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Many studies have used motor imagery-based brain–computer interface (MI-

BCI) systems for stroke rehabilitation to induce brain plasticity. However, they

mainly focused on detecting motor imagery but did not consider the e�ect

of false positive (FP) detection. The FP could be a threat to patients with

stroke as it can induce wrong-directed brain plasticity that would result in

adverse e�ects. In this study, we proposed a rehabilitative MI-BCI system

that focuses on rejecting the FP. To this end, we first identified numerous

electroencephalogram (EEG) signals as the causes of the FP, and based on

the characteristics of the signals, we designed a novel two-phase classifier

using a small number of EEG channels, including the source of the FP. Through

experiments with eight healthy participants and nine patients with stroke, our

proposed MI-BCI system showed 71.76% selectivity and 13.70% FP rate by

using only four EEG channels in the patient group with stroke. Moreover,

our system can compensate for day-to-day variations for prolonged session

intervals by recalibration. The results suggest that our proposed system, a

practical approach for the clinical setting, could improve the therapeutic e�ect

of MI-BCI by reducing the adverse e�ect of the FP.

KEYWORDS

brain-computer interface, brain plasticity, contamination, false positive rejection,

motor imagery, neurorehabilitation

Introduction

Brain–computer interface (BCI) using electroencephalogram (EEG) signals is

gaining significance in stroke neurorehabilitation owing to its positive effect on

rehabilitation (Friehs et al., 2004; Lebedev and Nicolelis, 2006; Daly and Wolpaw,

2008; Grosse-Wentrup et al., 2011; Young and Tolentino, 2011; Bai et al., 2020).

Rehabilitative BCI systems use EEG signals to provide motor-related neurofeedback

immediately after the motor intention to generate a planning execution cycle.
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By repeating this cycle, brain plasticity can be induced by

firing mirror neurons to reorganize the damaged neural circuits

in the brain (Bennett et al., 1964; Livingston, 1966; Murphy

and Corbett, 2009; Duffau, 2016; Reinkensmeyer et al., 2016;

Sasmita et al., 2018). Many studies have shown that these

BCI systems can improve the rehabilitation results in patients

with stroke by increasing motor function after the training

sessions (Friehs et al., 2004; Lebedev and Nicolelis, 2006;

Daly and Wolpaw, 2008; Murphy and Corbett, 2009; Grosse-

Wentrup et al., 2011; Young and Tolentino, 2011; Bai et al.,

2020).

Rehabilitative BCI systems can be classified into two

types: synchronous and asynchronous. The synchronous system,

which detects target brain signals during a pre-defined time after

a visual or sound cue is provided to the users (Pfurtscheller

et al., 2003), is inappropriate for training protocols based on

the activities of daily living (ADL) as users cannot freely control

BCI whenever desired. In contrast, the asynchronous system,

which keeps monitoring until the target brain signal is detected

(Leeb et al., 2007; Diez et al., 2011; Chae et al., 2012; Kus et al.,

2012), is beneficial to rehabilitative BCI as it can provide a more

ADL-like experience (Aricò et al., 2020). Since the asynchronous

system monitors the brain signal continuously, the feedback

of the system can be provided not only in the user-intended

time (true positive; TP) but also for the rest of the time (false

positive; FP).

For the asynchronous system of rehabilitative BCI, event-

related desynchronization (ERD), an attenuating power on

certain frequency (alpha and beta) bands, is a typical feature

(Pfurtscheller and Lopes Da Silva, 1999). Motor execution

(ME) results in ERD; however, most patients with stroke have

difficulties performing ME due to motor impairments. Hence,

ERD caused by motor imagery (MI) has been regarded as an

alternative to ME ERD. This is supported by the following facts.

MI ERD shares almost the same activation area and frequency

band if the participant performs the exact image of the desired

motor task (Miller et al., 2010; Jeong et al., 2019), and motor

function recovery after MI training has been reported in patients

with stroke (Sun et al., 2016).

It is well known that asynchronous BCI systems are more

complicated than their synchronous counterparts (Nicolas-

Alonso and Gomez-Gil, 2012; Hramov et al., 2021). Moreover,

MI is a complex mental task, namely, intention, tactile,

proprioceptive, and visual feeling of the specific motor task

(Jeannerod, 2006); thus, MI ERD generated by stroke patients

with chronic motor impairments would be weak, leading the

asynchronous system to become more challenging. To solve

this challenge, a study used an additional electromyogram

(EMG) sensor to deliver synchronous-like situations in an

asynchronous system (Bhagat et al., 2016); however, this scheme

can only be used by a minority of patients with stroke who

can provide sufficient EMG on the limb. In contrast, many

studies have used spatial pattern-based detection methods, such

as spatially applied linear discriminant analysis (Lew et al.,

2012; Mrachacz-Kersting et al., 2017), independent component

analysis (Ahmadian et al., 2013), and common spatial patterns

(Wang et al., 2005; Blankertz et al., 2008), to increase the

overall accuracy of BCI based on MI (Hortal et al., 2015;

Mrachacz-Kersting et al., 2017); thus, these methods could be

applied to overcome the aforementioned challenges. However,

it is inappropriate for use in rehabilitative BCI in the clinical

environment as they require excessive EEG channels, which

leads to a lack of motivation and a decrease in concentration

due to fatigue. Note that there were a few attempts to reduce the

number of channels; however, they were not successful owing

to the significant deterioration of their accuracy (Arvaneh et al.,

2011; Tam et al., 2011).

To provide rehabilitative BCI to a broad patient population

and to reduce the number of EEG channels, single-channel-

based MI detection, also called as brain-switch has been

attempted (Müller-Putz et al., 2010; Ge et al., 2014; Camacho

and Manian, 2016; Chen et al., 2017; Ko et al., 2017). However,

some previous studies just focused on the increase of TP

detection and it leads to an increase in FP detection (Camacho

and Manian, 2016). The increased number of FPs is more

dangerous than decreasing TP of MI from a rehabilitation

perspective as the wrong-directed neural cycle could induce

inappropriate (pathologic) brain plasticity and interfere with the

improvement of MI skills (Barbero and Grosse-Wentrup, 2010;

Grosse-Wentrup et al., 2011; Liu et al., 2013; Alimardani et al.,

2014; Niazi et al., 2022).

An alternate approach to reduce FPs in ERD is to identify

possible sources of the signals that can be confused. The possible

sources can be considered non-region of interest (non-ROI)

channels for MI task, whereas the region of interest (ROI)

channels are interesting channels for investing the effects of the

MI task, which is generally contralateral motor area (Kober et al.,

2019). Some brain signals (other movement-related signals and

cognitive task signals) and the EMG signals generated by eye

movement, contraction of the frontalis, temporalis, and neck

muscles can be formed as alpha and beta attenuation, similar

to MI alpha and beta rhythm (Goncharova et al., 2003). They

can be reduced by experimental instructions or easily rejected

by using EOG/EMG sensors. The sensory-related signals such

as visual evoked potential (VEP) and auditory evoked potential

(AEP) also show ERD-like short-lasting attenuation in the alpha

and beta bands in non-motor areas (Makeig, 1993; Salenius

et al., 1995; Duarte et al., 2009; Toscani et al., 2010; Oppitz

et al., 2015). However, the visual/auditory stimuli are generally

used in BCI but are difficult to eliminate with external sensors

or experimental instructions. Especially, patients with stroke

lack attention and require various types of visual and auditory

aids to properly concentrate on the rehabilitative BCI (Thaut

and McIntosh, 2014; Loetscher and Lincoln, 2019). Therefore,

identifying and rejecting these signals could minimize the

expected FPs during BCI sessions.
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This study addressed a detection and rejection algorithm

for a fully asynchronous BCI system using MI ERD. We first

identified the sensory-related signals, which could confound

individual MI ERD. Then, based on the characteristics of the

signals, we designed a classifier for an asynchronous BCI system

to detect MI ERD and reject FPs by combining (1) a single-

channel-based MI detection in ROI and (2) a non-region

of interest (non-ROI) channel-based FP rejection algorithm

originating from our previous work (Song et al., 2018). Through

experiments with healthy participants and patients with stroke,

the validity of the idea of a non-ROI channel was investigated,

and the MI detection performance of the proposed classifier was

evaluated using both offline simulations and online BCI sessions.

Methods

Classifier design for rejecting EEG
contamination

The experimental protocol for MI-based BCI generally

contains a calibration session before the BCI. In this study,

the calibration session not only extracts training data but also

screens ROI and non-ROI candidate channels. Note that, in this

study, ROI indicates an EEG channel that contains the origin

of our interested EEG signal (i.e., MI) and non-ROI indicates

the region made of EEG channels outside of our interested

area, where we define the sources that EEG contaminations

occur. Along with the MI task, the session included several

paradigms for screening the source of EEG contamination

from sensory (visual/auditory) stimuli: (1) VEP from action

observation, (2) VEP from non–motor-related various themed

images, and (3) AEP from the auditory cue. The VEP from

action observation represents passive action observation in a

rehabilitation environment and action recollection that may

occur during rest, which refers to unintended cognitive activity

that unconsciously reminds the patient of exercise execution.

For another VEP, the various themed images were intended

to induce unwanted non–motor-related cognition tasks by

showing different images for each trial, to mimic the lack

of concentration of patients with stroke. The AEP represents

miscellaneous auditory cues and sound originated diversions

in the rehabilitation environment, which attract attention from

the patient. VEPs are known to have a negative peak in the

alpha band in the posterior–occipital area (Salenius et al., 1995;

Toscani et al., 2010), and the AEP is known to show negative

oscillations in the alpha band in the temporal and midline

areas (Makeig, 1993; Duarte et al., 2009; Oppitz et al., 2015).

Considering these characteristics, we designed paradigms to

reveal the time-frequency patterns of EEG contamination that

can be used to develop classifiers for rejecting them.

Selection of ROI and non-ROI EEG channels

Instead of applying conventional spatial filters with many

EEG channels to overcome the limitation of weak MI ERD,

we used a small number of channels and algorithm following

characteristic of EEG signals: the EEG signals radially flow

through the scalp-like electrocortical ripple, affecting nearby

electrodes (Salenius et al., 1995; Mcfarland et al., 1997). If MI

ERD appears in the EEG channel located in the MI-related

area (ROI channel), we could find similarly desynchronized

power of signals on the nearby channels; however, the signals

would be weaker than the ROI channel due to skin impedance.

In contrast, if stronger power desynchronization appeared

in the channel located outside of the MI-related area (non-

ROI channel) when ERD is detected in the ROI channel, the

detected power desynchronization can be regarded as pseudo-

MI ERD, originating from the non-ROI channel due to EEG

contamination. This means that the use of proper non-ROI

channel information could enable the effective discrimination of

pseudo-MI ERD without using many EEG channels.

To implement the approach above, ROI and non-ROI

channels for individuals should be carefully selected. Figure 1A

is a diagram of a workflow of channel selection, which is colored

by a group of tasks that can be represented by characteristic

example figures (Figures 1B,C). Figure 1B shows a characteristic

example of the selection process of the ROI channel. Based on

the event-related spectral perturbation (ERSP) map of the MI

task, we extracted the data during the MI task in five frequency

bands from 8Hz to 28Hz (mu and beta) with 4Hz intervals

(yellow boxes in Figures 1A,B). Note that EEGLAB functions

were used to calculate ERSP and sinusoidal wavelet (short-

time DFT) transform was used for the computation of spectral

estimate (Delorme and Makeig, 2004). Baseline correction is

applied to ERSP based on the pre-stimulus segment (−4 to−2 s

from the cue). Then, the averaged ERSP in the task period for

each band data was drawn into a topographical map (Figure 1B),

and a channel that was closest to the area, where it showed the

lowest averaged ERSP power among all five maps, was chosen as

the ROI channel, the source channel of MI ERD (yellow dotted

circle on the topographical map in Figure 1B). Finally, we drew

the ERSP map of the chosen channel to specify the frequency

band of the MI ERD (green box in Figure 1B). The ROI channel

selection was double-checked by drawing the topographical map

of the frequency band specified to see whether the selected

channel showed the strongest ERD (Figure 1B).

The candidates for the non-ROI channel were also chosen

as follows: To find the source channel of EEG contamination,

the inducers of contamination, visual and auditory stimulation,

were provided to the participants. Based on the determined

frequency band in ROI selection, the ERSP map and

topographical maps of the ROI for the paradigms were drawn.

Then, the sources showing the lowest averaged ERSP values

in the topographical maps were chosen as candidates for the
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FIGURE 1

The process to select a region of interest (ROI) and non-ROI candidate channels of a representative participant (P3). (A) The flow chart for the

process to select ROI and non-ROI candidate channels. (B) The process to select a ROI. The yellow dotted circle on the topographical map

represents the selected ROI. (C) Non-ROI candidate channels. The red dotted circle on the topographical map represents the source of

electroencephalogram (EEG) contamination and candidate channels for non-ROI.
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FIGURE 2

Simple illustrations of two-phase classifier algorithm. (A) Flow chart for the whole algorithm; (B) Flow chart for phase 1: an illustration of the

event-related desynchronization (ERD)-like shape of the band power relative potential (RP) signal and its features; (C) Flow chart for phase 2:

cross-correlation coe�cients (CC), latency (CClat), and Pearson’s correlation, R; (D) Structure of proposing classifier; and (E) Characteristic of

ERD samples used in classifier training (participant P9).

non-ROI channel (Figure 1C). Offline MI-BCI simulation was

performed in a proposed classifier with multiple combinations

of candidates to determine the best combination with the highest

FP rejection rate as a non-ROI channel.

Classifier structure

The classifier, which contains the detection algorithm of MI

ERD and rejection algorithm of pseudo-MI ERD, was designed

with the following hypothesis: The ERD signals generated by

EEG contamination spread-like radial waves from the non-

ROI channel and affect the ROI channel as pseudo-MI ERD.

Based on this hypothesis, the proposed classifier was built by

comparing the non-ROI channels obtained from various EEG

contamination paradigms with the ROI channels obtained from

the MI paradigm. It should be noted that we validated this

hypothesis using experimental data in this study. To detect

the desired feature of MI ERD by rejecting pseudo-MI ERD,

the proposed classifier adopted a two-phase structure, MI-ERD

detection method in a single ROI channel, and FP rejection

method with non-ROI channels as illustrated in Figure 2A.

We first specified the characteristics of the 3-s-long

windowed signal that we wanted to detect as MI ERD. For the

feature of the proposed classifier, the relative potential (RP)

was used for the ERD calculation method (Pfurtscheller and

Lopes Da Silva, 1999). The length of the windowed signal was

3 s, to distinguish the feature by including the signal during

“rest” before the ERD begins. The desired characteristic of

the signal was basically to contain the negative peak of ERD;

however, we also considered that the peak is located at the

hind area of the windowed signal, as illustrated in Figure 2D, to

minimize its detection latency (Song et al., 2018). Based on this

characteristic, the first phase was to distinguish the promising

MI ERD from the incoming windowed signals using the features

for describing the shape and amplitude of the signal. After

dividing the signal into the front and hind areas (Figure 2D), we

calculated the following features: the minimum peak in the hind

area (PeakHW ) and its timing (tPH), mean band power value of
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the hind area (MeanHW )), mean band power difference between

the areas (Mean = MeanFW−MeanHW ), and decline angle of

ERD (θERD), as summarized in Figure 2B. The decline angle was

calculated as follows:

θERD = atan (
PeakHW −MeanFW

tPH − tFW
) (1)

where tFW denotes the timing of the baseline, determined

as the end of the front area. Using the features of the ROI and

non-ROI channels, we constructed the conditions to find the

promising MI ERD, as shown in Figures 2B,C, based on the

following statement originating from the hypothesis: the signal

on the ROI channel would be MI ERD when it has the lowest

peak (PeakHW,ROI < 0) and average amplitude (MeanHW ) in

the hind window (3s < tPH < 2s), with larger amplitude

(PeakHW,ROI < PeakHW,non−ROI , and MeanHW,ROI <

MeanHW,non−ROI), and larger reduced amplitude (Mean =

MeanFW−MeanHW ) and deeper decline angle (θERD < 0)

compared with pseudo-MI ERD on the non-ROI channels

(Mean ROI < Mean non−ROI , and θERD,ROI < θERD,non− ROI).

In the second phase, the following correlation-related

features between each windowed signal (on the ROI and non-

ROI channels) and the actual MI ERD signal collected as

training data were calculated: the maximum value of the cross-

correlation coefficients (CCmax), latencies of the coefficients

(CClat) (Lewis, 1995; Sadeghian and Moradi, 2008; Chandaka

et al., 2009; Siuly and Li, 2012), and normalized Pearson’s

correlation coefficients (R) (Pearson, 1895). The similarity

between the training data and windowed signal on the ROI

was evaluated using CClat and R (Figure 2C). Moreover, by

comparing CCmax and R from the ROI with those from the

non-ROI, we checked whether the windowed signal on the ROI

was more similar to the training data than the windowed signal

on the non-ROI (Figure 2C). Note that the correlation features,

CCmax and R, are insensitive to the magnitude of the signals.

Since our algorithm relies on a relative comparison between

ROI and non-ROIs, we focused on detecting the similarity with

training data from calibration session rather than its magnitude.

Participants and experimental design

The experiment comprised two sessions. In the calibration

session, we measured the participant’s EEG behavior when

performing a targeted MI task and when exposed to different

sensory stimulations. After a few days, the MI-BCI session was

conducted based on the classifier that was calibrated for each

participant using the data obtained from the calibration session,

to evaluate the performance of the proposed MI-BCI system.

Eight healthy young adults (four men, four women, average

age: 22.8 ± 4.1 years) and nine patients with stroke (seven

men, two women, average age: 56.7 ± 7.9 years) who were in

the chronic stage post-stroke for 124.2 ± 42.7 months were

recruited in this study. All healthy participants were right-

handed with no history of brain–nervous system injuries or

neurological diseases. Seven patients had a hemorrhage in the

left hemisphere, resulting in hemiplegia on the right upper

limb, while the other two patients had the opposite. Note

that three of the eight healthy participants did not participate

in the MI-BCI session owing to personal reasons. With the

approval of the institutional review board (DGIST-170721-HR-

025-08), all participants voluntarily signed their consent after the

experimental details were provided.

Figure 3 shows the experimental setup. The experiment was

performed in a quiet and air-conditioned room with minimal

visual artifacts blocked by partitions (Figure 3A). A custom

hand exoskeleton robot was used to provide the participant’s fist

open/close motor feedback for the MI-BCI session (Bae et al.,

2017; Lee et al., 2017) (Figure 3B). The classifier for the MI-BCI

session was implemented using customized OpenVibe (Inria,

France), Python, and LabVIEW (National Instruments, USA)

codes.

We used a 32-channel EEG (Active Two EEG, BioSemi Co.

Ltd., Netherlands), in which electrodes were attached to a 64-

channel EEG cap (FLASH type EEG holder, Shimadzu Corp.,

Japan) based on a 10–20 system. The channel locations were

widespread and densely distributed on the left motor cortex

to locate the ROI channel when the participants imagined

right-handed movement, as illustrated in Figure 4. For better

convenience for the patient group, two channels on each

temporal area (T9 and T10) were relocated to the left and medial

parietal areas (P1, POz) (Figure 4).

Protocols

Calibration session

The participant sat on a chair with an armrest in front

of the monitor leveled on the eye level (Figure 3A). Each

paradigm shared the same block design as that described in

Figure 3C. During the rest period, the other cognitive actions

were restricted. The single beep sound was played for 0.25 s

at the beginning of the task period to notify the participants.

The task period of each paradigm had its event cue and

certain cognitive or motor tasks for 2 s (Figure 3C). In the MI

paradigm, the participants were asked to perform pure MI of

opening and closing the fist for a single time after a visual

cue (green circle) with closing their fist of the right hand (or

affected hand for the patient group) during the task period

(Figure 3C).

For the paradigm to measure AEP, the participant was asked

to relax and to concentrate on the sound cue (a beep sound

repeated four times at 0.5 s intervals) provided during the task

period (Figure 3C). For VEP, we measured two types of VEP:

VEP with action observation and non–motor-related VEP. In
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FIGURE 3

Experiment setup and block design of the Paradigms. (A) Experiment setup for the measurement session. (B) Exoskeleton hand rehabilitation

robot setup for the motor imagery-based brain–computer interface (MI-BCI) session. (C) Block design-based experiment paradigms.

(VEPAO: VEP with action observation; VEPNM: non–motor-related VEP).

FIGURE 4

The 10–20 system-based 32-channel locations of two participant groups. (A) Locations of the healthy group and (B) locations of the stroke

group.

both paradigms for the VEPs, the participants were asked to

relax without any movement and to watch the monitor. In each

VEP paradigm, the monitor displayed a top-view image of the

fist open/close for the former VEP and random images not

related to the motor task for the latter VEP (Figure 3C), which

turned black during the rest period for proper relaxation.
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FIGURE 5

Experiment block design for the motor imagery-based brain–computer interface (MI-BCI) session. (A) The healthy participant group and (B)

stroke participant group.

During the calibration session, the participants participated

in paradigms in the following order: MI was performed first to

avoid the influence of other EEG contamination paradigms, and

following AEP, VEP with action observation, and non–motor-

related VEP were performed in randomized order. The block for

each paradigm was repeated 30 times for 7min, with 5min of

rest between each paradigm.

MI-BCI session

First, the participants were asked to perform the MI

paradigm of the calibration session as practice, as the last

MI was performed a few days ago. During the paradigm,

the operator monitored the classifier and slightly adjusted the

threshold for Pearson’s product-moment correlation coefficient

(PPMCC) from the second phase of the classifier to compensate

for the day-to-day variation. After the MI paradigm, the hand

exoskeleton robot was attached to the chair armrest, the right

side for healthy participants and affected side for patients with

stroke (Figure 3B), and the participants were put on the robot

for the MI-BCI session.

In the MI-BCI session, participants were instructed to

perform MI to open and close their fist for a single time

during the task (control) period and asked to remain as calm

as possible in the rest (non-control) period (Leeb et al., 2007)

following block design, as shown in Figure 5. Here, we used

a synchronous block design for evaluating asynchronous MI-

BCI systems as there are no observable signs to confirm the

execution of MI. The BCI system went to the offline state

(cool-down) immediately before and after the task period

(Figure 5). Except for the cool-down status, the system was

online to wait for the detection of MI, and the detection

resulted in movement feedback by the robot. The cool-down

was used to calm the brain signals after MI and/or movement

feedback. If the detection occurred during the task period, it

was considered TP, and if it occurred during the rest period,

it was considered FP. The number of TPs and that of FPs

were counted to evaluate the performance of the proposed

MI-BCI system.

The experimental block designs for the healthy and patient

groups were slightly different (Figure 5) because the patients

with stroke felt more difficulty performing MI and took more

time to concentrate than healthy participants. To compensate

for the burden increase due to a longer task period, the time of

rest period and cool-down were also increased to maintain the

time ratio between control, non-control, and cool-down.
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Data analysis

Data processing

To investigate the source of EEG contamination, raw EEG

data from the calibration session were epoched based on the

time information of the cue (−4 to 4 s from the cue). Epoched

data were normalized by subtracting the baseline, which is the

averaged data from −4 to −2 s based on the cue. A baseline-

corrected data epoch was used to plot the time-frequency

information map and ERSP map. As mentioned in Method.1.a,

five frequency bands were extracted from the ERSP map and

used to draw topographical maps to select the participant-

specific frequency band, ROI channel, and candidates of the

non-ROI channel.

To validate our hypothesis for the proposed classifier, RPwas

calculated the same as the ERD calculation for the feature of the

proposed classifier as follows:

(A− R)/R× 100 (2)

where A is the power of filtered data and R is the power

of preceding baseline data (Pfurtscheller and Lopes Da Silva,

1999). To calculate the RP, 8 s data epochs (−4 to 4 s from

the cue) were extracted based on the time information in the

filtered data, and the band power of the epoch was normalized

by the average power of the baseline data (−4 to −2 s before

the task cue) (Song et al., 2018; Song and Kim, 2019). The

mean and standard deviation for the peak amplitude of RP from

the ROI and non-ROI channels in the three paradigms were

compared by quantitative comparison. For statistical analysis,

we performed a paired t-test on the peak values of ROI and

non-ROI. For the non-ROI in the comparison, the amplitude

of the negative peak for non-ROI candidate channels was

averaged for the MI paradigm, and the non-ROI candidate

with the largest peak amplitude was selected for the other EEG

contamination paradigms.

After screening the frequency bands and channels, to extract

the training data, raw EEG signals were resampled to 64Hz

and band-pass filtered using the determined frequency band in

the ROI selection. The filtered signal was sliced to 3 s moving

window, overlapping every 20ms (50Hz). We then applied a

phase 1 classifier to each moving window. The data that fit the

classifier and its lower peak existed between 0 and 2 s after the

cue were selected as the training data. The average of the training

data was used for the phase 2 classifier. During the MI-BCI

session, online EEG signals were sliced to a 3 s moving window

(50Hz) and applied to the proposed classifier.

Performance evaluation

We evaluated the performance of the classifier during both

the calibration and MI-BCI sessions. For the calibration session,

we obtained offline simulation results of the classifier, and the

actual online performance of the classifier was analyzed for the

MI-BCI session. Based on the number of TPs and FPs, the

performance was evaluated using sensitivity (Altman and Bland,

1994; Bhagat et al., 2016), selectivity (Altman and Bland, 1994;

Chae et al., 2012), FP rate (Pfurtscheller et al., 2003; Leeb et al.,

2007; Chae et al., 2012; Lew et al., 2012; Liu et al., 2013; Bhagat

et al., 2016; Mrachacz-Kersting et al., 2017), and FP per minute

(FPM) (Li et al., 2013; Rodriguez-Ugarte et al., 2017), as follows:

Sensitivity =
Number of TP

Number of trials
× 100 (%) (3)

Selectivity =
Number of TP

Number of total detections
× 100 (%) (4)

FP rate =
Number of FP

Number of trials
× 100 (%) (5)

FP per minute =
Number of FP

Total elapsed rest period
× 100 (%) (6)

For the quantitative comparison between offline and online

results, we applied a paired t-test on the number of TPs and

FPs from offline results of the MI paradigm in the calibration

session and online results of the MI-BCI session. Note that as

the number of participants in the healthy group was too small for

statistical analysis, the analysis was applied in the case of a stroke

group (n= 9) and in the case of all participants who participated

in the MI-BCI session (n= 14).

To investigate the effect of the key idea in the proposed

classifier for FP rejection, the classification without non-ROI

channels was simulated using MI-BCI session data of healthy

participants and stroke patient groups and compared with

online classification results in the same MI-BCI session by

calculating the rejection rate, as follows:

rejection rate =
Number of rejected FP

Number of FP without non ROI channels

×100 (%) (7)

Results

Calibration session

Figure 6 shows the group analysis results for three paradigms

(AEP, VEP with action observation, and non–motor-related

VEP) of the calibration session to screen for EEG contamination.

Figure 7 shows the comparison results of the relative

potential between the ROI and non-ROI candidate channels.

Figure 7A illustrates the statistical analysis of the peak ERDs for

each participant group during each paradigm. This result implies

that the non-ROI candidate channels show stronger ERD

signals when EEG contamination occurs due to visual/auditory

stimulation. It should be noted that the largest peak amplitude

of the non-ROI candidate channel exceeded the amplitude of

Frontiers inNeurorobotics 09 frontiersin.org

https://doi.org/10.3389/fnbot.2022.971547
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Song et al. 10.3389/fnbot.2022.971547

FIGURE 6

Group analysis of event-related spectral perturbation (ERSP) and its topographical map of Mu and Beta ERD. The red circles represent the

average source area of EEG contaminations. (A) The healthy group and (B) stroke patient group (VEPAO: VEP with action observation; VEPNM:

non–motor-related VEP).
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FIGURE 7

The relative potential from the region of interest (ROI) and non-ROI candidate channels, and the mean peak value of overall participants. (A) The

average peak value of the ROI and non-ROI candidate channels for each participant group during each paradigm. The paired t-test is performed

between the ROI and non-ROI candidate channels. Statistically mild significance (p<0.08) is described using a single asterisk (*) and statistical

significance (p < 0.05) using a double asterisk (**). The candidates of the non-ROI channel for the MI paradigm are an average of three di�erent

non-ROI candidate channels. (B) The relative potential of the characteristic participant. The blue line represents the data of the ROI channels,

and the red line represents the data from the non-ROI candidate channels. VEPAO, VEP with action observation; VEPNM,

non–motor-related VEP.
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FIGURE 8

Group analysis of the topographical map for the number of regions of interest (ROI) and non-ROI candidate channels. The number of ROI

channels is shown in blue, and the number of non-ROI candidate channels is shown in red. VEPAO, VEP with action observation; VEPNM,

non–motor-related VEP.

the ROI channel for all paradigms except the MI paradigm in

all trials and subjects, and the difference in the amplitude was

statistically significant (p<0.05). As shown in Figure 7B, the

relative potentials in the ROI channel tended to show larger ERD

compared with that in the selected non-ROI candidate channels

after the cue during the MI paradigm. The contamination

paradigms tend vice versa.

The distributions of the chosen ROI and non-ROI candidate

channels are illustrated as color maps in Figure 8. Here, themore

the channels are concentrated, the darker the color. The ROI

channels for the patient group were distributed in channels near

the motor area (FC5, Cz, C3, C5, and CP5 for the right affected

participants and C2 and CP6 for left affected participants), while

most of the ROI channels were located on the motor cortex (C3

for six participants) and few were located in the somatosensory

cortex (CP3 and CP5) in the healthy group (Figure 8). The

candidates of the non-ROI channel for the healthy group were

distributed on each diagonal end of the scalp, and those in the

stroke group were mostly distributed in the left frontal (FT7 and

FC5) and parietal lobes (P5).

MI-BCI session

Tables 1, 2 describes the performance of the classifier in the

offline simulation results and online MI-BCI sessions for all

participants. The sensitivity was below 30% for both the healthy

and stroke groups, and the FP rate was 12.67% in the healthy

group and 8.52% in the stroke group. The non-ROI channels

were widespread but mostly located in the temporal, parietal,

and occipital lobes, as we targeted AEP andVEPs. For the patient

group, the non-ROI channels were located similar to that of the

healthy group; however, these channels were also located in the

premotor cortex. Tables 2A,B describe the performance of the

online MI-BCI session. For the healthy group, both sensitivity

and selectivity increased compared with the offline simulation.

For the patient group, the sensitivity increased; however, the

selectivity slightly decreased.

Figure 9 describes the mean and standard deviation of

parameters during the offline analysis of the MI paradigm

(day 1) and online MI-BCI session (day 2). For the stroke

group, the TPs showed a statistically significant increase (p =

0.015), and the FPs increased but were not significant (p =

0.071). The sensitivity also showed a significant increase as the

sensitivity was dominantly related to the number of TPs. For all

participants in the MI-BCI session (n = 14), the TPs showed

a significant increase (p = 0.007), while the FPs did not (p =

0.246). The selectivity showed no significant difference between

sessions for both groups (p = 0.792, p = 0.359 for the patient

group and all participants’ group each).

Table 3 describes the rejected number of FPs due to the non-

ROI channel-based method for the healthy and stroke patient
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TABLE 1 Performance of the classifier in o	ine simulation.

Subject Freq. band ROI Non-ROIs TP FP FPR FPM Selec. Sens.

(A) Offline simulation result of healthy group

S1 17–21Hz CP5 F7, Cz, P5 10 3 10 0.6 76.92 33.33

S2 20–25Hz C3 C4, P3, P6 13 8 26.67 1.6 61.90 43.33

S3 9–12Hz C3 F7, P3, P4 10 4 13.33 0.8 71.43 33.33

S4 17–22Hz CP3 Cz, T8, O1 8 3 10 0.6 72.73 26.67

S5 24–28Hz C3 T7, P6, O2 4 1 3.33 0.2 80 13.33

S6 10–14Hz C3 F7, T7, Cz 8 2 6.67 0.4 66.67 26.67

S7 18–22Hz C3 T10, P6, O2 4 0 0 0 100 13.33

S8 8–12Hz C3 F7, FC1, P5 4 2 6.67 0.4 66.67 13.33

Average – – – 7.62 2.87 9.58 0.58 72.62 25.42

(B) Offline simulation result of stroke group

P1 8–10Hz Cz FC5, CP5, P5 8 5 16.67 1 61.54 26.67

P2 8–12Hz C5 P3, P4, F7 9 4 13.33 0.8 69.23 30

P3 16–22Hz FC5 F7, FC6, CP6 8 1 3.33 0.2 88.89 26.67

P4 10–12Hz C3 FC5, P5, O2 6 3 10 0.6 66.67 20

P5 8–10Hz Cz F7, T7, P6 9 3 10 0.6 75 30

P6 19–22Hz C5 F7, F3, CP6 4 2 6.67 0.4 66.67 13.33

P7 8–12Hz CP6(L) FC4, P5, O1 4 2 6.67 0.4 66.67 13.33

P8 14–17Hz CP5 F3, FC5, Cz 10 2 6.67 0.4 83.33 33.33

P9 17–23Hz C2 (L) FC5, FC1, P5 4 1 3.33 0.2 80 13.33

Average – – – 6.88 2.55 8.52 0.51 72.94 22.96

TP, true positives; FP, false positives; FPR, false positive ratio; FPM, false positive per minute.

TABLE 2 Performance online MI-BCI (A) in the healthy group and (B) in the stroke patients’ group.

Subject *Session interval (days) TP FP FPR FPM Selec. Sens.

(A) Online result of healthy group

S1 40 10 4 13.33 1.33 71.43 33.33

S2 29 15 7 23.33 2.33 68.18 50

S3 22 10 3 10 1 76.92 33.33

S4 23 7 1 3.33 0.33 87.5 23.33

S5 18 10 0 0 0 100 33.33

Average 26.4± 8.6 10.4 3 10 1 77.61 34.67

(B) Online result of stroke group

P1 14 14 6 20 1.5 70 46.67

P2 14 9 3 10 0.75 75 30

P3 14 10 3 10 0.75 76.92 33.33

P4 20 6 2 6.67 0.5 75 20

P5 14 8 3 10 0.75 72.72 26.67

P6 7 8 3 10 0.75 72.72 26.67

P7 8 12 7 23.3 1.75 63.16 40

P8 10 15 4 13.33 1 78.95 50

P9 5 12 6 20 1.5 66.67 40

Average 11.8± 4.7 10.44 4.11 13.70 1.03 71.76 34.81

TP, true positives; FP, false positives; FPR, false positive ratio; FPM, false positive per minute.

*Session interval indicates the interval between calibration session and online MI-BCI session.
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FIGURE 9

Mean and standard deviations of parameters between day 1 and day 2. The asterisk (*) is statistically significant (p<0.05) between days. FPR, false

positive ratio.

group. Themost rejected FPs were 21, which is 75% of the FPs on

P7. The highest and lowest rejection rates were 100 and 53.33%,

respectively. The total rejection rate was 76.04% for all FPs.

Discussion

This study aimed to reduce FPs during rehabilitativeMI-BCI

that could result in wrong-directed brain plasticity. To this end,

we proposed a classifier that contains single-channel-based MI

detection and FP rejection using non-ROI channels.

As shown in the ERSP and band power of Figures 6, 7, EEG

contamination elements (AEP, VEPwith action observation, and

non–motor-related VEP) affect the mu and beta bands in the

motor area. The candidates of the non-ROI channel show larger

amplitudes than the ROI channel when EEG contamination

occurs due to visual or auditory stimulations. This means

that the contamination elements originating from the non-

ROI candidates can result in desynchronization at the ROI

channel, and it could be detected as FP in the ROI. Despite the

desynchronization at the ROI, there were significant band power

differences between the ROI and non-ROI candidates (Figure 7).

Therefore, it is feasible to find and reject contamination based on

power differences.

Since the sources of the contamination elements on the scalp

were differently distributed, it is essential to identify the sources

through individual calibration (Figure 8). The MI signals of

patients with stroke were also distributed around the motor

area, which explains why finding a participant-specific ROI

channel is an important task to improve MI-BCI performance

for clinical application.

The experimental results suggest that our proposed MI-

BCI system has a good FP rejection performance online, with

a rejection rate of over 75%. As shown in Figure 9, both TP and

FP tend to increase on day 2, compared with day 1. However, the

mean selectivity did not show a significant difference and even

increased slightly. This implies that our proposed algorithm is

robust as it rejected a certain ratio of FP despite a significant

session interval (day-to-day variation), even a month.

Our method consists of two phases of classifiers: (1) hand-

crafted detection algorithm, and (2) correlation-based detection

algorithm. The design intention was to use the phase 1 algorithm

on reducing the number of sample windows and provides a

synchronous-like state for assisting the phase 2 algorithm. To
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TABLE 3 The number of false positives before and after applying the non-ROI channel-based method of the proposed classifier, and FP rejection in

the online MI-BCI session.

Subject TP FP (pre) FP (post) Rejected Rejection rate (%)

S1 10 13 4 9 69.23

S2 15 15 7 8 53.33

S3 10 10 3 7 70

S4 7 3 1 2 66.67

S5 10 2 0 2 100

P1 14 14 6 8 57.14

P2 9 20 3 17 85

P3 10 17 3 14 82.35

P4 6 18 2 16 88.89

P5 8 16 3 13 81.25

P6 8 18 3 15 83.33

P7 12 28 7 21 75

P8 15 20 4 16 80

P9 12 23 6 17 73.91

Average 146 217 52 165 76.04

TP, true positive; FP (pre), false positive before applying non-ROI channel-based method; FP (post), false positive after applying non-ROI channel-based method.

evaluate if the purpose was fulfilled, we performed an offline

performance test of the phase 1 algorithm combined with non–

ROI-based false positive rejection using day 1 MI data (Table 4).

The results show relatively high sensitivity near 75% for both

subject groups, with selectivity below but near 50%. These

numbers indicate that the phase 1 algorithm combined with

non-ROI technique provides a 50% chance of distinguishing

true and false positives for the phase 2 algorithm with 25% of

data loss.

Several studies have applied BCI systems to patients with

stroke (Hortal et al., 2015; Bhagat et al., 2016; Mrachacz-

Kersting et al., 2017; Miladinović et al., 2020; Niazi et al.,

2022). Table 5 compares the proposed method with existing

studies. The main difference is that our system relies on a

hand-crafted feature classifier, which is discriminated approach

compared to spatial pattern-based machine-learning methods.

Our method is originated from single-channel-based MI

ERD detection, which cannot apply any spatial pattern-based

machine-learning approach, but can only rely on the time-

frequency aspect of the signal. Since our target signal has

been clearly justified and it follows with the neurophysiological

agreement throughoutmany studies (Pfurtscheller and LopesDa

Silva, 1999; Pfurtscheller et al., 2003; Kus et al., 2012; Nicolas-

Alonso and Gomez-Gil, 2012; Sun et al., 2016; Jeong et al.,

2019). We decided to use its nature to design features and

algorithms without leaving them to machine learning; since

machine-learning methods depend on the amount of training

data, they are inappropriate to induce a decision rule like the

proposed one, which consists of a large number of required

features, out of such small datasets (patient’s data) (Choi et al.,

2018; Lee et al., 2021).

An advantage of our method is the use of a small number

of channels. It uses the smallest number (four) of channels in

theMI-BCI session after a one-time calibration with 32 channels

(Table 5). This can reduce the setting time of EEG for MI-BCI,

which results in minimal fatigue for the patients and clinicians

as well as better time efficiency of rehabilitative MI-BCI therapy.

Since patients with stroke generally lose their attention and

motivation easily, fatigue due to heavy EEG settings for the

therapy would be critical for clinical application. All existing

studies relied on spatial-basedmethods, such as LDAwith spatial

features (Blankertz et al., 2008; Lew et al., 2012) and LPP-LDA

(Mrachacz-Kersting et al., 2017), Source Power Co-Modulation

(Meinel et al., 2019), SpectrallyWeighted Common Spatial Filter

(CSP) (Wei et al., 2008), Filter Bank CSP (Park and Chung,

2019), and CSP with likelihood ratio method (Niazi et al.,

2011, 2022); thus, these approaches suffer from heavy MI-BCI

performance deterioration under a small number of channels

(Arvaneh et al., 2011; Tam et al., 2011). Another advantage is

the rare occurrence of FP duringMI-BCI. For a fair comparison,

we checked the false positives and experimental paradigms to

calculate the FP rate (equation 5). The study by Hortal et al.

(2015), Bhagat et al. (2016), Mrachacz-Kersting et al. (2017),

and Miladinović et al. (2020) used the same calculation method

as our study to report the FP rate. The study by Niazi et al.

(2022) reported false positive per minute, true positive rate, and

percentage of false positives over true positive. We inversely

calculated the false positive rate using given parameters. Our
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TABLE 4 Performance of the phase 1 classifier in o	ine simulation.

(A) Offline simulation result of healthy group

Subject TP FP FPR FPM Selec. Sens.

S1 23 20 0.67 4 0.53 0.77

S2 24 32 1.67 6.4 0.43 0.8

S3 21 18 0.6 3.6 0.54 0.7

S4 21 16 0.53 3.2 0.57 0.7

S5 26 28 0.93 5.6 0.48 0.87

S6 24 27 0.9 5.4 0.47 0.8

S7 22 20 0.67 4 0.52 0.73

S8 22 24 0.8 4.8 0.48 0.73

Average 183 185 0.77 4.1 0.50 0.76

(B) Offline simulation result of stroke group

P1 22 17 0.57 3.4 0.56 0.73

P2 23 31 1.03 6.2 0.43 0.77

P3 25 31 1.03 6.2 0.45 0.83

P4 19 22 0.73 4.4 0.46 0.63

P5 24 24 0.8 4.8 0.5 0.8

P6 26 25 0.83 5 0.51 0.87

P7 21 22 0.73 4.4 0.49 0.7

P8 21 23 0.77 4.6 0.48 0.7

P9 20 30 1 6 0.4 0.67

Average 201 225 0.83 5 0.47 0.74

TP, true positives; FP, false positives; FPR, false positive ratio; FPM, false positive per minute.

system showed a 10% FP rate in the healthy group and 13.7%

in the stroke group, which is the lowest FP rate compared with

other existing studies (Table 5). It should be noted that our FP

rates were obtained under the longest session interval between

calibration and MI-BCI (Table 5). Along with the classifier

used, the paradigm design also affected the occurrence of FP.

Although a short task period is a disadvantage as patients

with stroke generally require a longer time for MI due to

chronic motor impairments, we used a shorter task period than

other existing studies as extending the task period would cause

misclassification between FP and TP. Moreover, the possibility

of FP increases as the rest period becomes longer; however, our

total rest period is the longest. Therefore, we believe that the

FP rejection performance of the proposed system outperforms

other existing studies, even though our paradigm design has

disadvantages for FP.

The positive and negative effects of FP remain controversial

(Levine et al., 2000; Barbero and Grosse-Wentrup, 2010;

Alimardani et al., 2014). The exact effect of FP has not been

determined; however, some studies claim that FP could be

useful for improving MI in naïve BCI users (Alimardani et al.,

2014). However, the goal of rehabilitative MI-BCI systems for

patients with stroke is to guide them to perform correct MI

based on neurophysiology to stimulate direct brain plasticity and

improve the neuro-circuits. The most effective way to achieve

this goal is by applying MI-BCI asynchronously; however, in

this situation, the participant and/or clinician cannot notice

whether the robotic feedback comes from TP or FP, without

any cue. Since the nature of the training experience dictates

the nature of neural plasticity (Kleim and Jones, 2008), if the

patient is repeatedly exposed to the feedback induced by FP, it

might lead to inappropriate brain plasticity. Therefore, reducing

and minimizing FP would be essential for MI-BCI systems

for neurorehabilitation.

Many patients with stroke who participated in the

experiment commented that moving the rehabilitation robot

due to TPs induced the feeling of body ownership like “I was

controlling the robot hand” (Altman and Bland, 1994; Botvinick

and Cohen, 1998; Michielsen et al., 2010; Evans and Blanke,

2013; Liang et al., 2016; Sun et al., 2016). In contrast, they

also commented that the wrong robotic feedback due to FPs

caused them to lose the agency and ownership of their hand,

and this was frustrating and unpleasant. These comments show

that rejecting FP is important for maintaining body ownership

and agency in the MI-BCI system. However, some patients

experienced anxiety and loss of interest when MI detection did
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TABLE 5 Comparison of the method, experiment, and results with other studies applied to patients with stroke.

Study Task Feature Method # obtained

Calibration

data/time spent

Session

intervals

Subjects # of

channels

used

Experiment paradigm Performances

Task

time (s)

Rest

time (s)

T:R ratio/

total

rest

time per

set (s)

Type

of

performance

evaluation

dataset

Sensitivity

(%)

FPR

(%)

Hortal et al.

(2015)

Motor Imagery,

Grasping

ERD SVM Spatial

Pattern

304 task data

912 rest data/

10min.

1 day (no

interval)

3 healthy

5 stroke

16 10 10 1:1/100 Online H 82.9

S 45

H 19.2break

S 15.0

Bhagat et al.

(2016)

Motor Execution,

Elbow

MRCP/EMG SVM Spatial

Pattern

160–320

data/53min./day

(not mentioned)

2-days

ofmeasurement

1-day

calibration

2-days of the

online trials (1

day interval)

4 stroke 60 15 5 1:0.33/100 Online Day4 62.7

Day5 67.1

Day4 27.74

Day5 27.5

Mrachacz-

Kersting et al.

(2017)

Motor Execution,

Reaching

MRCP LPP-LDA 30 data/15 mins 1 day (no

interval)

6 stroke 9 4 7 1:1.75/210 Online 1st 68.6

2nd 68.6

1st 33.6

2nd 21.2

Miladinović

et al. (2020)

Motor Imagery,

Grasping

ERD (1) Source

Power Co-

Modulation*, (2)

Spectrally

Weighted CSP**,

(3) Filter

Bank CSP***

35–40 data per

session (day),

15 sessions/

10 mins

1 day (no

interval)

5 stroke 15 5 2.1–2.8 1:0.48–0.56

/78.75–105

Offline 1) 83.0

2) 83.8

3) 85.1

1) 16.9break

2) 15.5

3) 15.5

Niazi et al.

(2022)

Motor Execution,

Ankle dor-siflexion

MRCP Spatial pattern,

likelihood

50 dataset, 6–10

min/(not mentioned)

2 day, ≥24 h 9 stroke 9 1.5 3–4 1:2–2.6/150 Online 82.68 15.25

Proposed Motor imagery,

Grasping

ERD Shape, correlation 30 dataset/day

1:30min.

Day 2: 3min.

2 days (avg. 17

days interval)

5 healthy

9 stroke

Day 1: 32

Day 2: 4

4 8 1:2/240 Online H 35

S 34.8

H 10

S 13.70

*Meinel et al. (2019), **Wei et al. (2008), ***Park and Chung (2019).
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not occur. This implies that low sensitivity could negatively

affect MI-BCI therapy for some participants and work as

an obstacle.

The proposed asynchronous MI-BCI system showed state-

of-the-art FP rejection performance, while the sensitivity of

the system was decreased compared with existing spatial-based

approaches. The classifier design based on the characteristics of

EEG contamination led our MI-BCI system to use a minimal

number of channels for detecting MI ERD and for rejecting

FP. Moreover, the classifier was insensitive to day-to-day

variations. Therefore, we believe that the proposed system fits

the conditions for practical use in clinics, fast setup time due to

the small number of channels, and reliable performance owing

to its insensitive day-to-day variation.

Our study mainly considered the EEG contamination

on motor-related VEP, non–motor-related VEP, and AEP.

However, our proposing algorithm can be applied to other EEG

contaminations due to sensory stimuli, such as sound generated

from medical devices and visual distractions in a rehabilitation

facility, which show pseudo-MI ERD-like behavior. It is because

the design of the algorithm intended to reject all pseudo-MI

ERD originated from non-ROI channels which could be easily

extended by screening the candidates of the non-ROI channel.

Despitemany benefits, the limitation of our proposed system

is its low sensitivity. The study of brain-switch on healthy

subjects address that ERS-based single-channel MI detection

could be achieved to a sensitivity of 59.2%, with FP rate below

10%, but sensitivity decreased to 28.4%, while ERD was used as

a feature (Pfurtscheller and Solis-Escalante, 2008). This result

suggests that ERD is a challenging feature compared to ERS.

However, since our goal is to detect movement intention at the

right timing to induce brain plasticity, ERS was inappropriate

due to its delayed appearance. The averaged peak value during

the MI paradigm in Figure 7A shows the low significance of

ERD between ROI and non-ROI, which illustrates that some

ERD from ROI channels might be rejected by the non–ROI-

based classifier in some cases. This might imply that our

non-ROI selection needs to be improved to consider the MI

paradigm. Moreover, the second phase in the classifier, which

was intended to detect samples with similar patterns to training

data, might be too conservative because we only used 30

training data for each subject. In the viewpoint of inducing

brain plasticity, whereas the FP-rejected asynchronous MI-BCI

system induced cortical plasticity more than a typical self-paced

asynchronous system with FP (Niazi et al., 2022), the correlation

between sensitivity and cortical plasticity showed a negative

association with significance (Jochumsen et al., 2019). The pieces

of literature could illustrate that sensitivity does not significantly

affect cortical activation compared to the FP rate. Nevertheless,

the goal of the asynchronous MI-BCI system detects users’

movement intention and gives them feedback at the proper

time. Therefore, further research is needed to determine the

appropriate level of sensitivity to encourage users, and it needs

to be improved for better sensitivity in future. In future studies,

we would like to evaluate the cortical activation difference

between intensity-focused algorithms (high sensitivity, low FP)

and specificity-focused algorithms (high FP) during MI-BCI

training to verify the more important factor. Since the study did

not evaluate the actual effect in the patients after the MI-BCI

sessions, a long-term follow-up study would also become our

next objective.

Conclusion

This study aimed to develop the asynchronous MI-BCI

system for neurorehabilitation use for people with stroke.

To apply EEG-based BCI, we prioritized two factors: (1)

small number of channels for user convenience and (2)

reducing the number of FP to prevent wrong-directed brain

plasticity and rehabilitation.We developed anMI ERD detection

and FP rejection algorithm based on the time-frequency

characteristics of MI ERD and EEG contaminations, with

rippling characteristics of EEG signals. We categorized three

EEG contaminations to assume as sources of FP: VEP during

action observation, VEP during random images, and AEP with

simple beep sound. These contaminations are easily found

in the clinical rehabilitation environment, where our future

system will be applied. We localized the surface source of each

contamination and used a combination of those channels to

reject FPs.

The designed algorithm was validated online for eight

healthy subjects and nine patients with hemiplegic stroke.

As a result, we showed the best FP rate compared to other

asynchronous MI-BCI studies (10% for healthy subjects, 13.70%

for patient subjects with stroke), while 76.04% of FP was

rejected by applying a non-ROI channel method to single-

channel detection-based algorithm. However, our system also

showed the least sensitivity. The proposed system matched

our intended objective; to reject FP conservatively. However,

the sensitivity of the proposed system should be improved by

further research.
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