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During the development and assessment of an exoskeleton, many di�erent

analyzes need to be performed. The most frequently used evaluate the

changes in muscle activations, metabolic consumption, kinematics, and

kinetics. Since human-exoskeleton interactions are based on the exchange

of forces and torques, the latter of these, kinetic analyzes, are essential and

provide indispensable evaluation indices. Kinetic analyzes, however, require

access to, and use of, complex experimental apparatus, involving many

instruments and implicating lengthy data analysis processes. The proposed

methodology in this paper, which is based on data collected via EMG and

motion capture systems, considerably reduces this burden by calculating

kinetic parameters, such as torque and power, without needing ground

reaction force measurements. This considerably reduces the number of

instruments used, allows the calculation of kinetic parameters even when the

use of force sensors is problematic, does not need any dedicated software, and

will be shown to have high statistical validity. The method, in fact, combines

data found in the literature with those collected in the laboratory, allowing

the analysis to be carried out over a much greater number of cycles than

would normally be collected with force plates, thus enabling easy access

to statistical analysis. This new approach evaluates the kinetic e�ects of the

exoskeleton with respect to changes induced in the user’s kinematics and

muscular activation patterns and provides indices that quantify the assistance

in terms of torque (AMI) and power (API). Following the User-Center Design

approach, which requires driving the development process as feedback from

the assessment process, this aspect is critical. Therefore, by enabling easy

access to the assessment process, the development of exoskeletons could be

positively a�ected.
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1. Introduction

The past 30 years have seen an exponential growth in

interest in exoskeletons and wearable robotics, Bao et al.

(2019). Application domains include but are not limited to

medical and rehabilitation applications (Chen et al., 2013;

Huo et al., 2016), military equipment (Jia-Yong et al., 2020),

and industrial operations (Crea et al., 2021). In rehabilitation,

exoskeletons can be used to treat different pathologies (Chang

and Kim, 2013; Frisoli, 2018; Molteni et al., 2018) and

therefore they may be active, passive, resistive, or interactive

devices depending on the situation. In military applications

(Murugan, 2021), the exoskeletons are often intended to

reinforce the power/endurance of soldiers to allow them to

carry heavy loads for extended periods, reducing their fatigue.

In occupational applications, the primary motivation behind

industrial exoskeletons is to prevent musculoskeletal disorders

and reduce the risk of injury (Peters and Wischniewski, 2019).

Referring to exoskeletons, the physical human-robot

interaction takes the significance of force transfer to empower

and overcome human physical and motoric limits (Alami et al.,

2006; Pons, 2010). The key characteristic of exoskeletons is

the close physical interaction between the user and the robotic

device during typical tasks, which often are repetitive and

cyclical. Therefore, the device assessment and the evaluation of

the efficiency and efficacy of the exchange of forces are essential.

A positive interaction between the human and the robot could

lead to important physical improvements (Nolan et al., 2018),

while a poor exchange could lead to harmful consequences

(e.g., skin irritations, soft tissue injury, falls, etc.) (Rathore et al.,

2016; He et al., 2017). Exoskeletons used for gait assistance

(Lovrenovic and Doumit, 2016; Young and Ferris, 2017; Cao

et al., 2021) are a typical example of cyclical interaction due to

the need to support the walk at every step.

To evaluate the human-robot interactions, exoskeleton

performances and effects are commonly compared against a

baseline condition, which is usually when the exoskeleton is

not worn (Barbareschi et al., 2015). Typically assessments aim

to evaluate changes in motion patterns, in muscle activation

patterns, and in the characteristic physical forces associated with

the specific task. In particular, the assistance is typically assessed

by considering one or more of the following: muscle activation,

kinetics, motion, and metabolic consumption analysis (Pinto-

Fernandez et al., 2020; Pesenti et al., 2021). Focusing on kinetic

analysis, the aim is to investigate the internal and external

exchange of forces, and as a consequence, to investigate the

articular torques and powers. The gold standard method for

kinetic analysis relies on force plates and motion systems, and,

by applying inverse dynamics, investigates the joint torque and

power (Silva and Ambrósio, 2002). This analysis is essential,

however, it is not always feasible. If the task does not involve

any dynamic activity such as walking, the study can be easily

performed in situ. Otherwise, when the task is dynamic, the

data collection could be extremely complex or impossible. To

accurately record data, force plates need to be pressed by the

entire footprint, but this can alter the subject’s natural walk

(Shahabpoor and Pavic, 2017), create measurement errors, and

lead to invalid results. The subjects could be tempted to increase

or decrease their stride length thus, to affect the dynamic pattern

and reducing the set of reliable data. Moreover, when using force

plates only a single step can be recorded for each trial unless

a substantial number of force plates or a treadmill with force

sensors embedded are available.

Different approaches to kinetic analysis have been pursued

by Lloyd and Besier (2003), Lenaerts et al. (2008), and Heintz

and Gutierrez-Farewik (2007), using techniques based on EMG

to force processing or static optimization. Despite their validity

and accuracy, all these models involve the use of force sensors

(Hashemi et al., 2015; Pizzolato et al., 2015). The method

proposed in this paper, on the opposite, does not use force

sensors even for the calibration phase and yet manages to

have a low computational impact. Furthermore, compared to

other methods that assess the performance of exoskeletons

through the use of dummies (Nabeshima et al., 2018) for

standardization of the evaluation process, our proposed method

places the human operator at the core of the human-robot

interaction. In fact, we propose a holistic approach using indices

that put together kinetic and muscular factors, providing a

comprehensive evaluation of the exoskeleton performances and

its’ impact on the final user.

The key features of this work are improvements in, and

simplification of, the accessibility to such analysis and related

outcomes, thereby providing a fast evaluation technique that can

be used both to guide the design development process and fine-

tune the control of the exoskeleton. This approach, based on

a simplified musculoskeletal model of the joint under analysis,

calculates the dynamic parameters using only measurements

of the muscular activations (Hof and Van den Berg, 1981;

Bogey et al., 2005) and joint rotations (Bogey et al., 2010;

Dorschky et al., 2019). Our proposed method, when combined

with an iterative process of exoskeleton development (such as

the user-centered design approach suggests), could optimize the

outcome resulting from the iterative approach phases, speeding

up the device performance validation (ISO-9241, 2010) while

relying on an approach based on statistical considerations

due to the large number of cycles recorded. It generates a

rapid calculation of the joint moments/torques and powers

with specific comprehensive indices called Assistive Moment

Index (AMI) and Assistive Power Index (API), providing direct

information on the interaction with the exoskeleton and the

consequent effects on the muscular and the joint motion

patterns.

To assess and show the potential of this new method,

the performance of a quasi-passive exoskeleton for walking

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2022.982950
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Fanti et al. 10.3389/fnbot.2022.982950

assistance is evaluated, and a dedicated control strategy has

been developed. A full performance assessment was conducted

using seven healthy subjects. The hypotheses of themethodology

validation are: i) the reproduction of joint kinetics signals

from muscle activities optimization by obtaining at least 90%

correlation coefficients with the signals used for the calibration;

ii) verifying that the signals gathered from the literature have at

least 85% correlation with the signals derived in the laboratory

by inverse dynamics. The hypotheses for the assessment phase

are: iii) the creation of evidence through specific indices for

assessing exoskeletons; vi) verifying effective reduction of torque

and/or power at a specific joint, in conjunction with muscular

activity reduction during the walking task; v) evaluating the

increment of torque and/or power or muscular activity at a

specific joint, as a side effect of the user’s interaction with the

exoskeleton.

2. Methods

2.1. Human-exoskeleton interaction and
assistance evaluation

When developing exoskeletons and wearable robotics the

interaction between the user and the device is of the highest

priority. These physical interactions can range from very simple,

such as adding a mass to a walking person (Bastien et al., 2005;

Jin et al., 2017) or loading elastic straps while wearing passive

devices (Van Dijk and Van Der Kooij, 2014), to more complex

actions that occur while wearing actively and quasi-passively

actuated devices in dynamic tasks (Banala et al., 2007; Van Dijk

et al., 2017; Di Natali et al., 2019). In all cases, there is a change in

the kinematic and/or muscular patterns (Hidler andWall, 2005).

Considering active devices, the forces are generated by motors

and transferred to the user as torques. It is therefore expected

that less muscle activation occurs when the joint torques of

the user and the exoskeleton are in agreement, and greater

muscle activation when they work against each other. In passive

and quasi-passive devices, users have to transfer the energy

into the actuator before they could receive it back as a torque.

Operationally the two phases are called energy storing and

releasing (Di Natali et al., 2020). With elastic and spring-based

devices, greater muscular activation occurs during the storage

and there is less activation during the release of the passive

elements. In all active, passive, and quasi-passive exoskeletons,

the muscular activation profile when the exoskeleton is worn

(Exo condition) can be very different from the corresponding

baseline condition without the exoskeleton (namely Noe).

Making movements under the influence of external forces may

cause changes in muscle activation, and consequently, may lead

to different motion and muscular patterns. Suppose the same

movement is performed with and without the exoskeleton. In

that case, it is postulated that if the muscular activation, and

consequently the muscle force, in the Noe condition is greater

than the Exo, then the interaction between the user and the

exoskeleton is providing assistance to the muscle. Conversely,

if the activation recorded in the muscle in the Exo condition is

greater than in the Noe, the muscle is making more effort. In

the first case, with muscle activation in the Noe>Exo, it can be

hypothesized that the reduction in activity is due to the external

energy that promotes movement and thus brings assistance to

the user. When the activation in the Noe<Exo, the situation is

not quite so straightforward. In fact, this cannot definitely be

traced to resistance to joint movement alone, but could involve

several other factors (stiffening due to body weight support,

balancing forces, internal dissipation elements, compensative

effects, intermuscular synergies, etc.) (Zelik and Kuo, 2010) and

therefore analyzes of these results are more complex. For these

reasons, it is possible to highlight the task phases during which

the muscle receives assistance and quantify it, but the opposite is

not possible.

Moreover, the assistance can no longer be investigated by

only analyzing muscular aspects but requires analyzes of joint

kinetics. Exoskeletons, in fact, work by sharing torques with the

users, and, consequently, this could lead to changes in their joint

moments and power. Typical evaluations compare joint torque

and power in the Exo configuration, with the same data recorded

in the Noe condition. In this case, the assistance depends on the

task objective. If the purpose is to improve kinetic performance,

it is desirable to obtain higher torque and power values in the

Exo condition; if the aim is to reduce or re-modulate the user’s

kinetic contribution, lower activation levels for both the torque

and the power are desirable while wearing the device.

In all cases, it is critical to perform an analysis with high

statistical validity by evaluating the changes induced by the

exoskeleton during multiple experimental cycles.

2.2. Index-based assistive methodology

The proposed methodology allows the calculation of kinetic

parameters starting from muscular activations. As with torque,

power, and kinematics in general, muscle activity is a crucial data

point to be monitored during any assessment of an exoskeleton

because it is directly influenced by the physical interaction

between the device and the subject under analysis. Monitoring

muscle signals during the design phase of the control strategy

allows for a direct understanding of the interactions with the

robot, and consequently enhances fine-tuning of the control

strategy. Moreover, and very importantly, this method benefits

from the ability to relatively easily collect a large sample of

data (seven subjects for 10 min walking collected more than

10,000 steps with the exoskeleton and the same amount without

it) while simultaneously, reducing the complexities and costs

of the experimental apparatus, and time needed to perform

the related data analysis. Finally, this tool allows simultaneous
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kinetics and muscular assistance analysis by providing specific

indices, namely AMI and API, that quantify the torque and

power exchange occurring during the human-robot interaction.

2.3. Overview

As introduced in Section 2.1, by analyzing muscle activity

it is possible to identify the phases of a task during which the

muscle is benefiting from the interaction with the exoskeleton

and to quantify the benefit in terms of muscle activation and

thus force delivered. For joint performances, on the other hand,

it is possible to obtain information about the articular kinetics

in terms of overall torque and power. Combining these features

it is possible to have a mixed assistance index that considers

both the joint and the muscle contributions. To perform the

analysis in a proper way it has to be noted that: (i) the EMG

and kinematic data have to be recorded in both the Exo and the

Noe configurations; (ii) to analyze the overall interactions with

the exoskeleton the activity of both agonistic and antagonistic

muscles acting on the target joint must be recorded.

Figure 1 shows the fundamental steps in the analysis. Data

from both the subjects under investigation and from the

literature are used. Joint rotations and muscle activations are

extracted from the former, while parametric data can be derived

from the latter. After their acquisition, data from the laboratory

must be pre-processed, segmented, and, if they are EMGs,

normalized to be comparable with each other. Combining them

with data from the literature it is possible to perform the EMG to

Force Processing (EFP) and thus estimate the force delivered by

each muscle while accomplishing the task. The obtained force

signals are multiplied by the moment arms of their respective

muscle tendons to calculate torques, and these are multiplied

by the joint/limb rotation velocities (ω) to calculate the power

at each joint. The torque and power signals are compared with

those in the literature to find a good correlation coefficient.

If the comparison is unsatisfactory, an optimization process

of amplifying the force signals and re-calculating the kinetic

parameters is computed. The force signals are also used to

calculate each muscle’s Assistive Index (AsIx), which are binary

vectors representing the instants when muscle assistance is

provided. Combining torque and AsIx signals makes it possible

to obtain the Assistive Moment Indices (AMI), and therefore get

an estimate of the assistance received in terms of joint moments.

At the same time, by combining the power and the AsIx, it is

possible to calculate the Assistive Power Indices (API) and assess

the overall assistance in terms of joint power.

2.4. Pre-processing

Before proceeding with EFP it is necessary to normalize

and segment the EMG data (Burden et al., 2003; Sousa and

Tavares, 2012). Normalization is usually done by dividing the

signal by the maximum recorded voluntary contraction (MVC).

The signals between different experimental trials must be

comparable, and the proportions between themuscle’s activation

level and the force delivered must be maintained. To derive

the EFP, the muscular signal envelopes are multiplied by their

values of maximum isometric contraction (Fmax), which are

available in the literature (Arnold et al., 2010) or may be

calculated as reported in (9). The resulting signals express

forces proportional to the muscle activations and are thus

proportional to the force delivered by the users themselves. If

no MVC has been recorded, it is also possible to normalize

by dividing the signal by the maximum muscle activation

expressed for the task (i.e., the peak activation level obtained

during the task under investigation). In this case, however, the

electromyographic signal is proportional to the muscle’s overall

force deliverable, not the force used to accomplish the specific

task. Segmentation is a classification process to divide signals

into portions with common characteristics that allow them to

be considered stationary (Azami et al., 2011). Since walking is

a repetitive event, the gait cycle is considered a portion of the

signal equal in duration to the time between two consecutive

heel strikes, called the stride (Winter, 2009; Whittle, 2014). Each

stride comprises two sub-phases called stance (when the foot is

in contact with the ground) and swing (when it is not). Between

stance and swing, the ankle is responsible for the push-off (i.e.,

propelling the force to lift the leg). To carry on the analysis, both

muscular and kinematic signals are segmented in gait cycles,

Figure 2. Further information is shown in Section 3.2.

To calculate the joint power, it is necessary to multiply the

joint torque by the corresponding joint velocity. The angular

velocity of the joint (ω) can be easily calculated by taking the

first derivative of the joint kinematic signal (θ).

2.5. EMG to force processing

With EMG to Force Processing it is possible to estimate the

forces generated by the muscles under analysis, Figures 3A–D. It

is based on the proportion between muscle activation and force

production and relies on the Hill musculoskeletal model (Hof

and Van den Berg, 1981; Bogey et al., 2005; Geyer and Herr,

2010). Following the steps below (Markowitz and Herr, 2016)

the resultant of the forces acting on the muscle (FM) can be

calculated as:

FM(α, lCE, vCE) = FCE(α, lCE, vCE)+ FPE(lCE)− FBE(lCE);

(1)

Where FCE is the force produced by the contractile element

(CE), FPE is the force produced by the elastic structures

surrounding the muscle (i.e., passive elements), and FBE is the
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FIGURE 1

Methodology workflow. Data recorded in the laboratory is pre-preprocessed and integrated with data taken from literature to compute the EMG

to force processing. The output is compared with the literature and optimized to approach the same trends. After the optimization, the assistive

indexes can be calculated.

FIGURE 2

Storage (red) and release (green) phases of the actuation unit compared against the joint/limb rotation patterns of the hip (dark red) and ankle

(yellow) in a gait cycle.

force produced by the buffer elasticity that prevents the muscle

fascicle from shortening excessively.

According to the definition of FCE, the contractile

component of FM can be defined as:

FCE = α ∗ Fmax ∗ fl(lCE) ∗ fv(vCE); (2)

With α as the muscle activation (i.e., EMG signal filtered,

rectified, normalized and segmented. See Section 3.5), Fmax

as the maximum isometric force, and fl(lCE) and fv(vCE)

are respectively the active force-length and the force-velocity

relations that are given by:

fl(lCE) =
−1

w2
∗ (

lCE

lopt
)2 +

2

w2
∗
lCE

lopt
−

1

w2
+ 1; (3)

fv(vCE) =















N −
(N − 1) ∗ (vmax − vCE)

7.56 ∗ K ∗ vCE + vmax
if vCE ≥ 0;

vmax + vCE

vmax − K ∗ vCE
if vCE < 0;

(4)

Where lCE is the contractile element length and lopt is the CE

length at which themuscle can provide themaximum force Fmax

(Eilenberg et al., 2010), w determines the width of the active
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force-length relation, vmax is the maximum muscle velocity, K

is a curvature constant, and N, set as 1.5 (Markowitz and Herr,

2016), is the muscle force (in units of Fmax) at the muscle’s

maximum lengthening velocity.

The force arising from the elastic structures surrounding the

muscle (FPE) and the force involved in the buffer elasticity (FBE)

are defined as:

FPE(lCE) =











Fmax ∗ [
(lCE − lopt)

(lopt ∗ w)
]2 if lCE ≥ lopt;

0 if lCE < lopt;

(5)

FBE(lCE) =



















F
2
w
max ∗ [

(lCE − lopt ∗ (1− w))

lopt
]2if

lCE

lopt
≤ (1− w);

0if
lCE

lopt
> (1− w);

(6)

With (lCE/lopt) intended as the strain of the fibers with

respect to their optimal length (Arnold and Delp, 2011). Muscle

fiber velocity vCE is defined as:

vCE = ˙lCE; (7)

where lCE can be calculated as:

lCE =
lCE

lopt
∗ lopt; (8)

and lopt is taken from Arnold et al. (2010). Fmax can be

calculated as:

Fmax = PCSA ∗ 9; (9)

9 is the maximum isometric stress value (Arnold et al.,

2010), and the physiological cross-sectional area (PCSA)

(Martin et al., 2020) is defined as:

PCSA =
MM ∗ cos(γ )

ρ ∗ Lf
; (10)

Where MM is the muscle mass, γ is the pennation angle

of the muscle, ρ is the density of the muscle and Lf is the

normalized muscle fiber length (Ward et al., 2009).

2.6. Optimization

The optimization process consists of calculating the joint

torque and power signals and comparing them with data in

the literature. It is needed to balance the opposing forces

generated by the muscles that act on each joint. Each force signal

contribution is modulated by multiplying it with a coefficient

(c1, c2, etc.) that can vary according to the requirements. As

reported in Winter (2009) “joint moments of force are the net

result of all internal forces acting at the specific joint.” Therefore,

the force delivered by the flexor and extensor muscles times

their respective moment arms (R), Figures 3I–L, results in an

estimation of the moments (T) acting on the specific joint,

Figures 4A,B:

TFl = c1 ∗ FFl ∗ RFl;

TEx = c2 ∗ FEx ∗ REx;
(11)

According to Spoor (1991) R is the first derivative of the

instantaneous tendon length acting on the joint under analysis,

as a function of the joint angle.

Considering the direction in which any muscle acts, to

calculate the net of the moments acting on the joint, it is

conventional to subtract the signal of the extensor moments

from those of the flexor, to give:

TNoe = c1 ∗ TNoeFl − c2 ∗ TNoeEx;

TExo = c1 ∗ TExoFl − c2 ∗ TExoEx;
(12)

Then, by multiplying the signals in (12) by the angular

velocity of the joint (ω) (see Section 2.4), the mechanical power

(P), Figures 4C,D, can be estimated as:

PNoe = TNoe ∗ ωNoe = (c1 ∗ TNoeFl − c2 ∗ TNoeEx) ∗ ωNoe;

PExo = TExo ∗ ωExo = (c1 ∗ TExoFl − c2 ∗ TExoEx) ∗ ωExo;

(13)

The obtained signals are optimized against literature gold

standard signals (Winter, 2009), Figures 4A–D. The torque and

power trends are calculated for each joint of interest (hips

and ankles) and experimental modalities (with and without the

exoskeleton) determining the signal of interest for the proposed

analysis. We identify these trends as joint torque and joint power

on the basis of EFP, namely: EMG to Joint Torque (EJT) and

EMG to Joint Power (EJP). For what concerns the optimization

we considered that for our purpose obtaining a Correlation

Coefficient (CC), Fisher (1992), of 90% could be enough to

show the user-exoskeleton interaction. The optimization process

(Nelder and Mead, 1965), as shown in Equation (14), consists of

a comparison of the torque and power calculated, to match the

torque and power in the literature.

d1 =

N
∑

i=1

|TNoe(i)− TLit(i)|;

d2 =

N
∑

i=1

|PNoe(i)− PLit(i)|;

(14)

d1 and d2 represents the distances between the functions, N

is equal to the signal length, and TLit and PLit are respectively

the torque and the power taken fromWinter (2009).
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FIGURE 3

Force signals of the (A) rectus femoris, (B) semimembranosus, (C) tibialis anterior, (D) gestrocnemius medialis in the Noe (red) and Exo (green)

configurations; the ECF of each muscle with the associated AsIx multiplied with a gain factor to be more easily viewable (E–H); moment arms in

the Noe (red) and Exo (green) configurations needed to calculate the torque generated by each muscle (I–L).

Based on the result, the force signals are modulated in

amplitude (acting on c1, c2, etc.) and the kinetic signals are

calculated again until CC≥90%.

2.7. Kinetic parameters outcomes

To complete the analysis, it is necessary to calculate the

Assistive Indexes. AsIx’s are binary vectors specific for each

muscle representing the instants of muscular assistance and are

calculated by subtracting the Exo force signal from theNoe force

signal (FNoe − FExo). The resulting signal is called below the

Effort Comparison Function (ECF), Figures 3E–H. AsIx’s signals

are calculated for both the flexor and the extensor muscles of

every joint (Equation 16) and are represented as 1 when the

muscle is receiving assistance (i.e., ECF≥0), and 0 while the

muscle is performing more effort compared to the baseline

condition (i.e., ECF<0):

AsIxFl/Ex =

{

1 if (FNoe − FExo) ≥ 0;

0 if (FNoe − FExo) < 0;
(15)

During the AsIx calculation, the ECF of each muscle is

divided by its respective force signal in the Noe configuration.

If the result is≥0.1 the assistance received is greater than 10% of

the force delivered by the muscle at that instant, and the index

(AsIx (G)) is green; if the result is <0.1 the assistance is present

but very low, and the index (AsIx (Y)) is yellow. The signals

for the flexors and extensors are logically joined when they are

positive, to have a single signal for each color that refers to the

whole joint:

AsIx(G) = AsIxFl(G) ∪ AsIxEx(G);

AsIx(Y) = AsIxFl(Y) ∪ AsIxEx(Y);
(16)

Moreover, a No-AsIx signal is computed to take into account

the instants when neither AsIx (G) nor AsIx (Y) are positive:

No− AsIx = ¬(AsIx(G) ∪ AsIx(Y)); (17)

It must be noted that when referring to AsIx while

calculating kinetic parameters, the same procedure has to be

applied to both the AsIx (G), the AsIx (Y) and the No-AsIx

signals.
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FIGURE 4

Joint moment and power for the hip (A,C) and the ankle (B,D) obtained with EMG to force processing (red trend) are compared with data

gathered from literature (Winter, 2009) (black trend) and with experimental data obtained using force plates and inverse dynamic (blue trend).

Once the AsIxs have been computed it is possible to estimate

the Assistive Moment Trend (AMT), Figures 4A,B, as:

AMT = TNoe − TExo =

= (FNoeFl ∗ AsIxFl ∗ RNoeFl − FNoeEx ∗ AsIxEx ∗ RNoeEx)−

(FExoFl ∗ AsIxFl ∗ RExoFl − FExoEx ∗ AsIxEx ∗ RExoEx);

(18)

and the Assistive Power Trend (APT), Figures 4C,D, can

therefore be calculated as:

APT = PNoe − PExo

= TNoe ∗ ωNoe − TExo ∗ ωExo

= [(FNoeFl ∗ AsIxFl ∗ RNoeFl − FNoeEx ∗ AsIxEx ∗ RNoeEx) ∗ ωNoe]

−[(FExoFl ∗ AsIxFl ∗ RExoFl − FExoEx ∗ AsIxEx ∗ RExoEx) ∗ ωExo];

(19)

The indices of assistance for the moments (AMI) and the

powers (API) are calculated, in each interval (K) identified by

the AsIx, as:

AMI = SignM(K) ∗
|
∑K

i=1(TNoe(i)− TExo(i))|
∑K

i=1 |TNoe(i)|
;

API = SignP(K) ∗
|
∑K

i=1(PNoe(i)− PExo(i))|
∑K

i=1 |PNoe(i)|
;

(20)

Where SignM and SignP represent a reduction (positive sign)

or an increase (negative sign) of moment and power and are

calculated in each interval (K):

SignM(K) =

K
∑

i=1

(TNoe(i)− TExo(i))

TNoe(i)
;

SignP(K) =

K
∑

i=1

(PNoe(i)− PExo(i))

PNoe(i)
;

(21)

3. Experimental validation

The proposed method has been applied and validated on

a quasi-passive exoskeleton but could be extended to active

and passive systems and this will form part of future work.

Tests were performed in accordance with the experimental

protocol approved by the Ethics Committee of Liguria,

Italy (protocol number: 001/2019) and complied with the

Helsinki Declaration.

3.1. XoSoft-Gamma

The presented methodology is evaluated on the soft

exoskeleton platform XoSoft (Gamma version). XoSoft-Gamma

is a lower limb exosuit developed within the XoSoft European

project (Horizon, 2020) to assist human walking (Poliero et al.,
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FIGURE 5

Structure of the XoSoft-Gamma exoskeleton. The exosuit

consists of pneumatic clutches connected in series with elastic

bands, soft pants, sensorized insoles, and a backpack containing

electronic and pneumatic systems.

2018). The assistance provided relies on quasi-passive actuators

(Di Natali et al., 2019, 2020) developed to support/enhance

mobility in people with lower-limb impairments (Power et al.,

2016; Graf et al., 2018). The exosuit has a modular structure

(Ortiz et al., 2019) with several arrangement configurations and

can assist different joints at specific moments in the gait (Ortiz

et al., 2018). As reported in Figure 5, it comprises soft pants,

a backpack containing electronic and pneumatic systems, two

sensorized insoles for step-phase identification (Mateos et al.,

2016), and up to six biomimetic quasi-passive actuation units

to assist an equivalent number of unidirectional movements.

The actuation unit is a pneumatic soft clutch connected in

series to passive elements. The clutch is used to modulate

and control the elastic energy contribution with characteristics

presented in Sadeghi et al. (2019a,b). The key feature of passive

exoskeletons is the use of elastic and spring components that

form conservative elements able to transduce kinetic energy

in potential energy and vice versa. The clutch activation and

deactivation phases are regulated by the control strategy, which

also determines the amount of energy stored and released. In

fact, depending on the characteristics of the elastic component

(i.e., width, thickness, stiffness, and deformation), it is possible

to quantify the energy contribution in absolute terms (Di Natali

et al., 2019). By choosing the de/activation times of the clutch,

it is possible to select the moments during the gait cycle when

the energy is accumulated from the user or transmitted back (Di

Natali et al., 2020).

3.2. Assistive and control strategy

The XoSoft actuators can assist the user’s lower limbs in the

sagittal plane. Each hip, knee, and ankle joint can be supported

during flexion and/or extension (Di Natali et al., 2020). Thanks

to the modularity of the exosuit, it is possible to assist a total of

six joint/limb movements at different moments in the gait cycle.

During the gait (Winter, 2009), the hip joint is responsible for

moving the legs forward and, as a consequence, the whole body.

It extends for the 60% of the gait cycle (stance) and flexes for the

remaining 40% of the gait cycle (swing). The knee, starting from

the standing position, only flexes and then moves the lower leg

forward without hindering the movement. At the same time, the

ankle plantarflexes between the 50 and the 70% of the gait cycle,

transmitting the propulsive force necessary to initiate the swing

phase (Wiggin et al., 2011). Subsequently, it dorsiflexes slightly

before the next stride to prepare for the ground contact.

Based on our considerations and the literature (Shi et al.,

2019), the movements that require a higher energy supply,

according to the dynamics of the motion and the mass that

needs to be propelled to accomplish each gait phase, are hip

flexion, hip extension, and ankle plantar-flexion. We decided to

assist these exact movements, and noted that several literature

studies had focused on the same actions (Wiggin et al., 2011;

Asbeck et al., 2013; Van Dijk and Van Der Kooij, 2014; Liu

et al., 2019; Panizzolo et al., 2021). An important factor that

has to be tuned for the actuators is the control timing of the

clutches’ engagement and disengagement. The criteria for the

time selection include: Joint/limb rotation maxima and minima

(i.e., gait phases during which joint biomechanics allows a

passive actuation); Joint torque and power (i.e., the preferred

range in which to receive assistance according to the joint

torque and power); COM kinetic and potential energy (i.e.,

the preferred moment to actuate the hip-joint according to the

COM energy, by approximating it on the pelvic zone) (Bennett

et al., 2005); If testing is with non-healthy subjects there are any

specific diseases/conditions that need special consideration.

Maxima and minima joint rotations and joint power were

considered for both the hip and the ankle actuation time.

Previous studies showed that with a quasi-passive actuation

based on the joint rotation and the elastic elements’ coefficients,

it is possible to define a control strategy considering the storing

and releasing time (Di Natali et al., 2020). For the hip has also

been considered what reported in Bennett et al. (2005), and

therefore to not start storing the energy in the actuator while

the joint kinetic and potential energy are respectively in a local

minimum and maximum (i.e., not transfer the energy between

the user and the actuation unit in the 20, 75, and 95% of the

gait). Finally, as all participants were healthy, no specific disease

consideration was made.

According to what was exposed above the time of actuation

chosen for assisting the hip flexion and extension and ankle

during the push-off phases, Figure 2, are:
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• Hip Flexion: 5% gait cycle - 65% gait cycle;

• Hip Extension: 50% gait cycle - 15% gait (next cycle);

• Ankle Plantar-flexion: 5% gait cycle - 60% gait cycle;

3.3. Experimental protocol

To investigate the method’s efficacy the test was undertaken

with 7 subjects, (5 men and 2 women), average age 29 ± 4

years, weight 65 ± 8Kg, height 175 ± 4cm. Data were initially

acquired during 10 min of level-walking on a treadmill at

a speed of 4 km/h (1,11 m/s) in the Exo mode, and then

during 10 min of walking at the same speed in the Noe

configuration. Between tests, the participants had 10 min of

rest during which the backpack and the actuation systems were

removed. The choice of the duration was made to acquire a

substantial amount of data for each task, around 900 strides

per subject, while the choice of analyzing first the walk with

the exoskeleton and then without it was made to avoid the

logistic problems that would have occurred trying to wear

the exoskeleton after having already positioned the sensors

and performed the first recording. To record the movement,

an Xsens wearable motion tracking system was used (MTw

Awinda 3D Wireless Motion Tracker, Xsens Technologies B.V.

Enschede, the Netherlands) at a sampling rate of 60 Hz.

The acquisition involved the use of seven motion trackers

positioned on the feet, lower legs, upper legs, and pelvis.

For muscle activity, an 8-channel Wi-Fi transmission surface

electromyograph (FreeEMG300 System, BTS, Milan, Italy) was

used at a sampling rate of 1,000 Hz. To ensure the correct

acquisition of the signals and avoid displacements, the sEMG

electrodes were positioned at a distance of two centimeters

between each other, following the direction of the muscle

fibers according to the European recommendations for surface

electromyography (Hermens et al., 2000). Moreover, the sensors

were attached to the body through elastic straps that held them

firmly against the skin.

For what concerns muscular fatigue, a test designed to

walk on a treadmill for 10 min does not generate a substantial

difference in the signal. Muscular fatigue affects the mean

frequency as demonstrated in a specific work where a resistive

exoskeleton was controlled with the aim to fatigue muscles

(Di Natali et al., 2021). In Ament et al. (1993) has been

shown a reduction of the mean frequency of 7.5% (5% for the

soleus muscle and 10% for the gastrocnemius medialis) obtained

after 10 min running activity. Since the goal of this work is

not to monitor the mean frequency index, the experimental

protocol should not create any modification of the muscular

signal readings.

3.4. Muscle contribution and EMG
assessment

The EMG sensor positioning is not always easy when testing

an exoskeleton. The structure of the exoskeleton could obstruct

access to some body areas preventing sensor placement, and

the actuation system could rub off the EMGs displacing or

removing them. To overcome these problems preliminary tests

have been performed to select the most suitable/responsive

muscles for flexion and extension movements during walking

and the most easily accessible signals recorded with the sEMG.

Friction and the encumbrance of the actuators pressing on the

sensors have also been considered. As a result, we chose to record

the: rectus femoris (hip flexor), semitendinosus (hip extensor),

tibialis anterior (ankle dorsi-flexor), and gastrocnemius lateralis

(ankle plantar-flexor).

Two considerations were made: (i) some muscle bundles

are part of the same muscle group and although they have

different force levels they have very similar electrical envelopes;

(ii) some joints such as the hip are driven by multiple muscles.

Considering that joint moment and power are derived from the

co-activation of all of these, it may be necessary to assess the

contribution of more flexor/extensor muscles than recorded.

As an example of (i), the calf comprises two external muscle

bundles that divide it into medial and lateral gastrocnemius,

plus an inner muscle bundle named the soleus. The soleus can

generate more force than the gastrocnemius, but it is more

difficult to observe because of its position. On the other hand,

the lateral gastrocnemius creates less force but is easier to reach.

For these reasons and due to the similarity of their envelopes,

as our aim is to assess the overall forces acting on the joint, it

was decided to record the activity of the lateral gastrocnemius

but attribute to it the characteristics of the strongest muscle of

the group during EFP (i.e., the soleus). The same reasoning was

made for the thigh extensors by recording the activity of the

semitendinosus, but attributing to it the characteristics of the

semimembranosus. For assumption (ii), the hip extensors are

divided into two main muscle groups which are the hamstring

and the gluteus. As reported in Winter (2009) the gluteus

and hamstring have very different envelopes but work closely

together in hip extension. Due to the encumbrance of the

exoskeleton, it was difficult to monitor the muscular activity

of the gluteus. Thus, the envelope of the gluteal EMG signal,

extracted from Winter (2009), was interpolated with a 6th-

order curve showing a correlation coefficient (CC) of 99%. The

features of the gluteus medialis were assigned to this signal

during the EFP, Figure 6A, and the derived force was considered

as a contribution to the hip extension. The same reasoning

was followed for the hip flexion with the sartorius, Figure 6B,

showing a CC of 96.35%.
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FIGURE 6

(A,B) Envelope (blue line), interpolatin curve (dashed line) and force signal (magenta line).

3.5. Data analysis and model setting

Data were processed using MATLAB software (MATLAB

9.7.0, MathWorks, Natick, MA, USA). The recorded EMG data

were filtered using a fourth-order Butterworth filter with a

bandwidth between 30 and 450Hz. This was rectified and treated

again with a Butterworth second-order low-pass filter with a cut-

off frequency of 10 Hz. The EMG signals were normalized with

the maximum activation of each muscle in the Noe condition.

Each signal was therefore proportional to the maximum force

exerted by the respective muscle during walking without aid

from the exoskeleton. The resulting signals were segmented into

gait cycles.

For force processing the (lce/lopt) relationship was derived

from Arnold and Delp (2011) for all the muscles, while Fmax

was calculated as shown in Equation (9). In particular PCSA

values have been obtained from Handsfield et al. (2014) and

the maximum isometric stress value (9) has been set to

41.75 [N/cm2] (i.e., average of the values found in literature

Arnold et al., 2010). The trend of R as function of the joint

angulation is estimated for the rectus femoris and gluteus

medialis (Zheng et al., 2008), for the semimembranosus (Arnold

et al., 2000), for the tibialis anterior (Maganaris et al., 1999),

for the soleus (McCullough et al., 2011) and for the sartorius

(Scheys et al., 2008). For the sartorius, as an approximation,

the relationship between the moment arm length and joint

angle has been considered linear. With the obtained values, it

was possible to interpolate the curves representing the moment

arms of each muscle in a gait cycle, as shown in Figures 3I–

L. The parameters for the EFP were taken from Geyer and

Herr (2010) and its Supplementary material for all muscles

except the sartorius, which was not included. For the sartorius

vmax and K were calculated as in Geyer and Herr (2010)

considering the fraction of fast-twitch fiber (FFT) in the muscle

to be equal to 1 (Close and Hoh, 1968), and w as for the

rectus femoris. Finally, when calculating the AsIx, we highlight

in green (G) the contours of the phases during which the

assistance received (in terms of [N]) is greater than 10% of

the muscular force at that instant; values below 10% were

highlighted in yellow (Y).

4. Methodology validation

4.1. Kinetic parameters validation

To validate the results, moments and powers found in

literature (Winter, 2009) were compared against experimentally

obtained EJT and EJP results from the proposed methodology.

Data for the hips and ankles are shown in Figures 4A–D, with

cross-referencing correlation coefficients reported in Table 1.

Thanks to optimization, where the muscles’ forces are combined

to generate torque and power, amplification coefficients can be

selected to properly modulate the contribution of each muscle

group, Table 2. The technique described in this paper can

use either data gathered from literature or available database.

We have selected data from Winter (2009), which have been

calculated from inverse dynamics. This dataset has been

collected on 60 subjects, thus providing a solid dataset that

can be used as the moment and power reference baseline.

Moreover, this dataset is also anthropometrically similar to the

experimental sample of this study (Winter: number = 60 healthy

subjects; Age = (20–49) years; Height = 176 cm; Weight = 72 kg.

Our study: number = 7 healthy subjects; Age = 29 years; Height

= 175 cm; Weight = 65 kg). The results in the figures and tables

represent the average trends and values.

All three hip moment profiles, Figure 4A, have similar

trends, with correlation coefficients (CC) always >90%, Table 1.

The plots from the literature dataset, (black), show similar trends

and amplitudes to those obtained by applying inverse kinematics

on the experimental data, (blue), and the plot calculated from the

EFP (red). The relative errors (RE) between functions, calculated

over the entire gait cycle and normalized to the maximum of

the reference signal using literature data when possible, and

experimental data otherwise are: RE-ML=6.1 ± 18.2%, RE-

EL=6 ± 25.4%, and RE-ME=0.1 ± 32.5%. The main differences
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TABLE 1 Correlation coe�cient of the hip and ankle moments and powers.

Signal Proposed methodology Experimental data Proposed methodology

vs. vs. vs.

Literature data Literature data Experimental data

(CC-ML) (CC-EL) (CC-ME)

Hip moment 90.1% 93% 90.9%

Ankle moment 94.8% 95.1% 88.6%

Hip power 90.8% 89.7% 91.9%

Ankle power 90.4% 97.6% 90.3%

CC-ML is the CC obtained by comparing data from the literature with the EJT and EJP. The CC-EL is obtained by comparing the inverse dynamics from the experimental data against

results from the literature (Winter, 2009). CC-ME is obtained by comparing the EJT and EJP against the signals calculated by inverse dynamics.

TABLE 2 Amplification coe�cients for the joint movements and their

associated muscles.

Joint movement Muscle bundle Amplification coefficient

Hip flexion Rectus femoris 0.2

Hip extension Semitendinosus 0.1

Hip flexion Sartorius 0.55

Hip extension Gluteus medialis 0.4

Ankle flexion Tibialis anterior 0.65

Ankle extension Gastrocnemius lateralis 0.15

occur at the start of the gait cycle, where the amplitudes are

very heterogeneous, and between 30 and 50% of the gait cycle,

where the experimental result diverges slightly from the other

plots. The relative error associated with the signals in the 30–

50% interval are: RE-ML=17.7 ± 3.8%, RE-EL=26.9 ± 8.9%,

and RE-ME=42.6 ± 10.4%. The inflection points are consistent

except in the final phase of the cycle. Between 90 and 100%,

in fact, the experimental plot follows a negative slope, while

the EJT and literature trends have a positive slope. The ankle

moment, Figure 4B, as shown in Table 1, has correlations close

to 95% for both CC-ML and CC-EL, with CC-ME having

a slightly lower correlation value, 88.6%. Despite amplitude

differences in the mid-cycle, the literature and EJT plots have

very similar trends and the same inflection points. The trend

for the experimental data is similar to both the other plots

with amplitude comparable to the EJT but the inflection point

is 10% earlier in the cycle. Although the amplitude of the

experimental data and the EJT are comparable, the relative

errors between the signals are RE-ML=10.22 ± 18.3%, RE-

EL=10.17± 15.5%, and RE-ME=0.1± 18.5%. During the swing

phase, the experimental and literature data show a trend close

to 0 [Nm/kg], while the EJT shows some activity, which results

in a slight negative trend. Power at the hip, Figure 4C, shows

very similar trends for all the signals. At a detailed level there

are of course differences, with the most noticeable being phase

advances and delays in the experimental plot, particularly at 15,

40, and 100% of the gait cycle. The three relative errors are:

RE-ML=0.1 ± 13.3%, RE-EL=2.2 ± 22.8%, and RE-ME=1.7 ±

22.4%. The ankle power, Figure 4D, has the highest correlation

level for plots obtained from inverse kinetics, 97.6%, with values

above 90% for the other two cases. The relative errors are: RE-

LM=6.2± 17.2%, RE-EL=2.4± 7.6% and RE-ME=10.2± 15.2%,

but between 40 and 65% this error increases to: RE-ML=27.3

± 22.9%, RE-EL=2.3 ± 9.7% and RE-ME=29.9 ± 18.4%. As

with the ankle moment, there is some EJP activity during the

swing phase.

4.2. Kinetic parameters discussion

It should be stressed that the methodology presented

in this paper does not aim for a gold-standard levels of

accuracy, rather it is intended for, and can provide, real-

time joint moments and powers over an extended time

period. Hence it can form a tool in a user-centered design

approach that can be used in the iterative development of

exoskeletons and for assistive control strategy optimization.

Note that: the number of muscular signals selected to

reproduce the antagonistic force aimed to achieve a

correlation >90% with literature data and over 85% in the

other cases.

Although the hip is a complex joint, four signals were

enough to reproduce its moment and power, Figures 4A,C,

with a good approximation. For the hip and ankle moments,

Figures 4A,B the CCs when compared with data from literature

are always >90% apart from the ankle moment where CC-

ME is still a very good 88.6%. For the EJT signal, Figure 4A,

both the first and the last negative peaks are mainly due to the

contribution of the hip extensor recorded in the lab. Therefore,

it was necessary to find a median value for both the first and

the last part of the cycle. Between 20 and 50%, the EJT has

a constant deviation with respect to literature data due to the
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hip flexor recorded in the lab and the hip extensor gathered

from the literature. The hip flexor recorded in the lab is also

responsible for the prominent peak at 50% of the cycle, while

the hip flexor data from the literature is responsible for the

descending slope at 60–80%. For the ankle moment, Figure 4B,

only two muscles were required to provide 95% correlation.

For the EJT signal, the small positive peak between 0 and 10%

of the gait cycle is mainly due to the flexor muscle, while

the following negative peak is due to the extensor. During the

descent phase, the amplitude difference between the EJT and

the literature-derived signal is notable, but the trends are similar

and the inflection points between 30 and 40% are respected.

The upward slopes between 50 and 60% of the cycle are both

similar, although there is some difference in the subsequent

swing phase. Unlike the experimental and literature plots, the

EJT signal between 60 and 100% deviates from 0 [Nm/kg],

due to the muscle activity seen in Figures 3C,D at the same

point in the cycle. Considering the power plots for both the

hips and ankles, Figures 4C,D, very similar trends are observed,

with CCs above 90% except for the hip powers obtained by

inverse dynamics, where CC-EL equals 89.7%. This is due

to the phase shift in the experimental signal’s first, second,

and fourth peaks. Comparing the hip power EJP signal with

the literature data, Figure 4C, the inflection points between

0 and 20% are respected. Also, as for the hip moment, the

first peak is considerably reduced and the gap between the

signals in the range 10–40% of the gait cycle is present. The

subsequent upward and downward phases are very similar,

especially considering trends and turning points. In the final

phase, 90–100%, the difference between the signals, which was

just noticeable in the hip moment, is now increased and results

in a high positive peak. Finally, the ankle power, Figure 4D, has

a flat, negative, and constant trend for the whole stance phase.

The signals are particularly close until 40% of the cycle, then

the divergence increases. During push-off, the trends are similar

for both the ascending and descending phases, but, comparing

the EJP and the literature data curves, the amplitudes differ.

Again, considering more flexor muscle signals would increase

convergence. During the swing phase, the effects are similar to

those observed for the ankle. The values for the literature and

experimental curves approach 0 [W/kg], but the EJP plot shows

some muscle activity.

The plots in Figures 4A–D, and the high correlation

between the experimental and literature data provide high

confidence that the literature data can be used as a baseline

for calibration of the kinetic signals calculated via EFP. Since

the EJT and EJP signals using the Noe configuration have

a high correlation with the signals from both literature and

inverse dynamics we believe that the method developed here

can successfully generate kinetic trends from EMG signals.

Subsequently, the amplification coefficients, Table 2, can be used

to calculate the signals in the Exo configuration and evaluate the

exoskeleton performance.

TABLE 3 Gait cycles of the hip and the ankle with their percentage

breakdowns.

Gait cycle % Color AMI [Nm/kg] API [W/kg]

HIP

0–42% G –2.46 –0.41

42–47% R +0.21 +0.72

47–91% G +8.63 +13.07

91–96% R –0.57 +3.67

96–100% G +1.98 +0.99

ANKLE

0–16% G –3.34 –1.97

16–21% R –0.40 –0.69

21–27% Y +0.35 +0.90

27–42% R –4.36 –0.74

42–60% G +14.59 +9.40

60–73% R +0.71 +9.81

73–86% G –0.47 –3.11

86–100% R –1.99 +1.47

The color of the area in the range, and the corresponding AMI and API are reported too.

5. Exoskeleton assessment: Results
and discussion

As a part of the discussion could be relevant to consider a

comparison of the proposed method against the kinetic analysis

performed with the inverse dynamics method as done in Di

Natali et al. (2020) on the same exoskeleton platform. The

traditional analysis that focuses on extracting single indices

(EMG, torque, power, etc.) describes the complex problem

in a partial way. Despite the different control strategies, in

fact, in Di Natali et al. (2020) it can be seen that what is

usually considered assistance does not necessarily correspond

to a positive contribution. Indeed the selected indices are

partial and do not represent the complex scenario. With

these considerations in mind, we take the cue to evaluate

the performance of the exoskeleton using the proposed and

validated analysis. Moreover, considering that the exoskeleton

platform used to validate this method is XoSoft, i.e., a quasi-

passive exoskeleton used to assist the walking, its use aims to

reduce and re-modulate the user’s kinetic contribution during

tasks such as walking (see Section 2.1). The results of the

assistance are reported in Table 3.

For the hip joint, Figures 7A,B, the values underline the

effectiveness of the control strategy designed to assist the hip

flexion and extension by re-modulating the user’s energetic

contribution. The gait phases during which at least one of the

two muscles is assisted, green and yellow together, represent

90% of the whole gait cycle, of which half during the stance

and half during the swing. Therefore, the hip is almost always

assisted. The hip moment, Figure 7A, reports a gain of 8.15%
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FIGURE 7

Joint moment and power for the hip (A,C) and the ankle (B,D) in the Noe (red line) and Exo (green line) configuration are compared. Areas

represent the instants of major (green), minor (yellow), and null (red) assistance.

[Nm/kg] when the color is green and a loss of 0.36% [Nm/kg]

when it is red, suggesting that a considerable gain is associated

with a very little loss. The most noticeable difference between

the Noe and the Exo signals is between 47 and 91% of the

gait cycle, where the color is green and the associated value

is 8.63% [Nm/kg]. The interval represents a reduced torque

requirement for the user while the muscles reduce their activity.

The assistance is both kinetic and muscular (see Section 2.1).

Moreover, adding positive values with each other and negative

as well, the overall gain is 10.82% [Nm/kg], and the overall loss

is 3.03% [Nm/kg], indicating that the torque released by the

implementation is greater than that required to store energy

in the system. Furthermore, if we consider that the subjects

performed the test walking on a treadmill at a constant speed,

any change of torque and power represents a variation in

muscle pattern or a reduction of required force while performing

the same cyclic motion. For hip power, Figure 7C, the gain

is 13.65% [W/kg] when the color is green and 4.39% [W/kg]

when the color is red. Therefore, the joint power is reduced

both while the muscles are receiving assistance and when they

are not. The only negative value is reported in the first part

of the gait cycle, while the other phases are always associated

with positive indices. The maximum gains are between 47–91%

and 91–96% of the gait cycle, with corresponding values of

13.07%[W/kg] and 3.67%[W/kg]. Also in this case, the reduction

of power is associated with both the stance and the swing

phases. The overall power reduction, without distinguishing the

different colors, is 18.45% [W/kg] and the power increase is

0.41% [W/kg].

For the ankle joint, Figures 7B,D, the purpose was to assist

the plantar-flexion during the push-off phase. The gait cycle

instants that report muscular assistance (green areas) are 47%

of the whole gait cycle, of which 34% are during the stance and

13% are during the swing. Looking at both the ankle moment

and power, it can be seen that assistance occurs in the desired

gait cycle phase, during push-off. When the torque and the

power report maximum activations, in fact, both the peaks are

reduced, but the muscles acting on the joint show noticeable

changes in the activation patterns. The corresponding curve

is therefore divided into two sub-phases between 42–60% and

60–73% of the gait cycle, Figures 7B,D. In the first sub-phase,

the color is green, the moment is reduced by 14.59% [Nm/kg],

and the power by 9.4% [W/kg], underlying the effectiveness

of the control strategy adopted to assist the plantar-flexor

movement. In the second sub-phase, in contrast, the color is

red, but the moment reports a reduction by 0.71% [Nm/kg]

while the power by 9.81% [W/kg], remarking the efficacy of

the control strategy until the last moment of ground contact.

In the other phases the signals show some kinetic parameters

increase while wearing the exoskeleton, but, considering that our

purpose was to assist specifically the push-off phase, as reported

in Section 3.2, a general augmentation in the signals at other

instants was expected. Calculating the overall moment gain and

loss without distinguishing colors, the values show a 15.65%
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[Nm/kg] reduction, focused mainly on the push-off phase, and

a 10.56% [Nm/kg] increase mainly focused on the first part

of the gait cycle. The green color is associated with a gain

of 10.78%[Nm/kg] for the moment and 4.32% [W/kg] for the

power. The red color is associated with a loss of 6.04%[Nm/kg]

for the moment, and a gain of 11.23% [W/kg] for the power,

mainly due to the contribution during the push-off phase. The

yellow color is associated with a gain of 0.35%[Nm/kg] for the

moment and 0.9%[W/kg] for the power. Considering the overall

gain and loss, the ankle power reduction is 22.27% [W/kg] and

the power augmentation is 5.82% [W/kg].

Referring again to Di Natali et al. (2020), the analysis

report individual indices (EMG, torque, power, etc.) that do

not take into account the multiple interactions that co-occur

during walking, and it is based on a gait analysis performed on

10 consecutive steps. On the contrary, the analysis presented

in this article takes into account both muscular and kinetic

aspects simultaneously and is based on more than 10,000 steps.

Moreover, the results obtained through the use of force plates

indicate a peak of assistance during the whole releasing phase,

but the indices proposed in this work show that the muscle can

report the opposite meaning. Kinetic assistance does not always

correspond to muscular assistance and in some of the instants

during which the joint is receiving the torque from the actuator

the muscle is making a greater effort, and, conversely, it benefits

from the actuation in other phases of the gait. For these reasons,

performing a complex analysis that considers bothmuscular and

kinetic assistance simultaneously provides indices that better

attest to the quality of the control strategy.

In conclusion, generating torque trends at the joints

associated with force measurements similar to physiological

values allows us to highlight how the interaction with the

exoskeleton occurs during walking. This allows us to visualize

how the muscle responds (whether assisted or resisted) during

the motor pattern, the specific joint torque and power trends,

and if the user-generated torque while wearing the exoskeleton

is below or above the baseline. This information is useful for the

developer to make changes to the system.

6. Conclusions

In this paper, we have developed a new methodology to

assess the effectiveness and impact of an exoskeleton. This

approach reduces the number of instruments required for the

experimental apparatus and considers a much higher number

of cycles compared to traditional kinetic analysis methods.

Therefore, the new method is statistically relevant and has been

validated and used to evaluate a quasi-passive actuated exosuit

for gait assistance. The results underline the effectiveness of the

methodology by providing indices that quantify the assistance in

terms of torque and power while taking into account the effects

of the actuation at a muscular level.

Future studies will be conducted to: (i) apply the

methodology to different joints of the body involving the

monitoring of a higher number of muscles; (ii) analyze more

complex tasks, also considering the kinematic and muscular

synergies that occur during their execution. Moreover, this study

builds bases to enable the following future works: (iii) implement

a real-time analysis to assess the exoskeleton’s performances

while the user is executing the task; (iv) use real-time data

to improve the control strategy optimization; (v) implement

the methodology with an adaptive control instead of fixed

control rules; (vi) extension for evaluating exoskeletons for

rehabilitation after being validated on pathological patients.
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