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Objective: Brain-computer interface (BCI) can translate intentions directly into

instructions and greatly improve the interaction experience for disabled people

or some specific interactive applications. To improve the e�ciency of BCI, the

objective of this study is to explore the feasibility of an audio-assisted visual

BCI speller and a deep learning-based single-trial event related potentials (ERP)

decoding strategy.

Approach: In this study, a two-stage BCI speller combining the motion-onset

visual evoked potential (mVEP) and semantically congruent audio evoked ERP

was designed to output the target characters. In the first stage, the di�erent

group of characters were presented in the di�erent locations of visual field

simultaneously and the stimuli were coded to the mVEP based on a new

space division multiple access scheme. And then, the target character can be

output based on the audio-assisted mVEP in the second stage. Meanwhile,

a spatial-temporal attention-based convolutional neural network (STA-CNN)

was proposed to recognize the single-trial ERP components. The CNN can

learn 2-dimentional features including the spatial information of di�erent

activated channels and time dependence among ERP components. In addition,

the STA mechanism can enhance the discriminative event-related features by

adaptively learning probability weights.

Main results: The performance of the proposed two-stage audio-assisted

visual BCI paradigm and STA-CNN model was evaluated using the

Electroencephalogram (EEG) recorded from 10 subjects. The average

classification accuracy of proposed STA-CNN can reach 59.6 and 77.7% for

the first and second stages, which were always significantly higher than those

of the comparison methods (p < 0.05).

Significance: The proposed two-stage audio-assisted visual paradigm showed

a great potential to be used to BCI speller. Moreover, through the analysis of

the attention weights from time sequence and spatial topographies, it was

proved that STA-CNN could e�ectively extract interpretable spatiotemporal

EEG features.

KEYWORDS

brain-computer interface, audio-assisted visual evoked EEG, space division multiple

access, spatial-temporal attention, convolutional neural network
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Introduction

As an emerging human-computer interaction technique, the

brain-computer interface (BCI) can realize the communication

between the brain and the external devices without depending

on the peripheral nervous and muscular tissues. The BCI

can significantly improve the interaction experience for

disabled people or some specific interactive applications

including medical rehabilitation, healthcare, intelligent control,

entertainment and so on (Chaudhary et al., 2016; Song

et al., 2020). The scalp Electroencephalogram (EEG)-based BCI

system has received more attention due to its easily used,

relatively inexpensive, and high time resolution. Currently,

some kinds of EEG signals with intentions modulated from

the large neuronal activity are widely used in BCI systems

including sensorimotor rhythm (SMR), steady-state visual

evoked potential (SSVEP), and event-related potential (ERP).

The SMR-based BCI usually requires a relatively long training

time and even becomes ineffective after a certain amount of

training for some users (Blankertz et al., 2010). The SSVEP-

based BCI usually has a strong visual stimulation, which could

cause the user’s visual fatigue (Allison et al., 2014).

In the past few years, ERP-based BCIs have been widely

investigated. One is the P300 speller, where a P300 component

is elicited when the target character in a matrix is flashed with

a small probability (Aloise et al., 2012). The P300 is a positive

peak potential with a latency of about 300ms after the stimulus

onset. To avoid flashing stimuli, the motion-onset visual evoked

potential (mVEP) has been widely applied in BCI by attending

to the target with a moving bar in an overt or covert way (Hong

et al., 2009; Schaeff et al., 2012). The mVEP is composed of three

main ERP components: P1 (P100), N2 (N200) and P2 (P200).

The positive peak P1 with a latency of about 130ms and the late

negative peak N2 with a latency of 160–200ms are considered as

the main motion specific components (Zhang et al., 2015).

However, most of the ERP-based BCI must take a long time

to output a target, where the stimuli must traverse all the target

and nontarget with mutiple different time slices. To improve the

detection speed, the dual-directional motion encoding paradigm

was presented to reduce the stimuli presentation time by half

(Liu et al., 2021). A new speller based on miniature asymmetric

visual evoked potentials and space-code division multiple access

(SDMA) scheme was developed, which can reduce stimuli time

to implement an efficient BCI (Xu et al., 2018). For the SDMA

scheme, the stimuli of targets and nontargets appear at different

locations in the visual field simultanously, where an intended

stimulus is attended to output the target quickly (Gao et al.,

2014). Therefore, this study explored a new SDMA scheme to

develop an efficient mVEP-based speller.

Compared with spontaneous EEG, the amplitude of single-

trial ERP is so small that it is difficult to identify the target.

Generally, to improve the signal-to-noise ratio (SNR) of ERP,

averaging the EEG over several trials is used to obtain the

discriminated ERP components. Nevertheless, it would decrease

the output speed of the BCI system. An audiovisual hybrid BCI

was designed to evoke stronger P100, N200, and P300 responses

than the visual modality (Wang et al., 2015). The observed

audiovisual integration effects can enhance the discriminability

between target and nontarget brain responses. Moreover,

an audiovisual P300-speller paradigm was proposed, which

significantly improved the classification accuracies compared

with the visual-based P300-speller (Lu et al., 2019). So, to

enhance the quality of the ERP components, a semantically

congruent audio-assisted mVEP paradigm was further used to

output the target character in this study.

In addition, it is essential to decoding the ERP from a

single-trial EEG to achieve fast and accurate target output.

In some methods, the ERP components and spontaneous

EEG were separated from a single-trial EEG based on a

priori ERP pattern using wavelet transform (WT) (Quiroga,

2005), independent component analysis (ICA) (Lee et al.,

2016) and so on. An iterative principal component analysis

(PCA) method was proposed to extract single-trial ERP

by reconstructing the principal components with a higher

correlation with the target ERP (Mowla et al., 2016). Other

methods aimed to improve the classification performance of

single-trial ERP. The linear discriminant analysis (LDA)

usually worked well for single-trial ERP classification.

However, an accurate covariance matrix estimation was

required in high-dimensional feature spaces. A shrinkage

LDA was proposed to achieve excellent results for single-

trial ERP classification (Blankertz et al., 2011). Meanwhile,

a spatial-temporal discriminant analysis (STDA) algorithm

was introduced to learn spatial and temporal projection

matrices collaboratively by adopting matrix features, and

the ill-conditional problem of covariance matrix can be

effectively solved (Zhang et al., 2013). To enhance the SNR

of ERP and classification accuracy simultaneously, current

detection methods of single-trial ERP were reviewed, and

the best performance of the xDAWN-based spatial filter and

Bayesian LDA method was proved during a rapid serial visual

presentation task (Cecotti and Ries, 2017). A data-adaptive

spatiotemporal filtering method based on the clustering

and array WT was proposed to improve the discriminative

features of single-trial ERP (Molla et al., 2018). To adapt

to the ERP diversities, the discriminative canonical pattern

matching (DCPM) was proposed and obtained outperformed

classification performance for the single-trial classification of

EEG datasets including P300, mVEP components and so on

(Xiao et al., 2020).

Recently, deep learning has been demonstrated that it can

deal with EEG feature learning and classification effectively

(Amin et al., 2019). A convolutional neural network (CNN)

with a layer dedicated to spatial filtering was proposed to detect
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the single-trial ERP (Cecotti et al., 2014). The EEGNet, using

the depthwise and separable CNN, was introduced to construct

an EEG-specific model, which achieved comparably high

performance for within-subject and cross-subject classification

(Lawhern et al., 2018). Furthermore, a novel CNN model

was proposed to better use the phase-locked characteristic to

extract spatiotemporal features for single-trial ERP classification

(Zang et al., 2021). However, due to the inter-trial and inter-

subject variability of single-trial ERP, it is still challenging

to build an efficient decoding strategy for single-trial ERP.

Current studies have suggested that large inter-trial and inter-

subject differences exist in the amplitude and latency of ERP

components. So, it becomes crucial to construct an adaptive

learning model to extract the spatial-temporal features from

single-trial EEG.

In sum, there are still some current challenges to the

application of the EEG-based BCI, including the friendly

cognitive load and EEG characteristics-guided BCI classification

algorithms (Xu et al., 2021). Compared with the flashing or

flickering visual BCIs, the mVEP is a convenient way to

encode targets with briefly moving stimuli (Libert et al., 2022b).

On single trial classification, CNN can achieve comparable

performance to both the LDA and support vector machine,

but slightly less stable and interpretable (Vareka, 2020). In

this study, similar to the Hex-o-Spell (Treder and Blankertz,

2010), a two-stage overt attention BCI speller combining

with the mVEP and semantically congruent audio evoked

ERP was designed to output a target by taking advantage of

audiovisual properties. The main contributions of this paper are

as follows.

(1) In the first stage, the different character groups coded

with mVEP were presented simultaneously in the

different locations of the visual field based on a new

SDMA scheme to improve the efficiency of visual

stimuli presentation.

(2) The target character was selected based on the audio-

assistedmVEP in the second stage, which can enhance the

quality of the ERP components.

(3) The spatial-temporal attention-based CNN (STA-CNN)

was proposed to deal with single-trial ERP components

learning and classification. The STA-CNN can effectively

extract interpretable spatiotemporal EEG features by

adaptively learning probability weights.

The rest of the paper is organized as follows:

materials and methods are demonstrated in Section

Materials and methods. Then experiment results of

our proposed BCI speller are presented in Section

Experiment results.. Finally, the discussion and conclusion

of this paper are provided in Section Discussion

and conclusions.

Materials and methods

Two-stage audio-assisted visual BCI
paradigm

This study implemented a two-stage audio-assisted visual

copy-spelling BCI, as shown in Figure 1. The paradigm was

designed by using the Psychtoolbox in the Matlab 2012b

environment. The visual stimuli were presented on a 17-inch

LCD monitor with a 60Hz refresh rate and 1440 × 900 pixels

resolution. The audio stimuli were played by the headphone at a

sensible volume.

In the first stage, forty alphanumeric characters were divided

into 8 groups with 5 characters in each group, as shown in

Figure 1A, wherein the size of each character group area was

280 × 280 pixels, and the size of each motion visual stimulus

(red vertical bar) was 10× 80 pixels. The target character group

was selected based on the mVEP with a new SDMA scheme.

For the SDMA scheme, three sub-trial motion visual stimuli

sequences constituted eight parallel spatial channels. In each

group, the red vertical bar appeared on the left side and moved

rightward until it reached the right side, which lasted for 0.3 s

as a brief motion-onset stimulus. Specifically, the motion-onset

stimulus from left to right was regarded as code “1”, while no

motion-onset stimulus was regarded as code “0”. The interval

between two successive motion-onset stimuli was 0.2 s, and a

complete stimulation sequence lasted for 1.5 s. Eight groups of

code sequences were allocated to different character groups, as

shown in Figure 1B. Take character A as an example, and its

group code is “101”. That is, the ‘moving bar—none—moving

bar’ was presented by turns in the location of the top left group.

During the spelling period, the motion-onset stimuli would be

presented simultaneously for all character groups with different

code sequences. The spatial information is embedded in the

group codes. After three sub-trials of motion-onset stimuli in the

first stage, the target character group would be selected.

Upon choosing of a character group, the speller switches to

the second stage, and the target character can be selected based

on the audio-assisted mVEP. One example of the second stage

paradigm, including motion-onset stimuli and pronunciation

of character A, is shown in Figure 1C. The motion-onset

stimuli and semantically congruent audio (pronunciation) for

each character would be presented simultaneously. During the

presentation of audiovisual stimuli, when a moving bar was

presented on a character, the pronunciation of the character was

played by the headphone. Each group contained 5 characters,

and the audiovisual stimuli of each character were presented

randomly for 0.3 s with a time interval of 0.2 s. A complete

stimulation sequence lasted for 2.5 s. Specifically, the audiovisual

stimulation was similar to the “oddball” paradigm, and the

target stimulation produced a P300 response. In the stimulation

interface, the size of each character area was 170 × 250
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FIGURE 1

Speller paradigm example. (A) The first stage paradigm includes 3 sub-trials motion-onset stimuli based on the SDMA scheme. (B) A list of group

code sequences for the first stage. (C) One example of the second stage paradigm includes motion-onset stimuli and pronunciation of

character A simultaneously.

pixels, and the size of each motion visual stimulus was 10 ×

100 pixels.

Subjects and experimental procedure

Ten healthy volunteers (22–26 years of age, 7 males, all right-

handed) with normal hearing and normal or corrected to normal

vision participated in this study. The experimental procedures

were performed in accordance with the Declaration of Helsinki.

The written informed consent was obtained from all subjects

before the experiments, and the required tasks of the study were

explained. After the experiments, the subjects received money

for their participation. A total of 467 characters, including 10

sentences, were spelled in the copy-spelling task for each subject,

with a 2min rest between the sentences.

During the experiment, subjects were seated 50 centimeters

in front of the LCD monitor. When a target character was

introduced, it was shown on the screen center. In the first

stage, the subjects were asked to pay attention to the center of

the character group where the target character is located. In

the second stage, the subjects were asked to pay attention to

the target character. During the experiment, the subjects were

asked to keep their heads as still as possible and blink less. And

then, EEG was recorded using the Neuroscan SynAmps2 system

with 64 channels referring to the international 10–20 electrode

positions (Xu et al., 2018). The reference electrode was put in

the position near Cz, and the ground electrode was put in the

position near Fz. The impedance between the scalp and the

electrode is <10 kΩ . The recorded EEG was bandpass-filtered

at 0.1–100Hz, sampled at a rate of 1000Hz, and then stored in

a computer.

After the EEG data were acquired, the recorded EEG data

were re-referenced to the average of the bilateral mastoids (M1

and M2), filtered by a band-pass filter at 1–30Hz, and down-

sampled at 200Hz. A 0.6 s time window was used to extract

event-related data frames from – 0.1 to 0.5 s after stimulus onset,

and 0.1 s baseline correction was applied in the first and the

second stages. The format of a single trial EEG data in both two

stages was a matrix of 62 channels× 100 time samples.
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Spatial-temporal attention CNN model

To enhance the discriminative event-related features from

spatial-temporal domains, the spatial-temporal attention CNN

(STA-CNN) model is proposed, which consists of four modules,

as shown in Table 1.

The module 1 is mainly used for temporal filtering, which

contains a reshape layer, a convolutional layer (Conv2D), and

a batch normalization (BN) layer. The reshape layer transforms

the EEG data into the input format of the Conv2D layer. And

then, we perform a convolutional step in time sequence, and

a 2D convolutional filter of size (1, 50) and stride 1 is used to

output 16 feature maps containing the EEG data at different

band-pass frequencies. The time length of the output is still 100

due to a 2D zero-padding of size (24, 25, 0, 0). In addition, the

BN layer is performed before the activation function to avoid the

distribution shift (Ioffe and Szegedy, 2015), and the exponential

linear unit (ELU) activation function is used.

The module 2 performs the temporal features extraction,

including a temporal attention layer, a Conv2D layer, and a BN

layer. In the temporal attention layer, we adopt the adaptive

event-related features learning, which can assign weights to

different time samples based on importance. Suppose the feature

maps T ∈ RNs×Nf×Nc×Nt from the module 1, we first

apply a grand average pooling (GAP) for each time sample

from different channels to obtain temporal-wise statistics T ∈

RNs×Nf×1×Nt , where Ns is the batch size, Nf is the number

of filters, Nc is the number of channels, Nt is the number

of time points. The temporal attention mechanism adopts

two fully-connected (FC) layers, including a dimensionality-

reduction Linear layer 1 with tanh activation function and

a dimensionality-increasing Linear layer 2, to reduce model

complexity and improve generalizability. Thus, the temporal

attention mechanism is expressed as follows.

At = softmax
(

Linear2
(

tanh
(

Linear1
(

T
))))

(1)

where the softmax function transforms the importance of

time points to a probability distribution. Finally, we consider

probability as the weight to recode the feature maps T at

each time point. Thus, the attentive temporal feature can be

represented as follows.

Ta = T • At (2)

The design of temporal attention on different periods utilizes

relatively stable latency of event-related features for different

channels. Then, we further perform a convolutional step in time

sequence, and a 2D convolutional filter of size (1, 51) and stride

1 is used to output 32 feature maps. The time length of output

becomes 50 to reduce the temporal dimension. And the BN layer

is performed before the ELU activation function. To prevent

over-fitting, we use the Dropout technique (Srivastava et al.,

2014) and set the dropout probability to 0.5.

To further extract spatial information from the featuremaps,

the module 3 consists of a spatial attention layer, a Conv2D

layer, and a BN layer. Similar to the temporal attention layer, the

spatial attention layer assigns weights to different channels based

on importance. Suppose the feature maps S ∈ RNs×Nf×Nc×Nt

from the module 2, we apply a GAP for each channel of feature

maps to obtain channel-wise statistics S ∈ RNs×Nf×Nc×1. The

spatial attention mechanism also adopts two FC layers 3 and 4,

which are expressed as follows.

As = softmax
(

Linear4
(

tanh
(

Linear3
(

S
))))

(3)

Finally, we consider probability as the weight to recode the

feature maps S in each channel as follows.

Sa = S • As (4)

Compared with the traditional channel attention (Woo et al.,

2018), this study only utilizes the average pooling instead of the

sum of average and maximum pooling to become insensitive to

the noise in EEG feature learning. Then, to learn a spatial filter,

we further perform a 2D convolutional filter of size (62, 1) and

stride 1 to output 4 feature maps. The BN layer is used before

the ELU activation function. A maximum pooling layer of size

(1, 5) and stride 5 is utilized to reduce the feature dimensions.

To prevent over-fitting, we use the Dropout technique and set

the dropout probability to 0.5.

In themodule 4, after feature maps are flattened into vectors,

a dense layer with the softmax function is used as the classifier

of the model. The output size of the dense layer is set to 2, which

corresponds to the target and non-target classes.

In summary, we have designed a model, as shown in

Figure 2 to extract spatial-temporal features and classification

from single-trial EEG data. The model was trained using the

Adam optimizer and the categorical cross-entropy loss function

in PyTorch. We ran 300 training iterations and performed

validation stopping, saving the model weights when we got the

lowest loss of validation set.

Experiment results

ERP components analysis

The performance of the proposed two-stage audio-assisted

visual BCI paradigm and the STA-CNN model was evaluated

using the EEG recorded by our experiment in Section Materials

and methods. A total of 467 characters, including 10 sentences,

were spelled for each subject. Hence, 714 target EEG segments

and 687 nontarget EEG segments in the first stage, and 467 target

EEG segments and 1868 nontarget EEG segments in the second

stage were recorded for each subject.

We firstly analyzed the ERP components evoked from

the audio-assisted visual BCI paradigm. The grand average of
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TABLE 1 Parameters setting of STA-CNNmodel.

Module Layer #Filters Size Strides Output Options

1 Input (62, 100)

Reshape (1, 62, 100)

Conv2D 16 (1, 50) 1 (16, 62, 100) Padding= (24, 25)

BatchNorm (16, 62, 100)

Activation (16, 62, 100) ELU

2 TemporalAttention (16, 62, 100)

Conv2D 32 (1, 51) 1 (32, 62, 50)

BatchNorm (32, 62, 50)

Activation (32, 62, 50) ELU

Dropout (32, 62, 50) P = 0.5

3 ChannelAttention (32, 62, 50)

Conv2D 4 (62, 1) 1 (4, 1, 50)

BatchNorm (4, 1, 50)

Activation (4, 1, 50) ELU

MaxPool2d (1, 5) 5 (4, 1, 10)

Dropout (4, 1, 10) P = 0.5

4 Flatten (40)

Dense (2) Softmax

FIGURE 2

Schematic diagram of STA-CNN model.

the target and nontarget EEG epochs in the first stages and

the second stages for each subject were calculated separately.

Figure 3 illustrates the averaged scalp potentials on 62 channels

and topographies from the target and nontarget EEG epochs

for one example subject S10. The amplitude of some time

periods of target-related signal in Figures 3A,B is obviously

higher than that of nontarget-related signal in Figures 3C,D.

The three main time periods in Figure 3A with latencies of

about 90, 130, and 195ms after the motion-onset stimulus

could be categorized as the P1, N2, and P2 components of

mVEP. Compared with Figure 3A, the latencies of the mVEP

components in Figure 3B become shorter, which are about

50, 90, and 180ms after the motion-onset stimulus. This

may be due to the earlier picked-up target cues in the first

stage and the congruent audiovisual integration effect (Hessler

et al., 2013; Simon and Wallace, 2018). Besides the mVEP

components, there is an obviously larger amplitude with a

latency of 350ms in Figure 3B, which could be categorized

to the P300 component evoked by the audio-assisted visual

oddball paradigm. The above-mentioned P1, N2, P2, and P300
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components are distributed in the central, temporo-occipital,

and associate parietal cortical areas and dominate in the right

hemisphere, which are consistent with the previous findings

aboutmVEP and P300 components (Kuba et al., 2007; Guo et al.,

2008; Belitski et al., 2011).

Moreover, to further analyze the ERP components during

the character spelling process, taking character A as an example,

the grand average of target and nontarget related signals in

the first stage and the second stage on channel P4 are shown

in Figure 4. The reason for choosing channel P4 is based on

the significant differences between target and nontarget related

signals shown in Figure 3 and the previous findings (Zhang

et al., 2015). In the first stage, the three epochs could be coded

as “101” for the group code sequence of characters A-E. The

amplitudes of the target-related mVEP components, including

P1, N2, and P2 (color area) during the first and third epochs

are significantly higher than that of the nontarget-related signal

during the second epoch, as shown in Figure 4A, where the

mVEP components from the first 500ms and the third 500ms

epochs are coded as “1” and the nontarget signal in the middle

500ms epoch is coded as ‘0’. In the second stage, besides the P1,

N2, and P2 components, the audio-assisted visual target stimuli

can evoke obviously P300, while the nontarget stimuli had no

obvious ERP components. Therefore, the proposed two-stage

audio-assisted visual stimulus paradigm shows great potential to

be used for BCI speller.

Single-trial ERP classification
performance

Due to the different spatial-temporal characteristics of the

ERP components in both two stages, the STA-CNN classification

models were constructed based on the single trial EEG data

in the first stage and the second stage, respectively. For the

integrity of spelling characters, 448 target EEG segments and 452

nontarget EEG segments for 300 characters in the first stage were

used as the training set for each subject, ten percent of which

were used as the validation set. Similar to the first stage, 300

target EEG segments and 1200 nontarget EEG segments in the

second stage were used as the training set, 10% of which were

used as the validation set. For the training set, target samples

were replicated 3 times to ensure the same number of samples

from the two categories in the second stage, which could avoid

model deviation caused by an unbalanced sample number. The

remaining EEG segments for 167 characters were used as the test

set in both stages. The classification performance was evaluated

by the metrics: accuracy and F1-score.

In this part, the proposed STA-CNN was compared with

several LDA variants and deep learning methods, including

STLDA, DCPM, DeepLDA (Wu et al., 2017) and EEGNet,

to validate the single-trial ERP classification performance. For

the above comparison methods, the model parameters in this

study were set by referring to the original literature. Tables 2,

3 present the classification results in terms of accuracy and

F1-score for each subject using the above five methods. The

classification accuracy of the second stage with the audio-

assisted visual stimulus is higher than that of the first stage

with visual stimulus. The overall classification results vary with

different subjects, and subjects 2, 4, 7 and 10 could obtain

higher spelling performance. The average classification accuracy

of proposed STA-CNN across all subjects can reach 59.6% and

77.7% in the first and second stages, which are always higher

than those of the comparisonmethods. The paired samples t-test

was utilized to verify whether there were significant differences

in classification performance between STA-CNN and other

comparison methods. The results show that the STA-CNN can

obtain significantly higher accuracy (p < 0.01) and F1-score

(STLDA: p = 0.03 < 0.05, DCPM: p = 0.041 < 0.05, DeepLDA:

p= 0.014< 0.05, EEGNet: p= 0.143) in the first stage, while the

STA-CNN can obtain significantly higher accuracy (p < 0.01)

and F1-score (EEGNet: p= 0.027 < 0.05, others p < 0.01) in the

second stage.

Furthermore, according to the trained STA-CNN models in

the first and second stages, we provide the total classification

accuracy of the above-mentioned test set (EEG segments for

167 characters) to evaluate the effectiveness of the paradigm

and classification method. In the first stage, the group (during 3

sub-trials) with the group code corresponding classifier output

was chosen, and in the second stage, the character (out of 5

characters) with the highest classifier output was chosen. The

total classification accuracy of 10 subjects is listed in Table 4.

Notice that the chance level is 1/40 = 2.5% for the two-

stage spelling paradigm. The total classification accuracy varied

with different subjects and ranged from 27.0 to 61.7%. Herein,

the total classification accuracy is greatly affected by the first

stage, and once the spelling error occurs in the first stage, it

should be returned to the group selection during the actual

spelling process.

Meanwhile, we provided the ablation study to validate

the effectiveness of the spatial-temporal attention module in

the STA-CNN method. The CNN is the baseline model that

removes the spatial and temporal attention modules. The TA-

CNN is the model that removes the spatial attention module

from STA-CNN. The SA-CNN is the model that removes the

temporal attention module from STA-CNN. The structures and

parameters of all these three models were set according to the

STA-CNNmodel in Table 1. As shown in Table 4, compared with

CNN, TA-CNN and SA-CNN achieve better performance, which

validates the effectiveness of the spatial and temporal attention

modules. Combing with the spatial-temporal attention module,

the STA-CNN is more effective than the TA-CNN and SA-CNN.

The TA-CNN extract effective target ERP features based on

the difference of special time periods between the target and

nontarget EEG signals, which can obtain higher classification
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FIGURE 3

Averaged scalp potentials on 62 channels and topographies from the target and nontarget EEG epochs, for one example subject S10. (A) The

mVEP components of P1, N2, and P2 and their topographies are in the first stage. (B) The audio-assisted visual evoked components of P1, N2,

and P300 and their topographies are in the second stage. (C) The nontarget-related signal and topographies are in the first stage. (D) The

nontarget-related signal and topographies are in the second stage.

accuracy than that of SA-CNN. And then, the paired samples t-

test was utilized to verify whether these methods had significant

differences. The results show that the STA-CNN can obtain

significantly higher accuracy than other comparison methods

(CNN: p = 0.001 < 0.01, TA-CNN: p = 0.002 < 0.01, SA-CNN:

p= 0.005 < 0.01).

Influence of spatial-temporal attention

The deep learning methods can automatically learn the

EEG features, but it is difficult to determine if the spatial-

temporal characteristics of ERP have been extracted efficiently.

The spatial-temporal attention becomes essential to learn the

individual spatial filters for particular time periods. In order

to show the influence of spatial-temporal attention, Figure 5

shows the average weights of temporal and spatial attention

from the test samples based on the STA-CNN model for the

two stages.

In the first stage, as shown in Figure 5A, the results

show that there are higher temporal weights nearby the

time periods of 90, 130, and 210ms, and higher spatial

weights located at temporo-occipital cortical and parietal

cortical areas. The time periods with higher temporal weights

are similar to the latencies of mVEP in Figure 3A, and

the higher spatial weights reflect the differences between
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FIGURE 4

The grand average of target and nontarget signals during the character A spelling process for S10 was recorded on channel P4. (A) The mVEP of

the group characters A-E in the first stage, P1, N2, and P2 are the three main target components. (B) The audio-assisted visual ERP components

of character A in the second stage, P1, N2, P2, and P300 are the main target components.

TABLE 2 The classification accuracy and F1-score of 10 subjects using five methods in the first stage (%).

Subject Accuracy F1-score

STLDA DCPM DeepLDA EEGNet STA-CNN STLDA DCPM DeepLDA EEGNet STA-CNN

S1 56.3 56.7 54.9 57.9 59.1 60.7 60.6 55.2 61.6 59.7

S2 74.9 74.3 77.1 78.0 78.2 76.0 75.1 78.1 79.1 78.6

S3 50.9 51.5 53.3 53.3 54.3 53.2 54.4 54.5 55.9 59.9

S4 60.3 60.1 62.1 62.5 63.7 58.8 60.6 59.1 60.2 62.6

S5 50.3 50.5 51.5 53.3 56.5 51.0 49.3 50.3 52.1 56.4

S6 48.7 50.3 52.3 50.5 50.5 52.0 54.3 52.1 47.5 50.4

S7 58.7 58.3 60.1 60.5 62.7 62.8 61.5 62.3 64.8 60.3

S8 50.5 50.5 50.5 52.1 53.7 52.6 50.4 52.9 53.3 55.2

S9 50.5 52.1 51.7 54.1 54.5 51.9 54.6 53.8 56.6 59.0

S10 56.9 54.5 57.3 61.1 63.3 59.3 57.0 57.4 61.4 64.6

Mean± Std 55.8± 7.8 55.9± 7.3 57.1± 8.0 58.3± 8.1 59.6± 8.0 57.8± 7.7 57.8± 7.4 57.6± 8.0 59.2± 8.7 60.7± 7.4

target and non-target activated brain regions in Figures 3A,C.

Similar to the first stage, as shown in Figure 5B, there

are also higher temporal weights nearby the time periods

of 50, 100, 180, and 310ms, and higher spatial weights

located at occipital and right temporo-parietal cortical areas

in the second stage, which are similar to the latencies

of ERPs and the differences between target and nontarget

activated brain regions in Figures 3B,D. These results are

consistent with the ERP components analysis in Section

Introduction and Figure 3. The proposed STA-CNN benefits

from spatial-temporal weights of attention mechanism to

learn the ERP features effectively, and thus it can achieve

superior performance.

Discussion and conclusions

The mVEP-based paradigm is suitable for BCI speller

application because it can encode the intentions as the

identifiable target components and does not make subjects

feel visual fatigue even for a long-time use (Liu et al., 2019).

However, the problems restricting the practical application

of mVEP-based BCI are the coding efficiency of the large

command set and the decoding accuracy of the single-trial

ERP due to low SNR (Lotte et al., 2018; Xu et al., 2020).

Similar to telecommunication systems, the multiple targets

coding strategy aims to simultaneously share the bandwidth

from time, frequency, code and space with the least performance
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TABLE 3 The classification accuracy and F1-score of 10 subjects using five methods in the second stage (%).

Subject Accuracy F1-score

STLDA DCPM DeepLDA EEGNet STA-CNN STLDA DCPM DeepLDA EEGNet STA-CNN

S1 52.7 54.0 63.5 67.9 71.4 28.8 28.1 36.6 30.6 34.2

S2 74.5 72.1 72.0 74.7 79.2 48.9 42.5 41.2 49.2 52.5

S3 54.3 58.6 64.6 60.1 63.0 30.8 32.7 33.0 34.8 34.1

S4 83.1 85.4 87.3 87.7 88.7 64.1 67.7 70.1 71.3 72.8

S5 76.5 74.6 77.8 80.0 83.0 49.2 47.3 48.8 52.2 55.9

S6 61.3 57.0 68.0 65.5 69.6 34.2 34.4 35.7 41.2 39.5

S7 83.2 84.4 84.4 86.6 87.9 65.4 67.2 64.5 68.0 71.2

S8 59.4 58.6 56.3 60.5 65.5 24.5 32.7 28.0 25.7 26.8

S9 71.7 73.1 78.4 78.0 79.9 43.5 46.3 51.1 49.7 52.5

S10 78.3 79.5 87.1 87.7 89.0 60.2 61.9 72.2 71.5 75.5

Mean± Std 69.5± 11.6 69.7± 11.8 73.9± 10.8 74.9± 10.9 77.7± 9.8 45.0± 15.1 46.1± 14.9 48.1± 16.0 49.4± 16.7 51.5± 17.6

TABLE 4 The total classification accuracy of 10 subjects for the ablation study (%).

Subject Total classification accuracy

CNN TA-CNN SA-CNN STA-CNN

S1 25.8 30.5 29.9 31.7

S2 55.1 58.7 56.3 61.7

S3 24.0 26.4 24.6 28.1

S4 50.3 55.7 53.3 56.9

S5 46.1 53.9 47.9 55.7

S6 32.9 30.5 24.6 29.9

S7 52.4 59.0 57.5 59.9

S8 22.8 25.2 24.6 27.0

S9 35.9 43.7 40.1 44.3

S10 53.9 55.1 59.3 56.3

Mean± Std 39.9± 13.1 43.9± 14.2 41.8± 14.8 45.2± 14.5

degradation (Gao et al., 2014). In this paper, the SDMA method

was utilized to present multiple motion-onset visual stimuli

in the different locations of the visual field simultaneously, as

shown in Figure 1, which can effectively improve the coding

efficiency of spelling intentions. For example, to achieve the

presentation of 40 characters, at least 14 times presentations

are required using a determinant matrix. In contrast, this paper

requires 8 presentations, including 3 parallel mVEP stimuli for

determining group codes and 5 audio-assisted visual stimuli for

determining character codes. The purpose is to improve the

SNR of ERP components by utilizing the integration effect of

audiovisual stimuli. Suppose the group and character codes are

presented in parallel based on mVEP, a target character can

be coded with a maximum of 6 times presentation, which can

achieve a higher output speed.

On the other hand, according to the characteristics of

mVEP and P300 from the audiovisual stimulus, extracting

temporal and spatial information from single-trial EEG is the

key to effectively decoding target ERP (Wirth et al., 2020).

The traditional method is the grand average to improve the

SNR of ERP. The second one is to extract ERP components

from a single EEG according to the prior knowledge, such as

wavelet transform, PCA, ICA and so on, but the computational

complexity is high, and the result is not good. The others are

using classification algorithms to identify targets and nontargets

by mapping the original EEG to the separable space, such

as the LDA method and its variants for optimizing key

temporal segments and spatial activation positions of ERP. The

development of deep learning (Li et al., 2018) has obvious

advantages for decoding ERP, especially EEGNet has achieved

good results. Based on EEGNet, this paper further introduces

a spatial-temporal attention mechanism, which can effectively

learn the key spatial-temporal features and make the deep

learning method better interpretable. As seen in Figure 5,
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FIGURE 5

The average weights of temporal and spatial attention from the test samples based on STA-CNN using line charts and topographies in the first

stage (A) and the second stage (B).

the spatial-temporal attention mechanism can obtain larger

weighted values in the time period corresponding to the active

components of mVEP and P300, as well as in the spatial

channels corresponding to the active brain areas of the target.

Moreover, the deep learning method can realize end-to-end

feature learning, thereby improving the adaptive ability between

different subjects or trials.

The high reliability and robustness of audiovisual BCI

should be furtherly considered for different subjects, different

times, and different scenarios (Liu et al., 2020). According to

the results in Table 4, the total classification accuracy of our

paradigm is greatly affected by the first stage, which still needs

to be improved. Due to the visual interference in the first

stage, the classification accuracy of SDMA-based mVEP is not

high. According to the literature (Lu et al., 2020), audiovisual

integration could enhance the activation of attention-related

brain areas. We tried to introduce the semantically congruent

audio (pronunciation) to enhance the strength of the target ERPs

in the second stage. The experimental results showed that the

classification accuracy in the second stage was higher than in

the first stage, which proves the audio-assisted effect’s positive

influence. But there are 5 characters that need to be traversed

one by one in the second stage, which would lead to a decrease

in presentation efficiency. To improve the efficiency of the BCI

paradigm, we analyze further possible strategies, including novel

paradigms to enhance the EEG features, such as the leftwards or

rightwardsmotion-onset stimuli translating (Libert et al., 2022b)

and the two-dimensional auditory stimuli with both pitch

(high/medium/low) and direction (left/middle/right) (Hohne

et al., 2011), and the stable classification algorithm of ERP for

cross subjects or scenarios, such as the analytic beamformer

transformation (Libert et al., 2022a), ternary classification

method (Zhang et al., 2021) and some transfer learningmethods.

This study proposed the spatial-temporal attention CNN

method for decoding a novel audio-assisted mVEP-based BCI

speller. A two-stage stimulation framework combined with

mVEP and semantically congruent audio evoked P300 was

designed based on a new SCDMA scheme to improve efficiency.

Meanwhile, the STA-CNN method was proposed to deal

with single-trial ERP components learning and classification.
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Specifically, the spatial-temporal attention mechanism can

enhance the discriminative event-related features by adaptively

learning probability weights. The experiment results, obtained

from a dataset including 10 subjects, showed that the

classification accuracy and F1-score were significantly improved

using the proposed STA-CNN compared with the LDA variant

and deep learning methods. Moreover, through the analysis

of the attention weights from time sequence and spatial

topographies, it was proved that STA-CNN could effectively

extract interpretable spatiotemporal features. It is possible to

extend the proposed strategy in the mVEP-based BCI system in

the online test scenario, and future studies are needed to avoid

the mutual interference of different intentions in the SDMA

scheme and develop a robust classification algorithm of ERP.
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