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E�ective cloth folding
trajectories in simulation with
only two parameters

Victor-Louis De Gusseme* and Francis wy�els

IDLab-AIRO, Department of Electronics and Information Systems, Ghent University – imec, Ghent,

Belgium

Robotic cloth folding remains challenging for robots due to its highly

deformable nature. In order to deal with these deformations, several strategies

with varying amounts of adaptability have been proposed. We study robotic

cloth folding by simulating and evaluating a trajectory search space with only

two parameters: one parameter for the trajectory’s height and one parameter

to tilt it. We extensively analyzed folding a long-sleeved shirt in a high-fidelity

simulator. To demonstrate that the trajectory is su�ciently adaptable and

robust, we test several cloth shapes, clothmaterials, an entire folding sequence

and di�erent folding velocities. We can deal with every folding scenario by

tuning the two parameters correctly. The trajectories’ simplicity and their

robustness in simulation make them ideal candidates for future transfer to

real-world robotic setups.
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1. Introduction

Handling cloth with robots is still challenging because cloth behavior is hard to

predict. This unpredictability is due to cloth’s high deformability and the numerous

self-contacts it encounters when being manipulated. Various complications arise when

folding cloth: parts of it can slide and shift, it can crumple, wrinkles can appear and

it can buckle in unexpected ways (Jiménez, 2017). When multiple layers of fabric are

stacked on top of each other, these challenges become even more pronounced. Cloth

manipulation has many characteristic failure modes that affect rigid objects or even other

deformables to a much lesser extent. Therefore, manipulation strategies for these more

standard materials cannot be applied to cloth directly.

In this work, we seek to advance robotic cloth folding. We do this by carrying out

an in-depth analysis of the folding performance of a simple trajectory search space.

This analysis is performed entirely in simulation. Simulation provides a controlled,

informative, and reproducible environment for our experiments (Narain et al., 2012;

Matas et al., 2018; Antonova et al., 2021; Lin et al., 2021; Seita et al., 2021). This is

especially important for cloth, because its state is notoriously hard to estimate in the real

world exact experiments are very hard to reproduce. Our results show that for successful

cloth folding in simulation, it is essential to adapt to the cloth’s shape, material and to the

specific folding step within a sequence.
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Several prior works have investigated robotic cloth

manipulation. Maitin-Shepard et al. (2010) and Doumanoglou

et al. (2016) have described entire robotic cloth folding pipelines

that go from piles of crumpled clothes to nicely folded stacks.

Naturally, one of the essential subtasks in these folding pipelines

is the folding of the flattened garments. Both pipelines use

static and heuristic trajectories for the folding motion. These

heuristics are fine for towels but can still be improved for more

complex garments. Folding as robustly as humans requires a

remarkable amount of subtility and adaptability.

Others have proposed several heuristic strategies and

trajectories for robotic cloth folding (Berg et al., 2010; Petrík

et al., 2015). For example, Berg et al. (2010) described a

simple procedure named gravity-folds. It depends on gravity

to keep parts of the cloth in a predictable vertical position

during folding. However, such procedures based on geometric

reasoning about cloth have their limitations: cloth often violates

the assumptions about its material properties that these methods

require to succeed. This problem is acerbated when the folding

motion has any appreciable speed, which makes the dynamic

behavior of cloth emerge. Petrík and Kyrki (2019) have shown

that adaptability to the specific material properties of cloth is

crucial for folding success and that we cannot afford to abstract

away cloth physics. More recently, several authors have applied

reinforcement learning to the problem of cloth manipulation

(Matas et al., 2018; Jangir et al., 2020). These methods propose

a single framework capable of learning a range of different

tasks. While the generality of these methods is attractive, the

learned strategies are often unexplainable, hard to reproduce,

and possibly fragile to unseen variations (Henderson et al.,

2018). Furthermore, finding suitable reward functions to train

reinforcement learning agents for cloth folding is also not trivial

(Verleysen et al., 2022).

Simulation offers a controlled setting to study and account

for cloth material properties and dynamics. The work most

similar to ours is by Li et al. (2015), where they use simulation

to inform cloth folding trajectories. They use a gradient-based

search strategy in simulation to arrive at a single optimal folding

path. However, we argue that it is unlikely the optimal folding

path in simulation corresponds to the best strategy for real-

world folding. The well-known decrease in performance of

robotic control strategies when transferring from simulation to

the real world is often referred to as the simulation-to-reality

gap (Kadian et al., 2020). For simulated manipulation strategies,

robustness is of much greater importance than optimality.

Therefore, in this work, we do not seek purely to optimize

folding trajectories. Rather, our primary aim is to map out the

performance of a reasonable search range of trajectories. This

wider view gives us more insight into which simulated strategies

are more likely to be robust.

In this work, we evaluate a simple folding trajectory with

only two parameters based on Bézier curves. We show that

this trajectory is sufficiently adaptable to perform well on all

our considered variations. Moveover, we show that correctly

setting the two parameters is crucial for high performance on

all variations of cloth material properties, cloth shapes, and

the different folding steps in a sequence. Our method can be

applied to arbitrary cloth shapes and fold lines, and at any step

in a multistep folding sequence (see Figure 1). In the following,

we explain our procedure that goes from the fold specification

to the evaluation of the search space. This represents a new

methodology for cloth folding in simulation, with a strong focus

on future simulation-to-reality transfer. The most important

aspect of our work is that we focus on robust folding, as opposed

to solely optimal. By reporting folding performances for entire

search spaces, we also further the understanding of the problem

of cloth folding itself.

To summarize, our main contributions are threefold:

• We are the first to use the C-IPC simulator in the context

of robotic manipulation, specifically cloth folding.

• We present an elegant methodology for cloth folding

in simulation that includes a novel and effective 2-

dimensional trajectory search space.

• We execute an extensive sensitivity analysis of the

parameters that influence folding performance, including

cloth shape, material, folding phase, and folding speed.

The remainder of this work is structured as follows: in

Section 2, we motivate and describe the simulator we chose for

this work. In Section 3, we elaborate on our method and our

experimental design. In Section 4, we present and discuss the

results of these experiments. Finally, in Section 5, we summarize

our main findings and their implications for future work and

simulation-to-reality transfer.

2. Simulation

In this work, we use the high-fidelity codimensional

incremental potential contact (C-IPC) simulator (Li et al.,

2021), which we believe to be a promising simulator for cloth

manipulation research for several reasons. Most importantly, C-

IPC handles contact robustly, intersection-free, and accurately

even in challenging scenarios. Furthermore, it is based on the

finite-element-method (FEM), thus physically grounded, and

simulates cloth with realistic finite geometric thickness. To our

best knowledge, we are the first to investigate C-IPC for cloth

manipulation.

IPC introduced a new method of simulating accurate and

interpenetration-free contact for 3D deformables (Li et al.,

2020). C-IPC is the extension of the IPC simulator to

codimensional, i.e., 1D and 2D, deformables such as cloth and

ropes. Simulating these thin materials volumetrically would

be less computationally efficient. Additionally it can lead to
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FIGURE 1

A successful multistep folding sequence for a long-sleeved shirt. The trajectories (yellow curves) are adapted for each step.

numerical problems and artifacts, such as shear locking, unless

extremely high-resolution meshes are used.

We use C-IPC only for the simulation of cloth. However,

C-IPC can simulate the interaction between, ropes, cloth, and

volumetric deformables, which could also make it interesting for

robotic tasks where these kinds of materials interact. Kim et al.

(2022) have already used IPC for grasping rigid objects with soft

gripper tips.

C-IPC is an FEM-based method, which means the cloth’s

internal material model, also called the constitutive model,

is a principled discretization of continuum mechanics. This

means the simulation method is strongly grounded in reality.

An additional benefit of FEM-based simulation is that many

simulation parameters correspond to physical parameters such

as the material’s Young’s modulus and Poisson’s ratio. This is

particularly interesting when trying to match simulation with

real-world behavior. However, arguably even more important

for cloth folding is not the constitutive model, but how contact

and friction are handled. Folding is the act of stacking layers

of cloth on top of each other, and thus naturally introduces

many contacts. Many folding failure modes can be attributed

to contact and friction. For this reason, accurate simulation of

those effects is crucial. C-IPC handles both static and kinetic

friction, i.e., the friction in both sticking and sliding modes, and

rapid switching between these modes.

For C-IPC the cloth needs to be provided as a triangle mesh.

For the t-shirts in this work, we use a parametric t-shirt model

that generates a polygonal shirt outline from 12 parameters

such as sleeve length, sleeve angle, etc. This is similar to the

shape models of Miller et al. (2011) and Stria et al. (2014). The

interior of this outline is then triangulated with 2D Delaunay

triangulation. For all our meshes we run this algorithm with a

minimum triangle density of 20K per squaremeter. For the long-

sleeved shirts, this results in meshes with approximately 12K

triangles, and for the short-sleeved ones 10K. Higher triangle

resolutions produce even finer details, however, we found 20K

to give a nice trade-off between simulation time and the smallest

possible wrinkle size. A limitation of this work is that garments

are simulated with only a single layer of fabric, as opposed to two

layers sewn together. We made this choice because simulating

garments as several parts sewn together is considerably more

complicated and computationally expensive.

The high fidelity of C-IPC makes simulation relatively

computationally expensive. We can afford this because of the

deliberately limited degrees of freedom of the trajectory and the

small size of the search space. We also note that C-IPC is a very

recent simulator and could benefit from further optimization

and GPU acceleration. One caveat we noticed was that running

the simulation with a large ground plane can slow down the

simulation by an order of magnitude and affect the result of

the simulation. So we recommend using the smallest possible

ground plane that fits the simulated cloth.

3. Method

The core of our method is the simulation of fold trajectories

and the evaluation of the cloth’s state at the end of the simulation.

Figure 2 provides a schematic overview of this process. We

vary the simulated scenario and look at the effect on trajectory

performance. A scenario includes the shape of the simulated

piece of cloth, its material parameters, and a fold specification.

A fold specification represents the desired fold to be

performed and consists of a fold line and gripper start pose.

The fold line and gripper start pose are specified relative to a set

of semantic keypoints on the piece of cloth. For a t-shirt, these

keypoints could be, e.g., the left armpit, the right shoulder, and

other meaningful locations on the shirt. The fold specification is

further detailed in Section 3.1.

From the fold specification, we construct a search space of

trajectories with only two parameters. One parameter controls

the height of the trajectory and one determines by how much to

tilt it. For each simulation scenario, we simulate and evaluate a

set of 134 trajectories in this search space. This will be the subject

of Section 3.2.

For the evaluation of a fold, we compare the resulting

simulated mesh to a target mesh. This target represents an

idealized folded state where the part to be folded is geometrically

rotated by 180 degrees. To compare the result and the target we
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FIGURE 2

Method overview: a selected scenario (left) for which a search space is automatically set up (middle) and which is subsequently evaluated (right).

calculated the mean distance between corresponding vertices.

We elaborate on the evaluation in Section 3.3.

We end the section with the experiment setup in Section 3.4.

There we explain our reasoning for the 13 evaluated scenario

variations.

Algorithm 1 shows the procedure of our method for a single

scenario.

Input: Scenario and fold specification

Output: Folding performance of the trajectories

in the search space

1 Design a scenario (including cloth shape and

material properties)

2 Select a fold line and gripper start pose

3 Calculate the target mesh for the fold line

4 Construct the search space

5 Simulate the effect of each trajectory

6 Compare the simulated results with the target

mesh

Algorithm 1. Evaluation procedure for a single scenario

3.1. Fold specification

In this work, we study the motions required to accomplish

a predefined fold. Which fold or folding sequence is desirable is

subject to personal preference. We encode this information as a

fold specification, similar to Petrík et al. (2017). It consists of a

fold line and a gripper start pose (i.e., position and orientation).

The fold line demarcates the part of the cloth that should be

folded from the part that should remain stationary. The goal is

then to fold the cloth on the same side as the gripper start pose

on top of the cloth on the opposite side.

As mentioned, the gripper start pose and fold line are given

relative to a set of semantic 3D keypoints. Various methods

are available to detect these keypoints. In settings with simple

FIGURE 3

An example fold specification for a sleeve fold on a long-sleeved

shirt. The colored dots on the contour of the shirt denote the

semantic keypoints. The red line shows the desired fold line. The

RGB-colored axes on the left represent the gripper start pose,

and those at the right the gripper end pose. The blue axis

denotes the forward direction of the gripper.

backgrounds, the contour of the cloth can be easily extracted

with traditional techniques and the keypoints can be found by

fitting a template to that contour (Miller et al., 2011). More

recently deep neural networks have also shown success in cloth

keypoint detection (Lips et al., 2022). Figure 3 shows an example

fold specification relative to detected keypoints, our sleeve folds

start in the center between two keypoints at the end of a sleeve,

and the fold line passes through a keypoint in the armpit. All the

fold specifications in this work were statically scripted, but we

note that it could be interesting to let these be the output of a

higher-level decision algorithm.

The gripper end pose is calculated by rotating the start pose

175 degrees around the fold line and then setting its height at

5 cm. We end the fold in this pose slightly above the table to

make it easy for the robot to retract its gripper without colliding.

We assume that a grasping strategy is used where the gripper

approaches from the side and slides underneath the cloth, as

in e.g., Jia et al., 2018. We chose this kind of grasp because it

is less intrusive and usually causes less localized wrinkling than

a top-down pinch. Additionally, note that we do not simulate
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FIGURE 4

Visualization of the trajectory search space. The white dots

indicate the peaks of the trajectories.

the grasping of the garment. Instead, we represent the gripper

as cuboid that encompasses 2.5 cm of the cloth at the cloth’s

edge. All triangles that have vertices in this cuboid are considered

grasped and move together with the gripper while it executes

its trajectory.

We note that the gripper start pose must not necessarily

be part of the fold specification, and it could be interesting to

algorithmically select an appropriate start pose. However, for the

folds we considered in this work, we found it straightforward

to script the gripper start poses given the keypoints. Similarly,

optimizing the gripper end pose could result in a slight gain

in performance.

3.2. Trajectory parameterization and
search space

The basis of all trajectories in this work is quadratic Bézier

curves. Bézier curves are smooth, polynomial interpolations of

a set of control points. A Bézier curve of degree n has n + 1

such control points, a quadratic Bézier curve thus has three. A

convenient property of Bézier curves is that they pass through

the start and end control points. In our case, these are given by

the gripper’s start and end location. The shape of the curve is

then only determined by the remaining middle control point.

Bézier curves are simple and provide us with just the right

amount of adaptability. The gravity folds procedure uses a

trajectory that consists of two straight parts (Berg et al., 2010).

Petrík et al. (2015) proposes a circular trajectory. However,

we argue that these fixed trajectories don’t have sufficient

adaptability (Petrík and Kyrki, 2019). A circular arc has a

steep start and keeps the cloth tensioned, this constant tension

can be undesirable at times as it can cause severe shifting. In

this work, we sought a simple and illustrative trajectory that

nevertheless could be effective. Bézier curves were also used for

cloth folding by Li et al. (2015). However, they used cubic Bézier

curves and thus had two free control points. They optimize the

cartesian coordinates of these points and thus have to optimize

six degrees of freedom.We decided to reduce the dimensionality

of the search space even further, to only two. We do this by

constraining the location of this middle control point to lie in

the vertical plane that passes through the center between the

start and end locations. Note that the fold line also lies in this

plane. Moving the middle control point closer to the start or end

could produce interesting trajectories, however, for this work we

deemed this degree of freedom was not necessary.

The trajectory thus has two remaining degrees of freedom,

the height and the horizontal position of the middle control

point. Within these two degrees of freedom, we evaluate a set

of trajectories from a fan-shaped region, as seen in Figure 4.

The fan covers the region we considered where reasonable

possibilities for good folding would lie. We considered several

possible shapes for the search space but ultimately decided

on this fan-shaped region. Each point in this region can be

described with two easily interpretable parameters, a height ratio

and a tilt angle, similar to how points are specified in polar

coordinates. The height ratio determines the height of the peak

of the trajectory as a fraction of half the distance from start to

end. The tilt angle determines howmuch the trajectory is rotated

around the line that connects the start and end.

The height ratio for the search space goes from 0.1 up to

1.0, the tilt angle goes from 0 up to 60 degrees. There is a trade-

off between search space size and how dense it can be sampled,

and for this reason, we chose to tilt the trajectories only in one

direction. This results in an asymmetric search space. Choosing

a direction to tilt proved uncomplicated for all considered folds.

For example, for the sleeve folds, the search space is tilted toward

the shoulder, as trajectories that tilt away from it would likely

cause the shirt to shift.

The motion of the gripper along each trajectory takes exactly

4 s to complete for all scenarios except for three speed variations.

We chose this as default because it is comparable to the speed of

a person that is folding carefully. The speed of the gripper along

the trajectory is also not constant. To ensure a slow and smooth

start and end, we use the timing of the minimum jerk trajectory

along the path given by the Bézier curve. The longest trajectories

are those with height ratio 1. The peak velocity of the gripper

along these trajectories in the 4-s case is 0.65 m per second.

The orientation of the gripper along the path is determined by

spherical linear interpolation (Shoemake, 1985) of the start and

end orientation.

3.3. Evaluation of the folding trajectories

As the final step of a simulation run, we evaluate the

performance of the attempted folding trajectory. We do this by

comparing the simulated cloth mesh with an idealized perfectly

folded target mesh, shown side-by-side in Figure 5. This target

mesh is constructed by geometrically rotating the part to be

folded around the fold line by 180 degrees and then raising
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FIGURE 5

On the left is an example of a simulated result and on the right the idealized target shape. The image on the left has a loss of 2.1 cm, which

means the vertices are on average 2.1 cm removed from their desired location.

it slightly, e.g., by the thickness of the chosen fabric. Then

we calculate the average distance between each vertex in the

simulated mesh to its corresponding location in the target mesh.

We will refer to this as the trajectory’s loss:

1

n

n
∑

i=1

√

(v∗i − vi)2 (1)

Here n is the amount of vertices in the cloth mesh, vi the

position of the vertex with index i in the simulated mesh and

v∗i the position of the corresponding vertex in the target mesh.

Because the loss represents a deviation from an ideal target,

high losses are worse than low losses. A loss of 0 means that

the simulated result exactly matches the target. For example, we

found that a loss of greater than 2 cm for the sleeve folds in

this work generally meant that the fold had failed significantly.

Losses of around 5 mm generally indicate that fold is already

good, but might have minor defects such as small wrinkles. A

loss of 2 mm or less corresponds with almost perfect folds that

only show negligible and barely visible and defects. The height

from the bottom to the top of all shirts is 63.5 cm. Also note

that the mean distance values mentioned above are only valid

formost sleeve folding cases. The thickmaterial and the different

fold steps require different thresholds. A threshold below which

a fold can be considered successful should be decided separately

for different scenarios.

We chose this mean distance loss because it is simple and

captures the two importing failure modes for folding: shifting

and wrinkling of the cloth. However, the loss on its own does

not tell us whether the fold failed due to shifting or wrinkling.

Research into loss functions for cloth folding which disentangle

wrinkling and shifting would be highly useful.

3.4. Experimental setup

The main purpose of the experiments is to gain general

insight into which factors affect folding success. For this reason,

we test the performance of the same trajectory search space, but

in several scenario variations. By examining which trajectories

succeed and which fail in different scenarios, we can learn how

much adaptability is necessary for robust cloth folding. The

variations we consider are cloth shape, clothmaterial, the folding

step within a folding sequence and folding velocity. In total, we

evaluate 13 such scenarios.

For simplicity, all scenarios are variants of a default scenario.

The default scenario consists of a shirt with long straight sleeves

that are approximately orthogonal to the body of the shirt. This

shape was mimicked from a sewing pattern that was bought

from a local tailor. The material for this scenario is the type of

cotton measured by Penava et al. (2014). The global coefficient

of friction was set to 0.5. This governs the friction between the

cloth and the ground plane, and the self-friction of the cloth.

The first kind of variation we will consider is the shape of the

shirt. We try two shapes different from the default: one with long

sleeves, but angled downwards and one with short sleeves. For

the material variations, we initially compared the cotton, wool,

and polyester materials from Penava et al. (2014). However, the

results for wool and polyester were very similar to cotton so we

do not include them. Instead, we added more extreme material

variations such as cotton which is 5 times as thin or thick. The

default cotton has the following material parameters: its Young’s

modulus is 0.821 GPa, its Poisson’s ratio 0.243, its weight 150.3

g/m2 and its thickness 0.318 mm. To investigate the influence of

friction we test scenarios with global coefficients of friction of 0.2

and 0.8, instead of the default 0.5.

Further, because we are not solely interested in folding

sleeves, but entire garments, we investigate an entire 5-step

folding sequence. The sequence consists of first folding in the

two sleeves, then the two sides, and to conclude a fold over

the middle of the shirt. The folding of the sides and the fold

over the middle are performed with two grippers that move

simultaneously. The simulation of the second folding stage,

starts from the best result of the first stage, and the third stage

analogously starts from the best second stage result. For the
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folding sequence to succeed, each individual stage must succeed.

If the sleeve folding fails, the folding of the sides will likely

also fail.

Finally, different folding velocities might be desirable,

depending on the hardware setup or constraints. For this reason,

we tested three speed variations for the default sleeve folding

scenario. The default length of time to complete the trajectories

is 4 s. The variations we test are 1, 2, and 8 s.

4. Results

The experiments are presented in three subsections. In

the first we examine the three shape variations. The section

thereafter presents the four material variations. Then we

consider the three stages of the full folding sequence. Finally, the

results for the velocity variations are shown.

All experiments were run on a single machine with a 4-

core 3.40 GHz Intel i5-4670K CPU. There are 13 scenarios

and for each scenario 134 trajectories were tested, so in total

1,340 simulations were run. The total time it took to run all

simulations was approximately 405 h, which is about 14 min on

average per simulation.

To complement this section we added a

Supplementary Video that shows the best and worst simulations

for each scenario.

4.1. Shape variations

The three shape variations considered in this subsection can

be seen in Figure 6. The search space which is derived from

each shirt’s shape is also visualized. The performance of the

trajectories in these search spaces are shown side-by-side in

Figure 7 for the shape variations. Additionally, we also show

images of several simulation results in Figure 8 as a reference

to interpret the loss values and to give insight into the reasons

for the failures. The image on the left always corresponds to

the best folded result, while the image on the right shows the

worst. In between are three manually selected images to show

various failures and their loss. Below each image we display the

parameter combination and the resulting loss in the following

format: (height ratio, tilt angle): mean distance.

When looking at the trajectory performances for shape 1 in

Figure 7A we can make several observations. First, we can see

that many of the trajectories in the search space perform well.

Besides a single trajectory at the bottom, only the trajectories in

the top left, those with high height ratio and low tilt result in

failed folds. For the worst result we can see that the high loss

is because the resulting fold line in the cloth does not coincide

with the desired fold line and also that the end of the sleeve is

crumpled. The single failure at the bottom is due to a different

failure mode: a large wrinkle that appears because the trajectory

is so low. This failure can be seen in Figure 8C.

The two shape variations we consider can be seen in Figure 6

as shape 2 and shape 3. The results for these shapes can be seen

in Figures 7B,C. For shape 2 we see a similar pattern emerge in

the loss landscape as for the default shape, namely the failures

mostly occur in the top left and for the lowest trajectories. Also

note that for this shape almost no straight trajectories, i.e., those

with a tilt angle of 0 degrees, perform well. This means that the

extra degree of freedom allowed by tilting is highly beneficial

in this case. The results for shape 3 show an entirely different

pattern than those of the first two shapes. As opposed to before,

the trajectories in the top left do not perform poorly, in fact

the third best trajectory is located there, with a height ratio 1

and tilt angle 7 degrees. The lowest trajectories similarly show

a few failures. Also notable is that the losses of the bulk of the

trajectories for shape 3 are slightly worse than for shape 1 and

2. When looking closely at the image of the best result for shape

3, Figure 8K, a small gap can still be seen between the fold line

and the shirt. This is probably due to the end pose of the gripper

being slightly suboptimal.

For all tested shape variations we see that there is a large

region of well-performing trajectories. Although there are a few

failures to be aware of for each shape, there still is overlap

between the successful regions. The region in the middle of

the search space, from height ratio 0.4 to 0.8 and tilt angle

from 15 to 45 degrees, performs well for all shapes. This means

that a single static trajectory from that region could fold most

sleeves satisfactory for materials that behave similar to the

simulated cotton.

4.2. Variation of material properties

4.2.1. Thickness variation

In this subsection, we examine the result of the first

type of material variation: the cloth’s thickness. Figure 9

shows the trajectory performances for the thin and thick

materials, Figure 10 shows images of several simulated results.

The loss landscape for the thin material is similar to the

that of the default material, except that it is less smooth.

This non-smoothness is because the thin material allows

much finer wrinkles to form. The occurrence and magnitude

of these fine wrinkles appears chaotic, trajectories with

higher loss than their neighbors are speckled throughout

the loss landscape. The trajectory of the worst result is

near the bottom at height ratio 0.24 and tilt angle 20

degrees. This particular trajectory causes the sleeve to twist,

which causes a large amount of wrinkling, as can be seen

in Figure 10E.

The losses for the thick material were significantly higher

for all trajectories. So to ensure the variability of loss landscape

remained visible, note that the maximum of the color bar range

Frontiers inNeurorobotics 07 frontiersin.org

https://doi.org/10.3389/fnbot.2022.989702
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


De Gusseme and wy�els 10.3389/fnbot.2022.989702

FIGURE 6

The three examined shapes. Note how the shape of the cloth a�ects the distance between the start and end points of the fold, and therefore

also the spatial size of the search range.

FIGURE 7

Trajectory performances for the default scenario. The performance for shapes 1, 2, and 3 are shown in (A), (B), and (C) respectively.

is five times higher than for the other sleeve folding scenarios.

The reason that even the best trajectories have higher losses

than those of the thinner shirts is because the thickness of

the material causes the sleeve to bend with a large radius of

curvature. Visually this reminds of how paper or leather bends.

The loss landscape in general shows a unique and clear pattern:

the trajectory in the top left performs best and performance

gradually drops as you get further away. For an unclear reason

a few trajectories with tilt angle 60 degrees seem to break this

trend by having lower losses than the surrounding trajectories.

As can also be see for the worst result, the failures for the thick

material are all due to the shirt sliding. The thickness of the

material prevents the formation of wrinkles, which causes the

horizontal force of the gripper on the shirt to build up. When

this horizontal force surpassed the maximum static friction, the

shirt starts to slide.

It is clear that material thickness has a large effect on

trajectory performance. This is because cloth thickness strongly

influences which failure mode is dominant: thin material tends

to wrinkle and thick material tends to slide. It thus seems highly

necessary to adapt the folding trajectory based on information

about the thickness of the garment to be folded.

4.2.2. Friction variation

The trajectory performances for the second type of material

variation, friction, are shown in Figure 11, the images are shown

in Figure 12. For the low friction scenario we can see that

the loss landscape differs from the previous scenarios. The

top left and the middle right are clearly low performance

areas. The best region seems to be a small band around

height ratio 0.2. The worst trajectory is the lowest one at
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FIGURE 8

Images of simulated results for the shape variations. For each row, the images are ordered from best (left) to worst (right) result. The annotation

below each image is in the following format: (height ratio, tilt angle): mean distance. The first row (A–E) shows the images for shape 1, the

second row (F–J) for shape 2, and the third (K–O) for shape 3.

the bottom and shows severe crumpling. However this is

only a single instance, the main failure mode is simply that

the sleeve is folded too far which also causes an incorrect

fold line.

For the high friction scenario results we can see that the

loss landscape has not changed much compared to the default

friction. Almost all low and medium high trajectories result in

highly successful folds in both scenarios. One difference is that

the worst trajectory by far for the high friction scenario is the

lowest trajectory.

From the three tested friction variations we

can conclude that folding with low friction is

significant more complex than folding with medium or

high friction.

4.3. Folding sequence

In this subsection, we discuss the results of the three stages

of a full folding sequence of the default long-sleeved shirt. The

trajectory performances are shown in Figure 13, the images in

Figure 14. In the first stage, both sleeves are folded in. We can

see that as expected, the loss landscape for folding two sleeves is

very similar to the folding a single sleeve.

More interesting are the results for the second stage where

the sides of the shirt are folded in. Firstly, note the gray dots

in the loss landscape which represent missing data due to failed

simulations. Simulations can fail if the gripper forces the part of

the cloth it holds to intersect with another part of the cloth. C-

IPC prevents these intersections for freely moving cloth parts,
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FIGURE 9

Trajectory performances for the thickness variations. Note that the color scale is di�erent for the thick material compared to the other sleeve

folding experiments. The performance for the thin and thick material are shown in (A) and (B) respectively.

FIGURE 10

Images of simulated results for the thickness variations. For each row, the images are ordered from best (left) to worst (right) result. The

annotation below each image is in the following format: (height ratio, tilt angle): mean distance. The first row (A–E) shows the images for the

thin material and the second row (F–J) for the thick material.
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FIGURE 11

Trajectory performances for the friction variations. The performance for the low friction and high friction scenario are shown in (A) and (B)

respectively.

FIGURE 12

Images of simulated results for the friction variations. For each row, the images are ordered from best (left) to worst (right) result. The annotation

below each image is in the following format: (height ratio, tilt angle): mean distance. The first row (A–E) shows the images for the low friction

scenario and the second row (F–J) for the high friction scenario.

but can’t recover from forced intersections. The region with

trajectories that performs poorly for the sides is completely

different than that for the sleeves. For the sleeves, the high,

straight trajectories led to the worst folds, while for the sides
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FIGURE 13

Trajectory performances for the three phases of the folding sequence: the folding of the sleeves (A), the sides (B), and then the final fold over the

middle (C). The material used in this sequence is the default cotton. The gray dots in the figures represent simulations for which no loss was

calculated because they crashed due to forced self-intersection of the cloth.

these give the best results. Tilting the trajectories also seems

universally bad for folding the sides.

For the final fold in the sequence, i.e., the fold over the

middle of the shirt, we can see that the lowest trajectories all

perform poorly. The trajectories tilted close to 60 degrees also

show relatively high losses. In addition to those failures, there is

a large region in the middle and top left with good performance.

The results for the full folding sequence show that there are

trajectories within in the search space that lead to nicely folded

results for all folding steps. Furthermore, the loss landscapes

show that for each fold in the sequence, a relatively large region

of high performance exists. These regions are also distinct and

specific for each folding step. This indicates that is beneficial to

differentiate the folding strategy between steps.

4.4. Velocity variation

The effect of folding velocity on performance and the

corresponding images can be seen in Figure 15. In the

performance plots we can see that when folding slower, with

8-s trajectories, the region with well-performing trajectories is

largest. When the velocity is increased, such that the trajectory

takes 2 s, we can see that many trajectories still achieve low loss

values. However, the region with failures is already larger than in

default 4-s case. When increasing velocity even further such that

the folds only take 1 s, the loss landscape changes significantly.

The region with good performance in the 2, 4, and 8 s cases has

almost entirely disappeared. In this setting, the gripper moves

so fast that the cloth almost always moves too far due to its

inertia. For very high speed cloth folding, different paths for

the trajectory might yield better results. At moderate speeds the

current trajectories can achieve many successful folds.

5. Discussion

In this work, we thoroughly investigated cloth folding in the

high fidelity C-IPC simulator. We found that with a relatively

simple trajectory-based approach, we can successfully perform

a full cloth folding sequence. We were able to characterize

the folding trajectories with two parameters: one parameter

for the trajectory’s height and one parameter to tilt it. For all

scenarios we investigated, we found that there are trajectories

in our search space that lead to a satisfactory folded result.

However, we also found that adapting the trajectory to the

cloth shape, cloth material, and the folding step is crucial for

success. Consequently, for a transfer to a real-world scenario,

it will be important to estimate the cloth’s properties so that

the parameters can be tuned correctly. Several solutions can be

tried, such as material estimation from video or other sensors,

or closed-loop controllers that can adapt to unpredictedmotions

of the cloth. However, even with fitted parameters, discrepancies

between simulation and reality are unavoidable.

To use our method for practical real world folding, an

additional system is needed that selects a suitable trajectory

from observations. As a first step, one could simply select a

single high-performing trajectory from a default simulated shirt,

and use it to fold a real-world shirt. More advanced systems

could perceive more information about the present garment.

The shape could be estimated using keypoint detection and

the material properties could be approximated from tactile

information of short interactions. With this information the

Frontiers inNeurorobotics 12 frontiersin.org

https://doi.org/10.3389/fnbot.2022.989702
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


De Gusseme and wy�els 10.3389/fnbot.2022.989702

FIGURE 14

Images of simulated results for the three phases of the folding sequence. For each row, the images are ordered from best (left) to worst (right)

result. The annotation below each image is in the following format: (height ratio, tilt angle): mean distance. The first row (A–E) shows the images

for the sleeves, the second row (F–J) for the sides, and the third (K–O) for the middle. Note that the side folding stage starts from the cloth as

seen in (A), the best result from the sleeve folding. The middle folding similarly starts from (F), the best result from the side folding.

system could then look for an appropriate trajectory, e.g.,

through nearest neighbor search. It is thus not necessary to

run the computationally expensive simulator at runtime to use

our method.

To use our method for practical real world folding, an

additional system is needed that selects a suitable trajectory

from observations. As a first step, one could simply select a

single high-performing trajectory from a default simulated shirt,

and use it to fold a real-world shirt. More advanced systems

could try to estimate the cloth shape and approximate material

properties, e.g., from cameras, tactile information and short

interactions. Then the system could use a lookup table or nearest

neighbor search in a dataset of precomputed simulations to

select an appropriate trajectory. It is thus not necessary to

run the computationally expensive simulator at runtime to use

our method.

In future work, we will investigate the robustness of

trajectories transferred from simulation to real-world setups.We

believe that by using simulation that is validated against real-

world behavior we can, in time, give robots the capability to

autonomously and reliably fold clothes.
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FIGURE 15

The first row shows the trajectory performances (A–C) for the velocity variations respectively 1, 2, and 8 s. Below (D–R) are the images of

simulated results for the velocity variations. For each row, the images are ordered from best (left) to worst (right) result. The annotation below

each image is in the following format: (height ratio, tilt angle): mean distance.

Frontiers inNeurorobotics 14 frontiersin.org

https://doi.org/10.3389/fnbot.2022.989702
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


De Gusseme and wy�els 10.3389/fnbot.2022.989702

Author contributions

V-LD and Fw contributed to conception and

design of the experiments. V-LD implemented

and ran the experiments and wrote the first

draft of the manuscript. Both authors contributed

to manuscript revision, read, and approved the

submitted version.

Funding

This research was partially funded by the Research

Foundation Flanders (FWO) under Grant Number 1SD4421N

and the AI for Flanders program.

Acknowledgments

V-LD and Fwwould like to thank our colleague Thomas Lips

for the many valuable conversations and insightful comments

that greatly helped in the creation of this work.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fnbot.2022.989702/full#supplementary-material

References

Antonova, R., Shi, P., Yin, H., Weng, Z., and Jensfelt, D. K. (2021). “Dynamic
environments with deformable objects,” in Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), eds
J. Vanschoren, and S. Yeung. Available online at: https://datasets-benchmarks-
proceedings.neurips.cc/paper/2021/hash/b53b3a3d6ab90ce0268229151c9bde11-
Abstract-round2.html

Berg, J., Miller, S., Goldberg, K., and Abbeel, P. (2010). “Gravity-based
robotic cloth folding,” in Algorithmic Foundations of Robotics IX, eds D. Hsu,
V. Isler, J.-C. Latombe, and M. C. Lin (Berlin; Heidelberg: Springer), 409–424.
doi: 10.1007/978-3-642-17452-0_24

Doumanoglou, A., Stria, J., Peleka, G., Mariolis, I., Petrik, V., Kargakos, A., et al.
(2016). Folding clothes autonomously: a complete pipeline. IEEE Trans. Robot. 32,
1461–1478. doi: 10.1109/TRO.2016.2602376

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D.
(2018). “Deep reinforcement learning that matters,” in Proceedings of the AAAI
Conference on Artificial Intelligence (New Orleans). doi: 10.1609/aaai.v32i1.11694

Jangir, R., Alenya, G., and Torras, C. (2020). “Dynamic cloth
manipulation with deep reinforcement learning,” in 2020 IEEE International
Conference on Robotics and Automation (ICRA) (Paris: IEEE), 4630–4636.
doi: 10.1109/ICRA40945.2020.9196659

Jia, B., Hu, Z., Pan, J., andManocha, D. (2018). “Manipulating highly deformable
materials using a visual feedback dictionary,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA) (Brisbane, QLD: IEEE), 239–246.
doi: 10.1109/ICRA.2018.8461264

Jiménez, P. (2017). Visual grasp point localization, classification and state
recognition in robotic manipulation of cloth: an overview. Robot. Auton. Syst. 92,
107–125. doi: 10.1016/j.robot.2017.03.009

Kadian, A., Truong, J., Gokaslan, A., Clegg, A., Wijmans, E., Lee,
S., et al. (2020). Sim2real predictivity: does evaluation in simulation
predict real-world performance? IEEE Robot. Automat. Lett. 5, 6670–6677.
doi: 10.1109/LRA.2020.3013848

Kim, C. M., Danielczuk, M., Huang, I., and Goldberg, K. (2022). “Simulation
of parallel-jaw grasping using incremental potential contact models,” in 2022
IEEE International Conference on Robotics and Automation (Philadelphia, PA).
doi: 10.1109/ICRA46639.2022.9811777

Li, M., Ferguson, Z., Schneider, T., Langlois, T. R., Zorin, D., Panozzo,
D., et al. (2020). Incremental potential contact: intersection-and inversion-free,
large-deformation dynamics. ACM Trans. Graph. 39, 49. doi: 10.1145/3386569.
3392425

Li, M., Kaufman, D. M., and Jiang, C. (2021). Codimensional incremental
potential contact. ACM Trans. Graph. 40, 1–24. doi: 10.1145/3476576.3476756

Li, Y., Yue, Y., Xu, D., Grinspun, E., and Allen, P. K. (2015). “Folding
deformable objects using predictive simulation and trajectory optimization,”
in 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Hamburg: IEEE), 6000–6006. doi: 10.1109/IROS.2015.
7354231

Lin, X., Wang, Y., Olkin, J., and Held, D. (2021). “Softgym: benchmarking deep
reinforcement learning for deformable object manipulation,” in Proceedings of the
2020 Conference on Robot Learning, eds J. Kober, F. Ramos, and C. Tomlin (PMLR).
Available online at: https://proceedings.mlr.press/v155/

Lips, T., De Gusseme, V.-L., and Wyffels, F. (2022). “Learning keypoints from
synthetic data for robotic cloth folding,” in 2022 International Conference on
Robotics and Automation (ICRA) (Philadelphia), 4.

Maitin-Shepard, J., Cusumano-Towner, M., Lei, J., and Abbeel, P. (2010).
“Cloth grasp point detection based on multiple-view geometric cues with
application to robotic towel folding,” in 2010 IEEE International Conference
on Robotics and Automation (IEEE), 2308–2315. doi: 10.1109/ROBOT.2010.
5509439

Matas, J., James, S., and Davison, A. J. (2018). “Sim-to-real reinforcement
learning for deformable object manipulation,” in Conference on Robot Learning
(Zürich: PMLR), 734-743.

Miller, S., Fritz, M., Darrell, T., and Abbeel, P. (2011). “Parametrized
shape models for clothing,” in 2011 IEEE International Conference on
Robotics and Automation (Shanghai: IEEE), 4861–4868. doi: 10.1109/ICRA.201
1.5980453

Narain, R., Samii, A., and O’brien, J. F. (2012). Adaptive anisotropic remeshing
for cloth simulation. ACM Trans. Graph. 31, 1–10. doi: 10.1145/2366145.2366171
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