., 2016) 95.05 95.07 95.06

ResNet-34 (He et al., 2016) 94.92 94.90 94.96

ResNet-50 (He et al., 2016) 94.10 94.06 94.05

Proposed SpikingSARmodel 95.57 95.59 95.58

The experimental results with the best performance are shown in bold.

TABLE 2 Confusion matrix of the ship recognition results using the

proposed SpikingSAR.

Ship

sample

Ship-like

sample

Background

sample

F1 (%)

Ship sample 396 2 1 98.55

Ship-like sample 2 377 20 93.31

Background sample 1 24 374 94.21

Weighted F1 (%) 95.58

The experimental results with the best performance are shown in bold.

Table 2 shows the confusion matrix of the ship recognition

using the proposed SpikingSAR method. The confusion matrix

is often used for the recognition and classification tasks in the

supervised learning, which can visually display the prediction

results of the model for the different categories. From the results

in Table 2, it is seen that the proposed SpikingSAR method can

identify the ship samples relatively accurately, and only a few

other samples have false alarms. At the same time, due to the

high similarity between the ship-like samples and background

samples, the proposed SpikingSAR method may misidentify the

two in a few cases.

Figure 8 shows the SAR ship image samples, the

corresponding feature saliency map, and spike coding

map. According to Figure 8B, it can be observed that the feature

saliency map based on the visual attention mechanism can

better describe the ship outline in the input SAR images, and

then eliminate the influence of the ocean background clutter, so

that the target area is in the visually more obvious. Figure 8C

is the spike encoding image obtained by using the feature

saliency map through the Poisson encoder. Since the spike is a

discrete sequence of 0 and 1, the encoded visual saliency map is

a binary image. The encoded binary image can well-extract the

ship in the SAR images, so it can improve the learning of the

salient features of the SAR image for the proposed SpikingSAR

model and improve the robustness and anti-interference of

the model to the noise. Thus, it is very necessary to use the

attention mechanism in the proposed SpikingSAR method,

which can further improve the accuracy of the ship recognition

the SAR image.

Model parameter comparison

Although with the development of the deep learning theory

and the continuous breakthrough in the computing speed of the

hardware devices, the CNN has higher and higher accuracy in

various image processing tasks, themodel and network structure

are becoming more and more complex, which inevitably brings

the problem of a huge amount of the model parameters. Figure 9

gives the parameter comparison of the different neural network

models. As shown in Figure 9, the number of parameters of

the AlexNet model reaches 228.03MB. This is because the

design of the shallow structure of the AlexNet relies on the

extraction and recognition of the image features by subsequent

fully connected layers; thus, too many fully connected layers

lead to large model parameters. GoogleNet and ResNet adopt

the design of the stacked convolutional layers in the model

structure, and only use the fully connected layer in the last layer

of the model, thus greatly reducing the amount of the model

parameters. To reduce the model size while maintaining the

model performance, MobileNet introduces a depth separable

convolution operation, which decomposes one layer of the

convolution into two layers of the computation and obtains

the same output with fewer parameters and computation,

further reducing the model parameters. Compared with the

above-mentioned CNN, DenseNet is a more lightweight model,

which can improve the information and gradient flow of the
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FIGURE 8

(A) SAR ship image samples; (B) Feature saliency map; (C) Spike coding map.

FIGURE 9

Parameter comparison of the di�erent neural network models.

entire network by connecting all layers in the network to each

other, and greatly reduces the number of the channel of the

convolutional layer. Therefore, DenseNet can achieve better

performance with fewer parameters.

From Figure 9, it can be found that the parameter amount

of the proposed SpikingSAR model is the smallest among

all models (only 3.11MB), which is far less than the model

parameters of the AlexNet and is also less than that of the

optimized MobileNet and DenseNet. The small number of

parameters of the SpikingSAR model comes from the following

two aspects. First, there is an LIF layer without the parameters.

SpikingSAR uses a combination of the convolution layer and

LIF spiking neuron layer. The main function of the LIF layer is

to simulate the charging and discharging process of the spiking

neurons, which does not contain trainable parameters. Second,

there is a shallow network structure design. Because the spike

coding based on the visual attentionmechanism is performed on

the SAR image at the input layer, the image feature information

is enhanced; thus, the high-order information of the image can

be effectively extracted without a deep network structure. In

summary, the SpikingSAR has the less model parameters, which

reduces the memory resources required in the operation process

and is helpful for porting and deploying the terminal devices in

actual scenarios.

Model energy consumption

To further explore the energy efficiency of the proposed

method, this study uses the appropriate indicators to measure

the number of the operations of the SpikingSAR and contrasting

neural networks and then calculates their energy consumption.

The calculation of energy consumption is closely related to

the number of operands in the hardware, and the calculation

methods of the operands are different for the different neural

networks. For the traditional ANNs running on the modern

GPUs, the indicator to measure the number of the operations

is mainly the floating-point operations (FLOPs), which can

be considered as an indicator to measure the computational

performance of the model. For the SNN based on brain-like

intelligence, since it uses the spiking neurons to transmit the

signals between synapses, the indicator to measure its operation

number is mainly the number of synaptic operations (SOPs),

which is mainly the voltage changes of the neuron membrane,

specifically the number of t voltage changes during the neuron

charging and discharging.

Considering the possible deviation of the energy-

consumption calculation caused by different hardware

characteristics, this study follows the quantitative method

(Wu et al., 2019) to calculate the energy consumption of each
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TABLE 3 Comparison of the operations (FLOPs/SOPs) and energy

consumption for di�erent models.

Models Operations

(FLOPs/SOPs)

Energy-

consumption

AlexNet (Krizhevsky et al., 2012) 98.59M 1.23× 10−3J

GoogleNet (Szegedy et al., 2015) 143.07M 1.79× 10−3J

MobileNet (Howard et al., 2017) 43.54M 0.54× 10−3J

DenseNet (Huang et al., 2017) 291.63M 3.65× 10−3J

ResNet-18 (He et al., 2016) 243.53M 3.04× 10−3J

ResNet-34 (He et al., 2016) 489.96M 6.12× 10−3J

ResNet-50 (He et al., 2016) 549.02M 6.86× 10−3J

Proposed SpikingSARmodel 17.97M 1.38 × 10−6J

The experimental results with the best performance are shown in bold.

model and assumes that all models are running on appropriate

equipment. Specifically, the traditional ANNs run on the

Intel Stratix 10 TX FPGA, which is one of the most energy-

efficient computing platforms with an energy-consumption of

12.5pJ/FLOP. The SNNs run on the neuromorphic hardware

ROLLS (Indiveri et al., 2015), which can provide the efficient

calculation of trigger events by transmitting the spike signals

between neurons, and only consumes the computing resources

during the process of neurons firing spikes, and the energy

consumption is 77fJ/SOP.

Table 3 shows the comparison of operations and energy

consumption of different neural network models. From Table 3,

it is found that the SpikingSAR based on the spike signal

transmission has fewer operands with the SOPs 17.97M, which

is only 1/30–1/2 times of the operands of the other ANNs,

illustrating the efficiency of the process of the transmitting

signals using the spikes. Furthermore, using the SpikingSAR

on the neuromorphic hardware ROLLS consumes much

less energy than traditional ANNs according to the energy-

consumption values of the individual methods. Finally, the

SpikingSAR achieves nearly three orders of the magnitude

energy efficiency advantage, which fully demonstrates the

significant energy efficiency of the proposed SpikingSAR

method.

Applicability analysis

The calculation of the SpikingSAR method in each

forward propagation includes the propagation of the spike

train in the network and the update of the neuron state

variables. The calculation time of the spike propagation

is mainly determined by the length and quantity of the

transmitted spike train, while the calculation time of the

neuron state variable update is mainly determined by the

spike neuron model. Since the length of the spike train

in this experiment is fixed as the number of the pixel

FIGURE 10

Comparison of di�erent neuron models and simulation duration.

values encoded in the input image, the calculation of the

spike train propagation in the network is mainly affected by

the number of spikes, which is determined by the selected

simulation duration.

The simulation duration T is one of the most important

parameters for the time-driven SNN models, but its value is

often difficult to determine. When the value of T is too small,

the computational complexity and energy consumption can be

reduced, but it cannot accurately describe the changing process

of the neuron states. When the value of T is too large, it will

increase the amount of the network computation and energy-

consumption, and it may also destroy the network simulation

accuracy of the spike signals. The selection of the spiking neuron

model is crucial to the performance of the SNN. A suitable

neuron model can use a reasonable mathematical model to the

intelligent computing process of the biological systems, and

integrate biologically inspired, efficient, and accurate neural

information processing mechanisms to the SNN. The SNN is

given better biological credibility and strong fitting ability.

The experimental analysis is conducted for different

simulation durations T and spiking neuron models, which is

shown in Figure 10. In Figure 10, it can be observed that: (1) The

different spiking neuron models have different performances.

The LIF neuron model has outperformed the IF neuron model

in terms of F1 score, because the LIF model additionally

considered the key features of leakage in the process of

biological neuron membrane potential changes in the process

of simplifying the neuron state changes, which can describe

the details of the neuron activity more accurately, thereby

enhancing the biological accuracy and performance of the SNN.

(2) SpikingSAR model is sensitive to different values of T. When

T is small, the SpikingSAR using the IF neuron and LIF neuron

models performs poorly. When T increases, the simulation time

step becomes finer, and then the recognition accuracy of the

SpikingSAR increases gradually. The peak value is reached when

T=12, indicating that T=12 is a more reasonable choice of the
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simulation duration. When T is larger than 12, the recognition

accuracy of the SpikingSAR begins to decline, which indicates

that a large T will affect the recognition performance of the

model. The possible reason for this phenomenon is that the

large T leads to too many input spike trains, and the error

accumulation caused by the training method using the surrogate

gradient gradually increases, which finally affects the learning

ability of the model.

In summary, for the proposed SpikingSAR method, using

the LIF neuron model is a more reasonable choice. In addition,

considering that the model is greatly affected by the value

of T, it is necessary to select an appropriate value of T

according to the actual situation during the experiment, so

that the model can not only accurately simulate the voltage

changes of the neurons, but also minimize the amount of

computation and energy consumption while maintaining the

optimal model performance.

Conclusion

This study presents a high-efficiency and low-energy ship

recognition strategy based on the SNN in the SAR images. First,

a Poisson encoder based on the visual attention mechanism

is used to encode the input SAR image with a spike train,

which can remove the background noise during the encoding

process and preserve the visual saliency of the image as

much as possible. Then, based on the LIF neuron model

and combined with the CNN, an end-to-end SNN model has

been constructed, which uses the LIF neuron spike firing the

frequency to perform the ship recognition in the SAR images.

Finally, to solve the problem that the SNN model is difficult

to train, the Arctan function is used as a surrogate function

for the spike emission function during the backpropagation for

the gradient calculation, and the backpropagation algorithm

is applied to the training process of the SpikingSAR. The

experiments have been conducted based on the SAR-Dataset

in real scenarios, which are used to compare and analyze the

traditional methods and mainstream deep learning methods.

The experimental results show that the proposed SpikingSAR

can accurately recognize the ships, and then has achieved a

good performance in various evaluation indicators. Compared

with the comparison methods, it has the advantages of fewer

parameters, high efficiency, and low energy consumption,

which is very conducive to the deployment of the terminal

equipment with the high energy-efficiency. In the future

works, we would like to use some newly released ship target

recognition datasets for the ship recognition in the SAR

images. In addition, some recent ship recognition methods

(He et al., 2021; Lang et al., 2022) will be used to compare

the approaches.
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