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Robot location privacy
protection based on Q-learning
particle swarm optimization
algorithm in mobile
crowdsensing
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School of Information and Electronic Technology, Jiamusi University, Jiamusi, China

In the recent years, with the rapid development of science and technology,

robot location-based service (RLBS) has become the main application service

onmobile intelligent devices. When people use location services, it generates a

large amount of location data with real location information. If amalicious third

party gets this location information, it will cause the risk of location-related

privacy disclosure for users. The wide application of crowdsensing service has

brought about the leakage of personal privacy. However, the existing privacy

protection strategies cannot adapt to the crowdsensing environment. In this

paper, we propose a novel location privacy protection based on theQ-learning

particle swarmoptimization algorithm inmobile crowdsensing. By generalizing

tasks, this new algorithm makes the attacker unable to distinguish the specific

tasks completed by users, cuts o� the association between users and tasks, and

protects users’ location privacy. The strategy uses Q-learning to continuously

combine di�erent confounding tasks and train a confounding task scheme

that can output the lowest rejection rate. The Q-learning method is improved

by particle swarm optimization algorithm, which improves the optimization

ability of the method. Experimental results show that this scheme has good

performance in privacy budget error, availability, and cloud timeliness and

greatly improves the security of user location data. In terms of inhibition ratio,

the value is close to the optimal value.

KEYWORDS

crowdsensing service, Q-learning, particle swarm optimization, location privacy

protection, RLBS

Introduction

Robot location-based service (RLBS) system based on crowdsensing through the

interactive of physical space and information space can be flexible, efficiently acquire,

and transmit all kinds of scene data. In addition, through the communication network,

the collected perception data are transmitted to the server for intelligent processing, so

as to provide customized personalized, real-time location awareness service for users.
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On the one hand, due to the security vulnerabilities of

wireless sensor network, mobile communication network,

mobile terminal equipment, RFID tag and other technologies,

and equipment, perception data in the process of collection

and network transmission are facing security threats such as

illegal monitoring, interference, theft, and modification. On the

other hand, most RLBS systems can only mine and analyze

the plain-text data after decryption during the storage and

intelligent processing of perceptual data on the server side,

which gives attackers and illegal RLBS service providers the

opportunity to obtain, sell, and use the private data on the

server side. In particular, the current application environment

of robots is very wide, so it is very important to protect the

location privacy of robots. Because the situation awareness

data of RLBS service in the Internet of Things (IoT) space

not only contain privacy information such as robot identity,

bank account, current location, and activity track, but also

may involve business secrets such as enterprise marketing plan,

product information, and customer information. Compared

with the previous Internet-based RLBS system, the RLBS system

in the IoT space faces more severe privacy security problems.

If the privacy security of LBS service in the IoT space cannot

be guaranteed, the popularity of RLBS service in the field of

robot application and large-scale promotion in the commercial

field will be seriously affected and even bring catastrophic losses

and consequences.

Along with the development of the Internet, smart phones,

tablets, wearable devices, automotive sensors, and other mobile

terminals integrate more and more sensors. The public has

more and more powerful computing, sensing, storage, and

communication abilities (Gupta et al., 2020; Laghari et al., 2020;

Rui et al., 2021). Using these abilities reasonably through some

incentive measures, many environmental perception problems

can be solved cheaply and efficiently (Liu R. et al., 2019).

Crowdsensing applications inspire users to perceive data by

releasing perception tasks, then analyze, and use these data.

However, this new approach also raises new privacy concerns.

Once a user completes a sensing task, the crowdsensing

service provider can infer that the user appears in the data

collection range of the task during the task collection period

(Dong et al., 2022), so as to master the user’s behavior

pattern using the trajectory of the user completing the

task. When the user’s privacy is threatened, the user will

lose the initiative to participate in the group intelligence

awareness application.

As long as the users utilize the location service, the attacker

can deduce when and where the user went according to the real-

time location information of the user. The sensitive location

such as the home address and work place will also be exposed.

The health status of users and living habits can be inferred by

attackers. Therefore, how to protect users’ location privacy has

always been an important issue concerned by the researchers

(Wang et al., 2021).

With the increasing demand for computer storage and

computing, the traditional location privacy protection model

based on cloud computing becomes increasingly overwhelmed

in performance and security. Compared with cloud computing

(Ademaj and Bernhard, 2021), fog computing (Karthik and

Kavithamani, 2021) adopts a more distributed architecture

that is closer to the edge of the network. Fog computing

centralizes data, data processing, and applications in devices

at the edge of the network, rather than keeping them almost

all in the cloud. Fog computing can not only solve the

problem of networked devices automation. More importantly, it

requires less data transmission, which is conducive to improving

local storage and computing capacity and eliminating the

bottleneck of data storage and data transmission (Song et al.,

2022).

Traditional location privacy protection technologies include

space concealment (Anh et al., 2010; Liu et al., 2021), location

offset and blurring (Freudiger et al., 2013; Pournaras et al.,

2016), and forging false location (Gao et al., 2022), etc.

However, these technologies require forgery or modification

of data acquisition location or time, which will affect

the availability of crowdsensing task data. Existing privacy

protection technologies in crowdsensing environment mainly

rely on k-anonymization (Laohakiat and Sa-Ing, 2021) and

other methods to generalize users. However, the crowdsensing

incentive mechanism needs to reward the task completers, and

the generalization of users will affect the operation of the

incentive mechanism.

In this paper, a privacy protection strategy for generalized

task is designed to avoid the influence of privacy protection

mechanism on incentive mechanism. To ensure the availability

of data, the confusion task adopts real tasks performed

by other users. When there are not enough users to

participate in the generalization and the system cannot

meet the privacy protection requirements of anonymity,

the suppression method is adopted to give up the task.

When users submit sensing tasks continuously, different

generalization task sets will affect the possibility of the

next task being suppressed. Our main contributions are as

follows. To reduce the inhibition rate, we propose a Q-

learning particle swarm optimization algorithm in mobile

crowdsensing, which continuously tries different combinations

of confounding tasks and trains a confounding task selection

scheme that can output the lowest inhibition rate. In addition,

we use this network to make decisions about confusing task

selection. Experimental results show that the privacy protection

strategy in this paper can protect users’ location privacy with

low inhibition rate without destroying the effectiveness of

sensing task.

This paper is organized as follows. In Section 2, we give

the Related works for this paper. Section 3 introduces the

Task characteristics and system model. In Section 4, the Task

decision problem for minimizing inhibition rate is described.
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Task decision-making scheme based on Q-learning particle

swarm optimization is explained in Section 5. Experiments and

analysis are displayed in Section 6. There is a Conclusion in

Section 7.

Related works

Usually, the tasks posted by crowdsensing servers are time-

sensitive and location-sensitive. There is a crowdsensing task,

and it requires to sense the noise data of a residential area at

10 PM. The noise data uploaded by the user at 9 o ’clock in the

area or nearby area are invalid. Traditional privacy protection

technologies often distort time or generalize location to protect

users’ privacy. These methods will destroy the validity of the data

in the crowdsensing environment. Therefore, facing the time-

sensitivity and location-sensitivity of crowdsensing tasks, how to

protect users’ privacy without destroying the availability of task

data is an urgent problem to be solved.

Common privacy protection technologies in crowdsensing

environment mainly include confusion zone technology, third-

party anonymity technology, k-anonymity technology, and

suppression technology, etc.

Wang et al. (2013) allowed users to set personalized privacy

requirements and then sent sensing data by randomly expanding

a confusion zone according to the users’ privacy requirements

through the confusion algorithm. This method was vulnerable

to location inference attacks when users submitted sensing

data continuously. Moreover, due to the location sensitivity of

sensing tasks, sending sensing data in a confused region would

cause data invalidation.

Hare et al. (2018) performed random number anonymous

binding for task and its own feature data through a third-

party anonymous server. The server calculated the similarity of

the uploaded perception data and feeded back the reputation

value, so that the server could not obtain the user’s characteristic

information and sensing information at the same time. It also

limited the user’s behavior through reputation. However, it

increased the communication overhead and the risk of privacy

leakage from third-party servers.

Wu et al. (2019) introduced a privacy protection technology

based on k-anonymity, which generalized users and made

the server unable to distinguish which user in the k users

had completed the crowdsensing task, thus protecting users’

privacy. The core idea was to generate a two-dimensional

space (tile) identity card (ID) instead of their real location

when users uploaded sensing data. The tile space was expanded

horizontally and vertically until the number of users was ≥1.
However, if users continuously submitted sensing tasks, an

anonymous set of K different users A1, A2, . . . An was generated.

The attacker could quickly locate the real users by
n
∩
i=1

Ai

and the scheme generalizes the users who complete the task,

affecting the operation of the knowledge incentive mechanism

of crowdsensing.

Yang and Jiang (2021) developed a novel region query

framework that could provide robust privacy for location-

dependent queries. Then, an oblivious transfer-assist privacy-

aware protocol was designed for location-based service with

rigorous security analysis. However, this protection method

focused excessively on the location attribute and ignored the

content attribute contained in the RLBS, which disclosed the

user’s private information. Liu et al. (2022) proposed a content-

aware privacy protection method (CPP) that considered the

content attribute. Specifically, the CPP method was based on

using k-anonymity to generate dummy content attributes to

protect the private content. But it was not enough to resist

privacy intrusion. Wu et al. (2020) proposed a location privacy-

preserving system for RLBS by constructing “cover-up ranges”

to protect the query ranges associated with a location query

sequence. However, it had always been inefficient. Khan et al.

(2021) and Li et al. (2022) adopted suppression method to cut

off the correlation between user location and time to protect the

trajectory privacy of users. In this method, k tasks were selected

from n tasks completed by the user and uploaded to the server

in an out-of-order combination (Nie et al., 2021; Khan et al.,

2022). Although the trajectory privacy of users was protected,

the sensing data lost relevance with time, and the data were

meaningless. In addition, this method needed to suppress n-k

pieces of sensing data in any case, which would also cause the

decline of service quality (Shafiq et al., 2020b; Xu et al., 2021).

Although the above strategies protect users’ location privacy

in the crowdsensing environment, they failed to take into

account the availability of crowdsensing task data and the

operation of incentive mechanism. To solve the above problems,

this paper proposes a privacy protection strategy based on Q-

learning particle swarm optimization algorithm. By generalizing

tasks, this new algorithm makes the attacker unable to

distinguish the specific tasks completed by users, cuts off

the association between users and tasks, and protects users’

location privacy.

Task characteristics and system
model

This section detailed introduces the characteristics of

crowdsensing task and the proposed privacy protection system

model for these characteristics.

Task characteristics

Crowdsensing task has four characteristics: authenticity,

position sensitivity, time sensitivity, and delay tolerance.
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FIGURE 1

System framework.

1) Authenticity

The data collected by crowdsensing task must be true

and valid.

2) Location sensitivity

The location where data are generated is an important

attribute. Users can only perceive data near the location

required by crowdsensing tasks. The task with stronger location

sensitivity has a smaller collection range.

3) Time sensitivity

Data are closely related to its generation time, and different

tasks have different time sensitivities to data. Crowdsensing tasks

require users to complete within a certain perception period, and

the granularity of the perception period is set according to the

time sensitivity.

4) Delay tolerance

Most crowdsensing tasks are only sensitive to the time

of data generation, but not to the time of data use, that is,

crowdsensing tasks are allowed to delay submission. Different

tasks have different delay tolerance, and the allowable delay

submission duration is different.

System model

The overall proposed system model mainly includes

three interaction topics: mobile users, anonymous server, and

crowdsensing server as shown in Figure 1.

Mobile user: mobile user u is the finisher of the

crowdsensing task. They accept the task released by the

crowdsensing server and go to task location lwithin the specified

sensing period t1. After the sensing task data d, they send the task

Task = {u, d, l, t1} to the anonymous server.

Task announcement: These tasks are published by

the crowdsensing server. The mobile user then completes

these tasks.

Anonymous server: anonymous server is the protector of

user privacy. After receiving the task completed by mobile

users, the anonymous server will store the task data to the last

sensing period tn before the task submission time limit (i.e.,

after the end of tn period, the data collected in t1 period may

become invalid). It selects tasks completed by other k−1 users

in t1 period to form anonymous dataset S = {< d1, l1 >,<

d2, l2 >, · · · ,< dn, ln >}. The task data Task′ = {u, d, l, t1}
completed by the user u are generalized to Task′ = {u, S, t1}
and forwarded to the crowdsensing server. If there are not
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enough candidate confounding tasks for the task’s sensing period

t1, the task is suppressed and the user is notified. Through

the generalization of tasks, the anonymous server makes the

crowdsensing server unable to distinguish which task in k tasks

that user u has completed, and thus, it realizes the k-anonymous

privacy protection requirement.

Crowdsensing server: crowdsensing server is the consumer

of sensing data, and it is responsible for releasing tasks to mobile

users. Each published task includes the following data: data type

(such as temperature, air pressure, speed, etc.), data sensing

range l (the size is defined according to position sensitivity),

data sensing period t1 (the length is defined according to

time sensitivity), and submission time period tn (it is defined

according to delay tolerance). The crowdsensing server only

needs to extract {d, l, t1} from the generalized task dataset S

before time period tn+1, and reward user u according to the

incentive mechanism. It does not need to pay attention to which

specific task data are collected by which user, nor does it need to

submit data immediately after completing the task.

Task decision problem for
minimizing inhibition rate

In this paper, if there are not enough candidate confounding

tasks in the privacy protection mechanism, the target task will be

suppressed. Too high inhibition rate will reduce the enthusiasm

of users to participate in the application of crowdsensing and

also affect the efficiency of the crowdsensing server to collect

data. How to minimize the inhibition rate under the privacy

protection requirements of k-anonymity is a core problem.

Task suppression analysis

To reduce the suppression rate, it is necessary to first identify

the circumstances under which task submission should be

suppressed. This section summarizes three situations in which

suppression tasks are required.

1) The sensing period of the task is less than other k−1
users’ sensing data. At this time, there are too few

users who complete the task, and there are not enough

users to cooperate to generalize the task. Therefore, the

crowdsensing server needs to make use of appropriate

incentive mechanism to improve the user participation

rate (Yang et al., 2016; Wang et al., 2020).

2) When a user continuously completes a task, an attacker

with background knowledge can combine the user’s last

and next completed tasks for analysis and utilize the

maximum movement speed attack model (Wang et al.,

2017) to exclude a large number of confused tasks, thus

destroying k-anonymity. Therefore, not all other tasks in

the same sensing period are effective confounding tasks.

When the number of effective confounding tasks is less

than k−1, the tasks should be suppressed.

3) There are no less than k−1 effective confusion tasks.

According to the analysis of the user’s generalized task

set based on the maximum movement speed attack, it

can be known that the submission of each task and

the selection of confusion task will affect the number

of effective confusion tasks of the next task. Therefore,

if a certain task is submitted, it may lead to fewer

confused tasks for subsequent multiple tasks, thus greatly

improving the overall rejection rate, and this task should

also be suppressed.

Anonymous sets and candidate sets

It can be seen from the previous section that whether a

task needs to be suppressed is related to the effective confusion

task and the generalized task set information. We define the

set of effective confusion tasks as the candidate set and the

generalized task set as the candidate set. To facilitate calculation,

task location l is used to represent the corresponding task, and

the specific definitions are as follows.

Definition 1. (Candidate set) For any li ∈ Ci, which is

indistinguishable from the task lu,i completed by user u at time

period ti, Ci is called the candidate set of user u at time period ti.

Definition 2. (Anonymous set) Ai =
k−1
∩

m=1
{lm}∩{lu,i}, where

any lm ∈ Ci is a confusable task and lu,i is the real task, then

Ai is called an anonymous set of user u in time period ti. When

the number of task positions in candidate set Ci is less than k−1,
anonymous set Ai cannot contain k−1 confusion task positions,

so the task is suppressed. We express the relationship among

inhibition rate, candidate set, and anonymous set as follows:

Minimize :µ = P(|Ci| ≤ k− 1) (1)

Subject to : |Ai| = k (2)

The selection of anonymous set will affect the candidate set

in the next period. The problem of minimizing the inhibition

rate is transformed into selecting an anonymous set A1, so that

the possible candidate set sequence (C1,C2, · · · ,Cn) has the

least candidate set less than k−1 confusion task. This section

introduces the relationship and calculation method of candidate

set and anonymous set in detail.

A. Candidate set

Because the crowdsensing task has authenticity, time

sensitivity, and location sensitivity, the confusion task in the

candidate set cannot use fake data or historical data, but only

real data were collected by other users in the same sensing period
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ti. Considering the maximum speed attack model, it needs to

make the task of candidate set and the completed task of goal

user u0 indistinguishable. Not all tasks performed by ti have a

confounding effect (Mutalemwa and Shin, 2020; Jin et al., 2021).

Therefore, the calculation of valid candidate set Ci needs to

consider the anonymous set Ai−1 of the previous period and the
task position lu,i+1 of the task completed by user u0 in the next

period ti+1.
tn is the submission time limit of the task completed by user

u0 in time period t1. When n = 1, it indicates that the user

has completed only one task before the task submission time

limit, and the trajectory privacy of continuous task submission

does not need to be considered. Therefore, except for the tasks

completed by target users themselves, all tasks completed in

time period t1 can be added to the candidate set as confusion

tasks. Formula (3) calculates the candidate set in the case of n

= 1, where L1 represents the task location set of all users in

time period t1. The candidate set cannot include tasks of target

user u0.

C1 = L1/{lu0,1} (3)

When n ≥ 2, it needs to protect the privacy of the user’s

trajectory. Candidate set Ci is calculated according to different

formulas of i. When i = 1, it indicates that the user has just

started to submit tasks. It needs to ensure that all tasks in the

candidate set can reach the real task location completed by

user u0 in the user period t2. The candidate set in this case is

calculated by formula (4), where function L(l, r, t) represents the

task set of all users in time period t in a circular region with

location l as the center and r as the radius. In formula (4), the

center of the circle is the location of the real task completed by

the user u0 in time period t2, the radius is themaximum distance

moved by user from t1 to t2, and the time period of confusion

task is t1.

C1 = L(lu0,2, vm × (t2 − t1), t1)/{Iu0,1} (4)

When i = 2, 3, · · · , n − 1, a reasonable candidate set Ci
must ensure that all tasks in anonymous set Ai−1 in time period

ti−1 move with the maximum speed Vm starting from time

period ti−1 and it can reach any confusion task position in Ci

within time period ti. It should also ensure that starting from

the confusion task position in Ci, it can reach the position

lu,i+1 of the real task completed by the user in that period

within ti+1. Formula (5) computes the candidate set in this case,

where luj,i−1 ∈ Ai−1.

Ci =
k−1
∩
j=0

L(luj,i−1, vm × (ti − ti−1), ti) ∩ L(lu0,i+1, vm

× (ti+1 − ti), ti)/{lu0,i} (5)

When i = n, no tasks in time ti+1 need to be reachable.

Therefore, we only need to consider the reachability of the

confusion task in anonymous set Ai−1 and candidate set

Cn. Formula (6) computes the candidate set for this case,

where luj,n−1 ∈ An−1.

Cn =
k−1
∩
j=0

L(luj,n−1, vm × (tn − tn−1), tn)/{lu0,n} (6)

B. Anonymous set

The anonymous set Ai of user u0 in time period ti is

composed of k−1 confusion task locations selected from Ci

and the user’s own task locations, as shown in formula (7).

where lm ∈ Ci.

Ai =
k−1
∩

m=1
{lm} ∩ {lu,i} (7)

Each candidate set Ci has C
k−1
|Ci| anonymous set. If a task has

less than k−1 confusion tasks in candidate set Ci, the task needs

to be suppressed.

Complexity analysis

According to the calculation formula of candidate set, we can

know that the candidate set of the task submitted in the next

period is related to the anonymous set of the current period.

The anonymous set is selected from the candidate set, and they

influence each other to jointly determine the overall suppression

rate of the continuous task submitted by the users. Whether

the task is suppressed or how to select the anonymous set

should not only consider whether the current task is suppressed,

but also the subsequent effects. However, each anonymous set

is selected from the candidate set, there are Ck−1|Ci| selection

methods, and the overall inhibition rate µ of each selection

method may be different. Finally, there may be
n∑

i=1
(Ck−1|Ci| + 1)

selection methods. To find the anonymous set with the lowest

overall suppression rate, the time complexity of traversing all

possibilities is O(
n∑

i=1
|Li|!). If n is large, or if |Li| is larger, the

choice is very large. Therefore, brute force calculation using the

exhaustive method is not suitable for solving the problem.

Task decision-making scheme based
on Q-learning particle swarm
optimization

In this paper, a Q-learning particle swarm optimization

method (QLPSO) is adopted to solve the task decision problem

with minimal inhibition rate (Qi et al., 2021). QLPSO is a

machine learning method that combines deep learning with

particle swarm optimization (PSO) (Shafiq et al., 2020a). The
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FIGURE 2

Framework of Q-learning.

idea is that any state is accessed repeatedly by an agent. It tries

different actions to update a neural network. Finally, the neural

network can fit an action-return function and output an action

that approximates the optimal return according to the agent’s

current state.

Particle swarm optimization algorithm (PSO) (Yin and Li,

2020) is a heuristic algorithm to simulate the foraging behavior

of birds, and it seeks the optimal solution by updating the

particle velocity and position. Suppose that the particle position

and velocity at time t are xi,t and vi,t , respectively, then the

position xi,t+1 and velocity vi,t+1 of particle i at time t+1 are

as follows:

vi,t+1 = ωvi,t + r1rand(LB,i,t − xi,t)

+ r2rand(GB,t − xi,t) (8)

xi,t+1 = xi,t + vi,t+1 (9)

where rand is a random number between 0 and 1. LB,i,t is

the historical optimal position of particle i at time t. GB,t is

the global optimal position of all particles at time t. ω, r1 and

r2 are inertia weight, self-learning factor, and global learning

factor, respectively.

ω, r1, and r2 are important parameters that affect the

optimization performance of the algorithm. In previous studies,

Hou et al. (2016) proposed APSO with nonlinear inertia weight

reduction. APSO mainly balances the relationship between

global optimization and local optimization through adaptive

adjustment ω and improves the overall optimization ability

of the algorithm. Liu Y. X. et al. (2019) further proposed

a Q-learning particle swarm optimization (QLPSO), which

realized adaptive control through Q-learning to ω, r1 and r2,

thus achieving better control effect through adaptive global

optimization of the adjustment algorithm. Therefore, QLPSO is

chosen to optimize the algorithm in this paper.

Q-learning mainly includes four important parts: state,

action, Q table, and reward. Its framework is shown in Figure 2.

In here, the Q table is responsible for instructing the agent to

select the action with the maximum Q value in a certain state,

and it needs to be updated during training.

QL(st+1, at+1) = (1− α)QL(st , at)+ α[R(st , at)

+ γmax
a

(QL(st+1, a))] (10)

where α is the learning rate. γ is the discount factor. R(st , at)

is the immediate reward of performing action at in state st .

QL(st , at) is the cumulative reward at time t. QL(st+1, at) is the
reward of executing action a at time t + 1. QL(st+1, at+1) is the
cumulative reward at time t + 1. QLPSO designs corresponding

strategies from four aspects of state, action, Q table, and reward

based on the characteristics of Q-learning and the framework of

PSO and finally realizes the adaptive PSO parameter control.

State and action

According to the characteristics of PSO, the particle state

defined in this paper is mainly composed of two parts: decision

space state and target space state.

1) Decision space state: according to the distance between the

current particle and the global optimal particle position, it

can be divided into four states: nearest, near, far, and furthest,

marked as RS,i,t = 1, 2, 3, 4 as shown in Table 1.
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TABLE 1 Decision space state.

Distance Decision space state RS,i,t

0 ≤ di ≤ 0.251D Nearest 1

0.25 ≤ di ≤ 0.51D Near 2

0.5 ≤ di ≤ 0.751D Far 3

0.75 ≤ di Furthest 4

TABLE 2 Target space state.

Fitness Target space state RF,i,t

0 ≤ fi ≤ 0.251F Minimum 1

0.25 ≤ fi ≤ 0.51F Small 2

0.5 ≤ fi ≤ 0.751F Large 3

0.75 ≤ fi Maximum 4

In Table 1, di is the distance between the position of

particle i and the globally optimal position of particle. 1D is

the maximum distance between all particle positions and the

globally optimal particle positions.

2) Target space state: according to the relative performance

between the fitness of the current particle and the globally

optimal particle and the fitness of the globally worst particle,

the four states (minimum, small, large, and maximum) are

marked as RF,i,t = 1, 2, 3, 4 shown in Table 2.

In Table 2, fi is the difference between the fitness of particle

i and that of the globally optimal particle. 1F is the difference

between the fitness of the global worst particle and the fitness of

the global best particle.

On the other hand, according to the current particle state

and Q-table, the particle will perform two behaviors: global

search and local search. Relevant research (Liu Y. X. et al., 2019)

shows that when there is a reasonable time allocation between

local search and global search, the intelligent algorithm has good

robustness. Therefore, the proposed algorithm performs global

search behavior in the first 90% of iterations and local search

behavior in the last 10% of iterations. Furthermore, the global

search behavior is further subdivided into four behaviors: large-

range search, small-range search, slow convergence, and fast

convergence, marked as AF,i,t = 1, 2, 3, 4. The above behaviors

correspond to a set of ω, r1, and r2 parameters (their values are

set according to the literature Liu Y. X. et al., 2019), as shown in

Table 3.

Q table and reward method

The function of Q table is to determine the next action

of the particle according to its current state, and the particle

TABLE 3 Relationship between particle action and parameter value.

Particle action AF,i,t ω r1 r2

Global search Large-range search 1 1.0 2.5 0.5

Small-range search 2 0.8 2.0 1.0

Slow convergence 3 0.5 1.0 2.0

Fast convergence 4 0.4 0.5 2.5

Local search 0 0 3.0

state defined in this paper includes decision space state

and decision space state. Therefore, the proposed algorithm

in this paper designs a 4 × 4 × 4 three-dimensional

Q table, and the elements in the table are labeled as

QT(RS,i,t ,RF,i,t ,AS,i,t). In this paper, the behavior of particles

is selected according to the state of particles, and the process

of obtaining new particles is as follows. First, the values

of RS,i,t and RF,i,t are obtained according to the state of

the current moment t of particle i. Second, it compares

QT(RS,i,t ,RF,i,t , 1), QT(RS,i,t ,RF,i,t , 2), QT(RS,i,t ,RF,i,t , 3), and

QT(RS,i,t ,RF,i,t , 4). Assume that the maximum value of the four

is QT(RS,i,t ,RF,i,t , ε)(ε = 1, 2, 3, 4), then AF,i,t = ε. It selects

the corresponding particle behavior according to Table 3, that

is, the parameter values required by the particle update formula

[Formulas (8) and (9)]. Finally, the particle i at time t of the

next iteration is obtained according to the current particle

updating formula.

Q table, on the other hand, needs to reward and punish

based on the behavior of particles. Therefore, this paper defines

the reward method as follows: when the particle performs a

certain behavior, if the particle’s performance becomes better,

the corresponding Q value should be rewarded; otherwise, it

should be punished. The corresponding operation is as follows:

if according to AF,i,t = ε, the fitness of the new particle

obtained by the corresponding particle updating formula

becomes better, then:

QT(RS,i,t ,RF,i,t ,AS,i,t) = QT(RS,i,t ,RF,i,t ,AS,i,t)+ 5 (11)

Otherwise,

QT(RS,i,t ,RF,i,t ,AS,i,t) = QT(RS,i,t ,RF,i,t ,AS,i,t)− 5 (12)

Since (st , at , rt , st+1) in this paper is a time-dependent

sequence, the sample has continuity. If the Q value is

updated after obtaining the sample, it will be affected by

the sample distribution and the effect will not be good.

Therefore, experience replay technology is adopted in

QLPSO training to store the data obtained by agents.

Then, random sampling is used to break the association

between datasets. The QLPSO-based inhibition rate

optimization algorithm using experience replay is described as

Algorithm 1.
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Input: L1, L2, · · · , Ln
Output: A1

Begin

Step 1. Set the parameters of the QLPSO

Step 2. Q =
n∑

i=0
θi(si, ai)

Step 3. Initialize the candidate set C1 of user u

in time period t1 as state s1

Step 4. for episode ← 1 to M

Step 5. Select action ai according to the policy

Step 6. Perform the action ai and get a reward r

Step 7. Save (st , at , rt , st+1) to experience playback

pool D

Step 8. if len(D) > OBSERVER then

Step 9. Extract part of the data from D as the

training sample

Step 10. Use training samples to obtain the target

Q value

Step 11. Update the Q network with the target and

current Q value

end if

end for

Step 12. return max
a

Q∗(s, a; θ)
End

Algorithm 1. QLPSO-based inhibition rate optimization with

experience replay.

TABLE 4 Experimental environment.

Parameter Values

Processor Intel Core i7 4790 @3.6 GHz

Memory 32 GB

Video card 1060 Ti

RAM 16 GB

Solid-state drive (SSD) 128 GB

System Ubuntu 6.04

Programming language Python

Experiments and analysis

The experiments are conducted on the public GeoLife GPS

Trajectories. The GPS trajectory dataset is collected by the

GeoLife project of Microsoft Research Asia, which records the

trajectories of 182 users for 3 years (Hu et al., 2019). The

following will introduce the experimental environment and

parameter settings and then analyze the experimental results.

Table 4 shows the experimental environment. We are using

an Intel Core i7 4790 processor, 4-core 8-thread, 3.6GHz, 1060Ti

video card, 32GB memory, 16GB RAM, and Ubuntu 6.04 with

a 128GB solid-state drive (SSD). It is programmed in Python

with TensorFlow and Numpy libraries. First, the datasets are

processed, 100 users’ data in a specific range are selected, and

some crowdsensing tasks are randomly assigned. Crowdsensing

tasks are evenly distributed in the square area. It is assumed

that the user moves to the vicinity of the task during the task

period and completes the task with a certain probability. To

improve the reference value of experimental data, we repeat each

experiment for five times and take the average value to ensure

the generality of experimental results. To reflect the superiority

of the scheme in this paper, when the control experiment is

needed, we adopt the most common method of generalized user

privacy protection scheme as the baseline and compare it with

the QLPSO algorithm in this paper.

Basic parameter settings are shown in Table 5. The total

number of training fragments M and learning parameter α is

selected according to the experimental results in Subsection

Parameter verification experiment in QLPSO. As long as the

value of inhibition rate is given priority, the reward coefficient

is set as 10−3 in this paper. Parameters such as the number of

users in the anonymous area, the number of tasks in the area,

and the user completion rate in each period are set according

to the common scenarios of crowdsensing application. The size

of anonymous set is an average value set according to the user’s

sensitivity to privacy. The action selection probability ε is set

as 1/
√
t according to the research in Bloembergen et al. (2015),

which can ensure that the proportion of utilization will be higher

and higher with the increase of training times.

Parameter verification experiment in
QLPSO

The QLPSO algorithm needs to create a neural network to

reduce the inhibition rate and use this network to replace the

Q value table in traditional Q-leaning. We use the TensorFlow

library to create a three-layer neural network (Shafiq et al.,

2020b; Laghari et al., 2021; Sp et al., 2021). The parameter

debugging experiment of QLPSO network is introduced below.

Table 6 shows the results of task inhibition rates under

different learning rates. It can be seen that when the learning

rate is >0.04, it cannot stably converge to a lower inhibition

rate, and there are many outliers. The reason is that when the

learning rate is too high, the algorithm relies too much on past

experience. The probability of exploring unselected anonymous

sets is greatly reduced and local convergence is easy to enter.

Therefore, according to the experimental results, to reduce the

training times and improve the calculation speed without falling

into local convergence of the inhibition rate, 0.04 is selected as

the learning rate in this paper.

Table 7 shows the influence of training times on the average

reward value when the learning rate is 0.04, where OPT values

are the inhibition rate under the optimal decision obtained

through brute force exhaustive exertion. In practice, the time
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TABLE 5 Experimental parameters.

Parameter Value

Total number of training fragments M 3,000

Number of tasks submitted by users before 10

the submission deadline n

Action selection probability ε 1/
√
t

Learning parameter α 0.02

Reward coefficient δ 10−3

Discount factor γ 0.8

Number of users in an anonymous zone 130

User task completion rate per period of time 0.9

Number of anonymous area tasks 255

Anonymous set size k 6

Task area size 4,000m× 4,000 m

TABLE 6 The e�ect of learning rate on average inhibition rate (AIR) (%).

Learning rate 0.02 0.03 0.04 0.05 0.06

AIR 10.2 10.2 10.2 15.3 15.6

TABLE 7 The e�ect of training number on average reward value (%).

Episode M 1,000 2,000 3,000 4,000

OPT 92.5 92.5 92.5 92.5

QLPSO 70.2 83.6 86.7 91.6

complexity of exhaustive method is too high and the calculation

speed is too slow. According to the formula of reward value, the

higher average return value denotes the lower final inhibition

rate and the better service quality. The experimental results

show that the reward value of sample data tends to converge

after 3,000 training times and is very close to the optimal

solution. Therefore, when the learning rate is 0.04, 3,000 training

times can calculate the anonymous set close to the optimal

inhibition rate.

The e�ect of user number on inhibition
rate

The number of users is the basis for the operation of

crowdsensing applications and also an important factor for the

success of the privacy protection mechanism of crowdsensing

collaboration. In this section, the relationship between the

number of users and the inhibition rate is tested under the

privacy protection requirement of k = 6. The experiment

compares the proposed algorithm (QLPSO), the traditional

generalized user selection algorithm (baseline), and the optimal

inhibition rate (OPT). We also select two methods to make a

comparison containing MKQ (Zhang et al., 2020) and DAAL

(Zeng et al., 2021). Figure 3 describes the influence of the user

number on the inhibition rate. It can be seen that QLPSO’s

inhibition rate is lowest, and they are very high when the number

of users is very small, because when the number of users is small,

it is difficult for any scheme to find enough users to participate in

the generalization, and the task will be greatly suppressed. So it

needs incentive mechanism coordination. Both schemes reduce

the inhibition rate when the number of users increases, while the

QLPSO algorithm reduces the inhibition rate significantly faster

than the baseline and finally approaches the optimal value.

E�ect of delay tolerance on inhibition
rate of task

The tolerance delay affects the optimization space of the

QLPSO algorithm for the inhibition rate before the task

submission. We test the relationship between tolerance delay

and inhibition rate by selecting 100 users to complete the tasks in

a specific range. The experimental results are shown in Figure 4,

where the x-coordinate tolerance delay n represents the number

of tasks completed by the users before task failure. It can be

seen that when the tolerance delay is 0 or 1, the real-time

requirements of tasks are very high. Baseline and QLPSO are

both around 42. MKQ and DAAL are both around 45.The

reason is that there is no delay tolerance. QLPSO algorithm

has no room to optimize the inhibition rate. The inhibition

rate of baseline fluctuates around 40–45 when delay tolerance

is increased. The inhibition rate of both MKQ and DAAL is

declined a lot. Because the inhibition rate of traditional selection

method has nothing to do with the tolerance delay of task, the

characteristics of the crowdsensing task are not properly utilized.

However, the inhibition rate of QLPSO algorithm decreases

rapidly with the increase of delay tolerance. When the delay

tolerance reaches more than 7, the inhibition rate tends to be

stable and is very close to the optimal value. Therefore, the

QLPSO algorithm can take advantage of the characteristics of

crowdsensing environment and perform under the condition of

certain delay tolerance of sensing task.

Conclusions

This paper proposes a robot privacy protection strategy

based on crowdsensing environment. In this paper, we propose

a novel location privacy protection based on Q-learning particle

swarm optimization algorithm in mobile crowdsensing. Its core

ideas are as follows: (1) to ensure the availability of crowdsensing

data, (2) to suppress tasks that will destroy user privacy, and (3)

to reduce the inhibition rate of tasks. Experimental results show

that the proposed strategy performs well in the crowdsensing
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FIGURE 3

E�ect of user number on inhibition rate.

FIGURE 4

E�ect of tolerance delay on inhibition rate.
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applications with sufficient delay tolerance and more users’

participation. In the future, we will study on the caching

mechanism, to reduce the number of interactions between users

and the server, to ensure the privacy security of the robot

location, and to improve the communication efficiency and

apply them in the practical engineering applications.
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